新型聚膦腈/聚氨酯无机/有机共聚材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚膦腈是一类主链上以磷氮原子交替排列,侧链为不同有机取代基的新型无机高分子材料。由于它将有机分子紧密地结合起来,且主链具有区别于有机碳链的特性,从而表现出传统聚合物无法比拟的独特物理化学性能。聚膦腈最大的特点是侧链的易于设计性,改变侧基可以赋予聚合物新的性能。但高分子量聚膦腈制备困难且成本过高,而膦腈齐聚物又由于其力学性能较差,限制了其广泛应用。聚氨酯是一类重要的多用途聚合物材料,拥有优良的耐磨性能、耐疲劳性、耐化学腐蚀性、优异的柔顺性、极好的阻尼性和生物相容性等。但传统原料制备的聚氨酯由于其耐热耐寒性能、阻燃性能和疏水性能不足等缺点限制了其应用领域。本文期望在不过度牺牲聚氨酯的机械性能的前提下,探索利用膦腈齐聚物优越性能来改善聚氨酯的耐热耐寒性能、阻燃性能和疏水性能,制备出一系列新型的聚膦腈/聚氨酯无机/有机共聚材料。
     本文合成了几种含羟基的功能性膦腈齐聚物,分别将它们作为聚氨酯各种组份:添加剂、扩链剂、交联剂和多元醇,制备了多种新型聚膦腈/聚氨酯无机/有机共聚材料。详细考察了膦腈齐聚物对共聚材料耐热耐寒性能、阻燃性能和表面性能的影响。具体研究内容如下:
     1.六苯氧基环三膦腈共混改性热塑性聚氨酯—聚膦腈作为添加剂
     研究了热塑性聚氨酯和六苯氧基环三膦腈(HPCP)共混材料。结果表明,共混材料具有较好的热稳定性,起始热分解温度提高17℃;材料具有较好的阻燃性能,由改性前的易燃材料成为垂直燃烧测试(UL 94)为V-2级的阻燃材料;HPCP有一定的降粘作用,共混材料的熔融指数(MFI)由52.5 g/10min上升到59.4g/10min,可以改善TPU的加工性能;接触角测试(CA)表明共混材料具有更低的表面能,由原来的35.9 mN·m-1下降到28.0 mN·m-1。
     2.聚环膦腈/聚氨酯共聚物的制备及性能研究—聚膦腈作为扩链剂
     合成了一种含砜基、且羟基封端的环膦腈齐聚物。通过傅立叶红外光谱(FTIR)、核磁共振(NMR)和凝胶渗透色谱(GPC)测试验证了所得产物化学组成符合预期的设计,并以此为扩链剂制备了新型的热塑性聚环膦腈/聚氨酯共聚物。X-射线衍射(XRD)分析表明该共聚物是无定形聚合物。热失重分析(TGA)表明共聚物的起始热分解温度提高22℃,差示扫描量热分析(DSC)表明共聚物的玻璃化转变温度(Tg)由原来的-20.6℃下降到-32.3℃,具有较好的耐热耐寒性能。CA表明共聚物的水接触角由原来的78.6o上升到104.5o,疏水性能优于传统热塑性聚氨酯。
     3.聚苯氧基线膦腈交联聚氨酯的制备及性能研究—聚膦腈作为交联剂
     合成了带羟基的线性苯氧基膦腈齐聚物,FTIR、NMR和GPC验证了其化学组成,并以其为交联剂制备了热固性聚氨酯(PUOs)。XRD分析表明PUOs是无定形聚合物,TGA分析结果表明PUOs的失重5%的热降解温度提高78℃;DSC分析表明PUOs的Tg由原来的-13.6℃下降到-32.4℃。PUOs的拉伸强度保持较好(改性前18.4MPa,改性后17.7MPa),而断裂伸长率稍有提高(改性前328.5%,改性后386.7%)。CA的测试表明PUOs的水接触角由原来的74.8o上升到94.6o,具有比传统聚氨酯更好的疏水性。
     4.聚含氟线膦腈交联聚氨酯的制备、形态及性能研究—聚膦腈作为交联剂
     合成了带羟基的线性含氟膦腈齐聚物,FTIR、NMR和GPC证明了其化学组成,以其作为交联剂制备了聚氨酯(PUPFs)。FTIR和元素分析(EA)证明了PUPFs的化学组成与我们设计的一致。XRD分析表明PUPFs是无定形聚合物,原子力显微镜(AFM)分析表明PUPFs的微相分离程度高于传统聚氨酯。DSC表明PUPFs具有较低的玻璃化温度(Tg, PUPF-4= -41℃),这说明PUPFs有极好的耐低温性。PUPFs的拉伸强度保持较好(改性前18.4MPa,改性后16.9MPa),而断裂伸长率稍有提高(改性前328.5%,改性后399.5%)。CA的测试表明PUPFs有较低的表面能,PUPF-4的表面能为22 mN·m-1。
     5.热固性聚膦腈-氨酯的制备及性能研究—聚膦腈作为多元醇
     以带羟基的线性苯氧基膦腈齐聚物为多元醇,甲苯二异氰酸酯(TDI)为硬段,1,4-丁二醇(BDO)为扩链剂制备热固性聚膦腈-氨酯。与传统聚氨酯相比,聚膦腈-氨酯表现出更高的热稳定性。根据聚合物在800℃时的残留率可估算得到聚膦腈-氨酯氧指数为32 %,优于传统聚氨酯的18 %,具有理想的阻燃性。聚膦腈-氨酯的水接触角可达到118.7o,远高于传统聚氨酯的75.0o。
     6.聚膦腈微球交联聚氨酯共聚材料的制备、形态及性能研究—聚膦腈作为纳米交联剂
     首次探索制备了含羟基的聚膦腈微球,并将其引入到聚氨酯基体中形成交联网络结构。扫描电镜(SEM)表明聚膦腈微球较好地分散在聚氨酯基体中。与纯聚氨酯相比,共聚材料的热稳定性显著提高。具有明显特点的是拉伸测试表明共聚材料的拉伸强度明显增加(由改性前12.5MPa上升到改性后19.2MPa),并且断裂伸长率基本保持不变。此外,共聚材料比纯聚氨酯具有更好的疏水性,水接触角由改性前的70.5o上升到96.3o。
Polyphosphazenes are a class of novel inorganic macromolecules containing alternate phosphorus-nitrogen single and double bonds with two organic side groups being attached to each phosphorus atoms. Because the phosphorus-nitrogen bonds are extremely flexible due to the low torsional energy and a large variety of side groups, polyphosphazenes can be made with a wide range of chemical and physical properties. However, polyphosphazenes have far proven to be of limited their wider applications due to polyphosphazenes of high molecular weight are high production costs and difficult to produce. And mechanical properties of phosphazene oligomers are poor. Polyurethanes are an important and versatile class of polymer materials, which are receiving steadily increasing attention and becoming important engineering materials due to their high abrasion resistance, wearability, chemical resistance, high impact strength and outstanding damping ability. However, conventional polyurethanes have relatively poor thermal, cold, flame resistance and hydrophobicity, which can not meet the special requirements in some application fields. Therefore, phosphazene oligomers are explored to improve thermal, cold and flame resistance properties and hydrophobicity of polyurethane, without dramatic damaging mechanical properties of polyurethanes. In the work, a series of novel polyphosphazene/polyurethane copolymerization materials were prepared.
     In the paper, a series of phosphazene oligomers with hydroxyl groups had been synthesized and used as different components of polyurethane to synthesize polyphosphazene/polyurethane copolymerization materials, respectively. These components of polyurethane are additives, chain extenders, crosslinkers and polyols. The thermal and cold resistance properties, flame properties and hydrophobicity of polyurethanes were investigated in detail. The main contents were listed below:
     1. Thermoplastic polyurethane modified by hexaphenoxytricyclophosphazene- polyphosphazene as additive
     The blending materials were prepared by thermoplastic polyurethane (TPU) blending with different contents of hexaphenoxytricyclophosphazene. The blending materials have better thermal stability. Tonset of the blending material increases 17 oC. The blending materials present flame retardancy, which were observed V-2 rating through the UL 94 test. In addition, hexaphenoxytricyclophosphazene has a good decrease in viscosity to improve TPU processing properties. The MFIs of the blending materials are increased from 52.5 to 59.4 g/10min. The blending materials present lower surface energies than TPU according to contact angle measurements (CA), from 35.9 decreased to 28.0 mN·m-1.
     2. Synthesis and characterization of poly(oligophosphazene-urethane)s- polyphosphazene as chain extender
     Hydroxyl terminated phosphazene oligomer containing sulfone groups was synthesized. The results of FTIR, NMR and GPC analysis confirmed the chemical composition. A series of novel thermoplastic poly(oligophosphazene-urethane)s (POUs) were prepared and chain extended by the phosphazene oligomer. X-ray diffraction (XRD) showed that POUs are amorphous. Thermogravimetric analysis (TGA) presented Tonset of POUs increase 22 oC. Differential scanning calorimetry (DSC) showed that present glass transition temperatures (Tg) of POUs decrease from -20.6 to -32.3 oC. The decrease of Tgs showed that POUs could have better low temperature resistance. CA analysis showed water contact angles of POUs increased from 78.6o to 104.5o, which indicated POUs are more hydrophobic than conventional TPU.
     3. Synthesis and characterization of polyurethanes crosslinked by linear phenoxyphosphazene oligomer-polyphosphazene as crosslinker of polyurethane
     Phenoxyphosphazene oligomer containing hydroxyl was successfully synthesized. The chemical composition was characterized by FTIR, NMR and GPC. A series of thermosetting polyurethanes (PUOs) were prepared in a two step method, in which polyurethane prepolymer was crosslinked by phenoxyphosphazene oligomer. XRD showed that PUOs are amorphous. TGA presented Tonset of PUOs increased 78 oC. DSC showed that present Tg of PUOs decreased from -13.6 to -32.4 oC. PUOs maintained good tentile properties (CPU is 18.4 MPa and PUO-1 is 17.7 MPa). Break of elongation is slightly enhanced (CPU is 328.5 % and PUO-1 is 386.7 %). CA analysis showed water contact angles of PUOs increased from 74.8o to 94.6o, which indicated PUOs are more hydrophobic than conventional TPU.
     4. Synthesis and characterization of polyurethanes crosslinked by fluorine containing oligophosphazene- polyphosphazene as crosslinker
     Fluorine-containing oligophosphazene (OFHBP) was successfully synthesized. The chemical composition was identified by FTIR, NMR and GPC. The obtained OFHBP was used as crosslinker to prepare polyurethanes (PUPFs). The composition of the PUPFs was confirmed by FTIR and EA. XRD showed that PUPFs are amorphous. Studies on atomic power microscope (AFM) had found that PUPFs are higher microseparation than conventional polyurethane. DSC showed that PUPFs have lower glass transition temperatures (Tg)s than CPU, such as Tg of PUPF-4 is -41 oC. It could conclude that PUPFs display in super resistance in low temperature. PUPFs maintained good tentile properties (CPU is 18.4 MPa and PUPF-1 is 16.9 MPa). Break of elongation is slightly enhanced (CPU is 328.5 % and PUPF-1 is 399.5 %). CA analysis showed PUPFs are low surface energies. The surface energy of PUPF-4 is 22 mN·m-1.
     5. Synthesis and characterization of thermosetting polyphosphazene-urethanes- polyphosphazene as polyol
     A series of thermosetting polyphosphazene-urethanes (PPUs) were prepared by a two step process using the polyphenoxyphosphazene as polyol, toluene diisocyanate as hard segments and 1, 4-butanediol as chain-extender. The FTIR spectra demonstrated that the composition of PPUs conformed to our expectation. PPUs presented higher thermal stability. LOI of PPUs was estimated from the residues at 800 oC about 32 indicated that flame resistance of PPUs were superior to that of CPU (LOICPU≈18). CA analysis showed water contact angles of PPUs increased from 75.0o to 118.7o, which indicated PPUs are more hydrophobic than CPU.
     6. Synthesis and characterization of novel polyurethane crosslinked by poly (cyclotriphosphazene-co-4,4′- sulfonyldiphenol) microspheres copolymerization materials -polyphosphazene as nano-crosslinker
     The organic inorganic polyurethane hybrid copolymerization materials based on PZSMs were successfully fabricated with netlike structure for the first time. The results on the microstructure of the copolymerization materials indicated that the PZSMs could be dispersed in the polyurethane matrix well. The copolymerization materials displayed the excellent thermal stability. In addition, copolymerization materials showed evident characteristics as improvement in tensile strength (PU is 12.5 MPa and PU-4 is 19.2 MPa) and almost invariability in elongation at break by adding PZSMs into the polyurethane matrix. The copolymerization materials are more hydrophobic than pure polyurethane, water contact angles increasing from 70.5o to 96.3o.
引文
[1] Gleria M., Jaeger R.D., Polyphosphazenes: A review, Topics in Current Chemistry, 2005, 250: 165-251.
    [2] Jaeger R.D., Gleria M., Poly(organophosphazene)s and related compounds: Synthesis, properties and applications, Progress in Polymer Science, 1998, 23: 179-276.
    [3] Andrianov A.K., Water-soluble polyphosphazenes for biomedical applications, Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16(4): 397-406.
    [4] Neilson R.H., Wisian P.N., Poly(alky/arylphosphazenes) and their precursors, Chemical Reviews, l988, 88: 541-562.
    [5] Allcock H.R., Hybrid metallocene-phosphazene polymers, Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15(1): 57-65.
    [6] Rehahn M., Organic/inorganic hybrid polymers, Acta Polymer, 1998, 49: 201-224.
    [7] Singler R.E., Historical overview of the army contributions to phosphazene chemistry, Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16(4): 307-309.
    [8] Allen C.W., Regie and Stereochemical control in substitution reactions of cyclophosphazenes, Chemical reviews, 1991, 91: 119-135.
    [9] Honarkar H., Rahimi A., Applications of inorganic polymeric materials, III: Polyphosphazenes, Monatshefte für Chemie, 2007, 138: 923-933.
    [10] Allcock H.R., A perspective of polyphosphazene research, Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16(4): 277-294.
    [11] Stone D.A., Allcock H.R., A new polymeric intermediate for the synthesis of hybrid inorganic-organic polymers, Macromolecules, 2006, 39(15): 4935-4937.
    [12] Gleria M., Bertani R., Jaeger R.D., et al. Fluorine containing phosphazene polymers, Journal of Fluorine Chemistry, 2004, 125: 329-337.
    [13] Zhang L., Nederberg F., Pratt R.C., et al. Phosphazene Bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters, Macromolecules, 2007, 40: 4154-4158.
    [14] Heyde M., Moens M., Vaeck L.V., et al. Synthesis and characterization of novel poly[(organo)phosphazene]s with cell-adhesive side groups, Biomacromolecules, 2007, 8: 1436-1445.
    [15] Zhang L., Nederberg F., Messman J.M., et al. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases, Journal of the American Chemical Society, 2007, 129: 12610-12611.
    [16] Chang Y., Bender J.D., Phelps M.V.B., et al. Synthesis and self-association behavior of biodegradable amphiphilic poly[bis(ethyl glycinat-N-yl)phosphazene]-poly(ethylene oxide) block copolymers, Biomacromolecules, 2002, 3: 1364-1369.
    [17] Li Z., Luo J., Li J., et al. Novel polyphosphazenes containing charge-transporting agent and chromophore as pendant groups, Polymer Bulletin, 2000, 45: 105-111.
    [18] Brown J.L., Nair L.S., Bender J., et al. The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process, Materials Letters, 2007, 61: 3692-3695.
    [19] Luten J., Steenis J.H., Someren R., et al. Water-soluble biodegradable cationic polyphosphazenes for gene delivery, Journal of Controlled Release, 2003, 89: 483-497.
    [20] Ibim S.M., Ambrosio A.A., Larrier D., et al. Controlled macromolecule release from poly(phosphazene) matrices, Journal of Controlled Release, 1996, 40: 31-39.
    [21] Yuan W., Yuan J., Zhang F., et al. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(ε-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization, Biomacromolecules, 2007, 8: 1101-1108.
    [22] Wolf H.K., Raad M., Snel C., et al. Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight, Pharmaceutical Research, 2007, 24(8): 1572-1580.
    [23] Yuan W., Yuan J., Huang X., et al. Synthesis, characterization, and in vitro degradation of star-shaped p(ε-caprolactone)-b-poly(L-lactide)-b-poly(D,L-lactide-co-glycolide) from hexakis [p-(hydroxymethyl)phenoxy]cyclotriphosphazene initiator, Journal of Applied Polymer Science, 2007, 104: 2310-2317.
    [24] Krogman N.R., Singh A., Nair L.S., et al. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends, Biomacromolecules, 2007: 6-13.
    [25] Yang J., Zhao T., Zhou Y., et al. Single crystals of the poly(L-lactide) block and the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymer, Macromolecules, 2007, 40: 2791-2797.
    [26] Harrup M.K., Stewart F.F., Improved method for the isolation and purification of water-soluble polyphosphazenes, Journal of Applied Polymer Science, 2000, 78: 1092-1099.
    [27] Bac A., Damas C., Guizard C., Microstructural investigation of dense membranes in relation to their gas transport properties, Journal of Membrane Science, 2006, 281: 548-559.
    [28] Kaskhedikar N., Paulsdorf J., Burjanadze M., et al. Ionic conductivity of polymer electrolyte membranes based on polyphosphazene with oligo(propylene oxide) side chains, Solid State Ionics, 2006, 177: 703-707.
    [29] Hart D.L.V., Manderss W.F., Stein R.S., et al. A liquid crystalline poly(organophosphazene), Macromolecules, 1987, 20: 1726-1727.
    [30] Rath T., Kumar S., Mahaling R.N., et al. Flexible composite of PEEK and liquid crystalline polymer in presence of polyphosphazene, Journal of Applied Polymer Science, 2007, 104: 3758-3765.
    [31] Allcock H.R., Powell E.S., Maher A.E., et al. Telechelic polyphosphazenes: Reaction of living poly(dichlorophosphazene) chains with alkoxy and aryloxy phosphoranimines, Macromolecules, 2004, 37: 3635-3641.
    [32] Chang Y., Powell E.S., Allcock H.R., Thermosensitive behavior of poly(ethylene oxide)-poly[bis(methoxyethoxyethoxy)-phosphazene] block copolymers, Macromolecules, 2003, 36: 2568-2570.
    [33] Allcock H.R., Reeves S.D., Denus C.R., et al. Influence of reaction parameters on the living cationic polymerization of phosphoranimines to polyphosphazenes, Macromolecules, 2001, 34: 748-754.
    [34] McIntosh M.B., Hartle T.J., Allcock H.R., Synthesis and reactivity of alkoxy, aryloxy, and dialkylamino phosphazene azides, Journal of American Chemical Society, 1999, 121: 884-885.
    [35] Allcock H.R., Nelson J.M., Prange R., et al. Synthesis of telechelic polyphosphazenes via the ambient temperature living cationic polymerization of amino phosphoranimines, Macromolecules, 1999, 32: 5736-5743.
    [36] Allcock H.R., Kim C., Photochromic polyphosphazenes with spiropyran units, Macromolecules, 1991, 24: 2846-2851.
    [37] Allcock H.R., Dembek A.A., Kim C., et al. Second-order nonlinear opticalpoly(organophosphazenes): Synthesis and nonlinear optical characterization, Macromolecules, 1991, 24: 1000-1010.
    [38] Yashchuk V.M., Bogdal D., Pielichowski J., et al. Space configuration and luminescence properties of polyphosphazenes with carbazole-containing side groups, Journal of Molecular Liquids, 2003, 105: 185-190.
    [39] Pan Y., Tang X., Zhu L., Huang Y., Synthesis and characterization of a new high-Tg photorefractive material, European Polymer Journal, 2007, 43: 1091-1095.
    [40] Li Z., Li J., Qin J., Synthesis of polyphosphazenes as potential photorefractive materials, Reactive & Functional Polymers, 2001, 48: 113-118.
    [41] Rath T., Kumar S., Mahaling R.N., et al. Flexible composite of PEEK and liquid crystalline polymer in presence of polyphosphazene, Journal of Applied Polymer Science, 2007, 104: 3758-3765.
    [42] Singler R.E., Willinghamf R.A., Noel C., et al. Thermotropic liquid crystalline poly(organophosphazene), Macromolecules, 1991,24: 510-516.
    [43] Jaglowskit A.J., Singler R.E., Atkins E.D.T., Liquid crystalline behavior of poly[((6-(4-phenylphenoxy)hexyl)oxy)(trifluoroethoxy)-phosphazene], Macromolecules, 1995, 28: 1668-1672.
    [44] Hart D.L.V., Manderss W.F., Stein R.S., et al. A liquid crystalline poly(organophosphazene), Macromolecules, 1987, 20: 1726-1727.
    [45] Kim C., Allcock H.R., Liquid crystalline side-chain phosphazenes, Macromolecules, 1987, 20: 1727-1728.
    [46] Park S., Kim J.S., Chang Y., et al. A covalently interconnected phosphazene-silicate network: Synthesis and surface functionalization, Journal of Inorganic and Organometallic Polymers, 1998, 8(4): 205-14.
    [47] Chang Y., Allcock H.R., A covalently interconnected phosphazene-silicate hybrid network: Synthesis, characterization, and hydrogel diffusion-related application, Advanced Materials, 2003, 15(6): 537-541.
    [48] Prange R., Allcock H.R., Telechelic Syntheses of the first phosphazene siloxane block copolymers, Macromolecules, 1999, 32: 6390-6392.
    [49] Nelson D.A., Duncan J.B., Jensen G.A., et al. Isotopomeric water separations with supported polyphosphazene membranes, Journal of Membrane Science, 1996, 112: 105-113.
    [50] Harrup M.K., Stewart F.F., Improved method for the isolation and purification of water-soluble polyphosphazenes, Journal of Applied Polymer Science, 2000, 78: 1092-1099.
    [51] Orme C.J., Klaehn J.R., Harrup M.K., et al. Characterization of 2-(2-methoxyethoxy)ethanol-substituted phosphazene polymers using pervaporation, solubility parameters, and sorption studies, Journal of Applied Polymer Science, 2005, 97: 939–945.
    [52] Orme C.J., Harrup M.K., Mccoy J.D., et al. Pervaporation of water-dye, alcohol-dye, and water-alcohol mixtures using a polyphosphazene membrane, Journal of Membrane Science, 2002, 197: 89-101.
    [53] Hillq A.J., Bastoti T.J., Meakin P., et al. Ru-doped phosphazene membrane materials used for catalytic hydrogenation, Desalination, 2002, 144: 61-66.
    [54] Allcock H.R., Smith D.E., Surface studies of poly(organophosphazenes) containing dimethylsiloxane grafts, Chemistry Materials, 1996, 7: 1469-1474.
    [55] Wycisk R., Pintauro P.N., Sulfonated polyphosphazene ion-exchange membranes, Journal ofMembranes Science, 1996, 119: 155-160.
    [56] Levchik S.V., Weil E.D., A review of recent progress in phosphorus-based flame retardants, Journal of Fire Sciences, 2006, 24: 345-364.
    [57] Chiu W.Y., Wang F.T., Chen L.W., et al. Crystallization kinetics and thermal degradation behavior of low-density polyethylene blended with poly(bispropoxyphosphazene), Polymer Degradation and Stability, 2000, 67: 223-231.
    [58] Chen Y.W., Chuang J.R., Yang Y.C., et al. New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood, Journal of Applied Polymer Science, 1998, 69: 115-122.
    [59] Zhang T., Cai Q., Wu D.Z., et al. Phosphazene cyclomatrix network polymers: Some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer, Journal of Applied Polymer Science, 2005, 95: 880-889.
    [60] Mathew D., Nair C.P.R., Ninan K.N., Phosphazene-triazine cyclomatrix network polymers: some aspects of synthesis, thermaland flame-retardant characteristics, Polymer International, 2000, 49: 48-56.
    [61] Allcock H.R., Hofmann M.A., Wood R.M., Phosphonation of aryloxyphosphazenes, Macromolecules, 2001, 34: 6915-6921.
    [62] Levchik S.V., Levchik G.F., Balabanovich A.I., et al. Phosphorus oxynitride: a thermally stable fire retardant additive for polyamide 6 and poly(butylene terephthalate), Die Angewandte Makromolekulare Chemie, 1999, 264: 48–55.
    [63] Klein R.J., Welna D.T., Weikel A.L., et al. Counterion effects on ion mobility and mobile ion concentration of doped polyphosphazene and polyphosphazene ionomers, Macromolecules, 2007, 40: 3990-3995.
    [64] Kulkarni A.R., Engineering polymer electrolytes with enhanced ionic conduction, Solid State Ionics 2000, 136-7: 549-558.
    [65] Andrianov A.K., Marin A., Peterson P., et al. Fluorinated polyphosphazene polyelectrolytes, Journal of Applied Polymer Science, 2007, 103: 53-58.
    [66] Zhou X., Weston J., Chalkov E., et al. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells, Electrochimica Acta, 2003, 48: 2173-2180.
    [67] Allcock H.R., Napierala M.E., Olmeijer D.L., et al. Ionic conduction in polyphosphazene solids and gels: 13C, 31P, and 15N NMR spectroscopy and molecular dynamics simulations, Macromolecules, 1999, 32: 732-741.
    [68] Frech R., York S., Allcock H.R., et al. Ionic transport in polymer electrolytes: The essential role of associated ionic species, Macromolecules, 2004, 37: 8699-8702.
    [69] Chang Y., Bender J.D., Phelps M.V.B., et al. Synthesis and self-association behavior of biodegradable amphiphilic poly[bis(ethyl glycinat-N-yl)phosphazene] -poly(ethylene oxide) block copolymers, Biomacromolecules, 2002, 3: 1364-1369.
    [70] Andrianov A.K., Chen J., Payne L.G., Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions, Biomaterials, 1998, 19: 109-115.
    [71] Brown J.L., Nair L.S., Bender J., et al. The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process, Materials Letters, 2007, 61: 3692-3695.
    [72] Luten J., Steenis J.H., Someren R., et al. Water-soluble biodegradable cationic polyphosphazenes for gene delivery, Journal of Controlled Release, 2003, 89: 483-497.
    [73] Allcock H.R., Fuller T.J., Phosphazene high polymers with steroidal side groups,Macromolecules, 1980, 13: 1338-1345.
    [74] Ibim S.M., Ambrosio A.A., Larrier D., et al. Controlled macromolecule release from poly(phosphazene) matrices, Journal of Controlled Release, 1996, 40: 31-39.
    [75] Allcock H.R., Lavin K.D., Riding G.H., Ring-opening polymerization of metallocene cyclophosphazene derivatives, Macromolecules, 1985, 18: 1340-1345.
    [76] Sennett M.S., Hagnauer G.L., Singler R.E., et al. Kinetics and mechanism of the boron trichloride catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution, Macromolecules, 1986, 19: 959-964.
    [77] Allcock H.R., Austin P.E., Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines: Chemotherapeutic models, Macromolecules, 1981, 14: 1616-1622
    [78] Mujumdar A.N., Young S.G., Merker R.L., et al. A study of solution polymerization of polyphosphazenes, Macromolecules, 1990, 23: 14-21.
    [79] Allcock H.R., Nelson J.M., Reeves S.D., et al. Ambient-temperature direct synthesis of poly(organophosphazenes) via the“Living”cationic polymerization of organo-substituted phosphoranimines, Macromolecules, 1997, 30: 50-56.
    [80] Allcock H.R., Crane C.A., Morrissey C.T., et al. A new route to the phosphazene polymerization precursors, Cl3P=NSiMe3 and (NPCl2)3, Inorganic Chemistry, 1999, 38: 280-283.
    [81] Halluin G.D., Jaeger R.D., Chambrette J.P., et al. Synthesis of poly(dichlorophosphazenes) from Cl3P=NP(O)Cl2. 1. Kinetics and reaction mechanism, Macromolecules, 1992, 25: 1254-1258.
    [82] Carriedo G.A., Alonso F.J.G., Elipe P.G., et al. A simplified and convenient laboratory-scale preparation of 14N or 15N High molecular weight poly(dichlorophosphazene) directly from PCl5, Chemistry A European Journal, 2003, 9: 3833-3836.
    [83] Ibim S.E.M., Ambrosio A.M.A., Kwon M.S., et al. Novel polyphosphazene/poly(lactideco- glycolide) blends: miscibility and degradation studies, Biomaterials, 1997, 18: 1565-1569.
    [84] Minto F., Gleria M., Pegoretti A., et al. Blending, grafting, and cross-linking processes between poly(ethylene oxide) and a poly[(4-benzoylphenoxy)0.5(methoxyethoxyethoxy)0.5] phosphazene copolymer, Macromolecules, 2000, 33(4): 1173-1180.
    [85] Reed C.S., Taylor J.P., Guigley K.S., et al. Polyurethane/poly[bis(carboxylatophenoxy) phosphazene] blends and their potential as flame-retardant materials, Polymer Engineering and Science, 2000, 40(2): 465-472.
    [86] Reed C.S., Kevor S T, Paul W, et al. The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propel ester phosphazene, Journal of Applied Polymer Science, 1999, 74: 229-237.
    [87] Deng B.L., Chiu W.Y., Lin K.F., et al. Thermal degradation behavior of epoxy resin blended with propyl ester phosphazene, Journal of Applied Polymer Science, 2001, 81: 1161-1174.
    [88] Denq B.L., Chiu W.Y., Chen L.W., et al. Thermal degradation behavior of polystyrene blended with propyl ester phosphazene, Polymer Degradation and Stability, 1997, 57: 26l-268.
    [89] Krogman N.R., Singh A., Nair L.S., et al. Miscibility of bioerodible polyphosphazene/ poly(lactide-co-glycolide) blends, Biomacromolecules, 2007, 8 (4): 1306-1312.
    [90] Allcock H.R., Nelson C.J., Coggio W.D., Photoinitiated graft poly(organophosphazenes): Functionalized immobilization substrates for the binding of amines, proteins, and metals, Chemistry of Materials, 1994, 6(4): 516-524.
    [91] Allcock H.R., Powell E.S., Maher A.E., et al. Poly(methyl methacrylate)-graft-poly-[bis(trifluoroethoxy)phosphazene] copolymers: Synthesis, characterization, and effects of polyphosphazene incorporation, Macromolecules, 2004, 37: 5824-5829.
    [92] Chang J.Y., Park P.J., Han M.J., Synthesis of poly(4-methylphenoxyphosphazene) -graft-poly(2-methyl-2-oxazoline) copolymers and their micelle formation in water, Macromolecules, 2000, 33: 321-325.
    [93] Veronese F.M., Marsilio F., Caliceti P., et al. Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release,Journal of Controlled Release, 1998, 52: 227-237.
    [94] Chang Y., Prange R., Allcock H.R., et al. Amphiphilic poly[bis(trifluoroethoxy) phosphazene]-poly(ethylene oxide) block copolymers: Synthesis and micellar characteristics, Macromolecules, 2002, 35: 8556-8559.
    [95] Prange R., Reeves S.D., Allcock H.R., Polyphosphazene-polystyrene copolymers: Block and graft copolymers from polyphosphazene and polystyrene macromonomers, Macromolecules, 2000, 33: 5763-5765.
    [96] Allcock H.R., Powell E.S., Chang Y., et al. Synthesis and micellar behavior of amphiphilic polystyrene-poly[bis(methoxyethoxyethoxy)phosphazene] block copolymers, Macromolecules, 2004, 37: 7163-7167.
    [97] Prange R., Allcock H.R., Telechelic syntheses of the first phosphazene siloxane block copolymers, Macromolecules, 1999, 32: 6390-6392.
    [98] Chang Y., Powell E.S., Allcock H.R., et al. Thermosensitive behavior of poly (ethylene oxide)-poly[bis(methoxyethoxyethoxy)-phosphazene] block copolymers, Macromolecules, 2003, 36: 2568-2570.
    [99] Jacquemin D., Linear and nonlinear optics properties of polyphosphazene/polynitrile alternating copolymers, Journal of Chemical Theory and Computation, 2005, 1: 307-314.
    [100] Vandorpe J., Dunn E.S.S., Hawley A., et al. Long circulating biodegradable poly (phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer, Biomaterials, 1997, 18: 1147-1152.
    [101] Marcelo G., Saiz E., Mendicuti F., et al. Analysis of the secondary structure of random copolymers by a combination of fluorescence and molecular dynamics methods. Application to polyphosphazenes containing phenoxy and binaphthoxy groups, Macromolecules, 2006, 39: 877-885.
    [102] Gleria M., Bolognesi A., Porzio W., et al. Grafting reactions onto poly (organophosphazenes) 1. The case of poly [bis(4-isopropylphenoxy) phosphazene]-g-polystyrene copolymers, Macromolecules, 1987, 20 (3): 469-473.
    [103] Allcock H.R., Visscher K.B., Manners I., Polyphosphazene-organic polymer interpenetrating polymer networks, Chemistry of Materials, 1992, 4: 1188-1192.
    [104] Burjanadze M., Paulsdorf J., Kaskhedikar N., et al. Proton conducting membranes from sulfonated poly[bis(phenoxy) phosphazenes] with an interpenetrating hydrophilic network, Solid State Ionics, 2006, 177: 2425-2430.
    [105] Visscher K.B., Manners I., Allcock H.R., Synthesis and properties of polyphosphazene interpenetrating polymer networks, Macromolecules, 1990, 23: 4885-4886.
    [106] Allcock H.R., Visscher K.B., Kim Y.B., New polyphosphazenes with unsaturated side groups: Use as reaction intermediates, cross-linkable polymers, and components of interpenetrating polymer networks, Macromolecules, 1996, 29: 2721-2728.
    [107]傅明源,孙酐经,聚氨酯弹性体及其应用,北京:化学工业出版社,1994.
    [108]李绍雄,刘益军,聚氨酯树脂及其应用,北京:化学工业出版社,2002.
    [109]李绍雄,朱吕明,聚氨酯树脂,南京,江苏科学技术出版社,1992.
    [110]朱吕明,聚氨酯合成材料,南京,江苏科学技术出版社,2002.
    [111] Lemos V.A., Santos M.S., Santos E.S., et al. Application of polyurethane foam as a sorbent for trace metal pre-concentration-a review, Spectrochimica Acta Part B, 2007, 62: 4-12.
    [112] Weil E.D., Levchik S.V., Commercial flame retardancy of polyurethanes, Journal of Fire Sciences, 2004, 22: 183-210.
    [113] Sriram V., Mahesh G.N., Jeevan R.G., et al. Comparative studies on short-chain and long-chain crosslinking in polyurethane networks, Macromolecular Chemistry and Physics, 2000, 201: 2799-2804.
    [114] Kim H.D., Huh J.H., Kim E.Y., et al. Comparison of properties of thermoplastic polyurethane elastomers with two different soft segments, Journal of Applied Polymer Science, 1998, 69: 1349-1355.
    [115] Padmavathy T., Srinivasan K.S.V., Liquid crystalline polyurethanes-A review, Journal of Macromolecular Science, Part C-Polymer Reviews, 2003, 43 (1): 45-85.
    [116] Jayakumar R., Nanjundan S., Prabaharan M., Metal-containing polyurethanes, poly(urethane–urea)s and poly(urethane–ether)s: A review, Reactive & Functional Polymers, 2006, 66: 299-314.
    [117] Zia K.M., Bhatti H.N., Bhatti I.A., Methods for polyurethane and polyurethane composites, recycling and recovery: A review, Reactive & Functional Polymers, 2007, 67: 675-692.
    [118] Njuguna J., Pielichowski K., Recent developments in polyurethane-based conducting composites, Journal of Materials Science, 2004, 39: 4081-4094.
    [119] Athawale V.D., Kolekar S.L., Raut S.S., Recent developments in polyurethanes and poly(acrylates) interpenetrating polymer networks, Journal of Macromolecular Science Part C-Polymer Reviews, 2003, 43 (1): 1-26,
    [120] Chattopadhyay D.K., Raju K.V.S.N., Structural engineering of polyurethane coatings for high performance applications, Progress in Polymer Science, 2007, 32: 352-418.
    [121] Shufen L., Zhi J., Kaijun Y., et al. Studies on the thermal behavior of polyurethanes, Polymer-Plastics Technology and Engineering, 2006, 45: 95-108.
    [122] Król P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Progress in Materials Science, 2007, 52: 915-1015.
    [123] Pires P.C., Fonsec M.M.R., Ferreira S.D., Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: A kinetic study, Biochemical Engineering Journal, 2009, 43: 327-332.
    [124] Ramírez M,, Gómez J.M., Aroca G., et al. Removal of ammonia by immobilized Nitrosomonas europaea in a biotrickling filter packed with polyurethane foam, Chemosphere, 2009, 74: 1385-1390.
    [125] Luyten J., Mullens S., Cooymans J., et al. Different methods to synthesize ceramic foams, Journal of the European Ceramic Society, 2009, 29: 829-832.
    [126] Zhang J., Lia L., Chen G., et al. Influence of iron content on thermal stability of magnetic polyurethane foams, Polymer Degradation and Stability, 2009, 94: 246-252.
    [127] Shahat M.F.E., Moawed E.A., Burham N., Preparation, characterization and applications ofnovel iminodiacetic polyurethane foam (IDA-PUF) for determination and removal of some alkali metal ions from water, Journal of Hazardous Materials, 2008, 160: 629-633.
    [128] Xue C., Tu B., Zhao D., Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams, Advanced Functional Materials, 2008, 18: 3914-3921.
    [129] Thirumal M., Khastgir D., Singha N.K., et al. Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam, Journal of Applied Polymer Science, 2008, 110: 2586-2594.
    [130] Marsavina L., Sadowski T., Dynamic fracture toughness of polyurethane foam, Polymer Testing, 2008, 27: 941-944
    [131] Puskas J.E., Fray M.E., Tomkins M., et al. Dynamic stress relaxation of thermoplastic elastomeric biomaterials, Polymer, 2009, 50: 245-249.
    [132] Jewrajka S.K., Yilgor E., Yilgor I., et al. Polyisobutylene-based segmented polyureas. I. Synthesis of hydrolytically and oxidatively stable polyureas, Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47: 38-48.
    [133] Zhang J., Hu C.P., Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments, European Polymer Journal, 2008, 44: 3708-3714.
    [134] Zia K.M., Barikani M., Bhatti I.A., et al. Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers, Journal of Applied Polymer Science, 2008, 110: 769-776.
    [135] Zia K.M., Bhatti I.A., Barikani M., et al. Surface characteristics of UV-irradiated polyurethane elastomers extended with a,ω-alkane diols, Applied Surface Science, 2008, 254: 6754-6761.
    [136] Zand B.N., Mahdavian M., Corrosion and adhesion study of polyurethane coating on silane pretreated aluminum, Surface & Coatings Technology, 2009, 203: 1677-1681.
    [137] Mishra R.S., Mishra A.K., Raju K.V.S.N., Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings, European Polymer Journal, 2009, 45: 960-966.
    [138] Mishra A.K., Jena K.K., Raju K.V.S.N., Synthesis and characterization of hyperbranched polyester–urethane–urea/K10-clay hybrid coatings, Progress in Organic Coatings, 2009, 64: 47-56.
    [139] Sung L.P., Comer J., Forster A.M., et al. Scratch behavior of nano-alumina/polyurethane coatings, Journal of Coatings Technology Research, 2008, 5(4): 419-430.
    [140] Tsai H.C., Hong P.D., Yen M.S., Preparation and physical properties of MDEA-based polyurethane cationomers and their application to textile coatings, Textile Research Journal, 2007, 77: 710-720.
    [141] Kenawy E.R., Hay F.I.A., Newehya M.H.E., et al. Processing of polymer nanofibers through electrospinning as drug delivery systems, Materials Chemistry and Physics, 2009, 113: 296-302.
    [142] Wikus P., Figueroa E.F., Herte S.A., et al. The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K, Cryogenics, 2008, 48: 515-517.
    [143] Zhuo H., Hu J., Chen S., et al. Preparation of polyurethane nanofibers by electrospinning, Journal of Applied Polymer Science, 2008, 109: 406-411.
    [144] Riboldi S.A., Sadr N., Pigini L., et al. Skeletal myogenesis on highly orientatedmicrofibrous polyesterurethane scaffolds, Journal of Biomedical Materials Research Part A, 2007, 8: 1094-1101.
    [145] Meng Q., Hu J., Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning, Composites: Part A, 2008, 39: 314-321.
    [146] Calpena E.O., FranciscaAra A., Palau A.M.T., et al. Addition of different amounts of a urethane-based thickener to waterborne polyurethane adhesive, International Journal of Adhesion & Adhesives, 2009, 29: 309-318.
    [147] Amrollahi M., Sadeghi G.M.M., Evaluation of adhesion strength, flammability, and degradation of HBCD-containing polyurethane adhesives, Journal of Applied Polymer Science, 2008, 110: 3538-3543.
    [148] Du H., Zhao Y., Yin N., et al. Preparation and properties of waterborne polyurethane adhesives modified by polystyrene, Journal of Applied Polymer Science, 2008, 110: 3156-3161.
    [149] Jung J.S., Kim J.H., Kim M.S., et al. Properties of reactive hot melt polyurethane adhesives with acrylic polymer or macromonomer modifications, Journal of Applied Polymer Science, 2008, 109: 1757-1763.
    [150] Lee W.J., Lin M.S., Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied taiwan acacia and china fir, Journal of Applied Polymer Science, 2008, 109: 23-31.
    [151] Ge Z., Zhang X., Dai J., et al. Synthesis, characterization and properties of a novel fluorinated polyurethane, European Polymer Journal, 2009, 45: 530-536.
    [152] Jewrajka S., Yilgor E., Yilgor I., et al. Polyisobutylene-based segmented polyureas. I. Synthesis of hydrolytically and oxidatively stable polyureas, Journal of Polymer Science: Part A: Polymer Chemistry, 2009: 38-48.
    [153] Pilch B.P., Król P., Pikus S., Supramolecular structure of crosslinked polyurethane elastomers based on well-defined prepolymers, Journal of Applied Polymer Science, 2008, 110: 3292-3299.
    [154] Merlin D.L., Sivasankar B., Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer, European Polymer Journal, 2009, 45: 165-170.
    [155] Huh J.H., Kim H.I., Rahman M.M., et al. Preparation and properties of MDI/H12MDI-based waterborne poly(urethane-urea)s-effects of MDI content and radiant exposure, Journal of Applied Polymer Science, 2008, 110: 3655-3663.
    [156] Pilch B.P., Król P., Pikus S., Supremolecular structure of crosslinked polyurethane elastomers based on well-defined prepolymers, Journal of Applied Polymer Science, 2008, 110: 3292-3299.
    [157] Cui G., Xia W., Chen G., et al. Enhanced mechanical performances of waterborne polyurethane loaded with lignosulfonate and its supramolecular complexes, Journal of Applied Polymer Science, 2007, 106: 4257-4263.
    [158] Prisacariu C., Scortanu E., Crystallization and properties of novel polyurethanes based on the chain extender ethylene glycol and aromatic diisocyanates of variable flexibility, Macromolecular Symposium, 2007, 254: 153-159.
    [159] MatkóS., Répási I., SzabóA., et al. Fire retardancy and environmental assessment of rubbery blends of recycled polymers, Express Polymer Letters, 2008, 2 (2): 126-132.
    [160] Wang X., Luo X., Wang X., Study on blends of thermoplastic polyurethane and aliphatic polyester: Morphology, rheology, and properties as moisture vapor permeable films, Polymer Testing, 2005, 24: 18-24.
    [161] Hou L., Liu H., Yang G., Preparation and characterization of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization ofε-caprolactam, Polymer Engineering and Science, 2006: 1196-1203.
    [162] Damrongsakkul S., Sinweeruthai R., Higgins J.S., Processibility and chemical resistance of the polymer blend of thermoplastic polyurethane and polydimethylsiloxane, Macromolecular Symposium, 2003,198: 411-419.
    [163] Stankowski M., Kropidowska A., Gazda M., et al. Properies of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites, Journal of Thermal Analysis and Calorimetry, 2008, 1-7.
    [164] Ma H., Yang Y., Rheology, morphology and mechanical properties of compatibilized poly(vinylidene fluoride) (PVDF)/thermoplastic polyurethane (TPU) blends, Polymer Testing, 2008, 27: 441-446.
    [165] Ajili S.H., Ebrahimi N.G., Miscibility of TPU (PCL diol)/PCL blend and its effect on PCL crystallinity, Macromolecular Symposium, 2007, 249-50: 623-627.
    [166] Dolmaire N., Méchin F., Espuche E., et al. Modification of a hydrophilic linear polyurethane by crosslinking with a polydimethylsiloxane. Influence of the crosslink density and of the hydrophobic/hydrophilic balance on the water transport properties, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44: 48-61.
    [167] Horgnies M., Ceretti E.D., Study of siloxane additives migration to the surface of polyester-(melamine)-polyurethane coatings: Aging effects after ethanol cleaning, Progress in Organic Coatings, 2006, 55: 27-34.
    [168] Wang L.F., Ji Q., Glass T.E., et al. Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes, Polymer, 2000, 41: 5083-5093.
    [169] Fan Q., Fang J.L., Chen Q., et al. Synthesis and properties of polyurethane modified with aminoethylaminopropyl poly(dimethyl siloxane), Journal of Applied Polymer Science, 1999, 74: 2552-2558.
    [170] Feng L., Zhang X., Dai J., et al. Synthesis and surface properties of polyurethane modified by Polysiloxane, Front Chemistry of China 2008, 3 (1): 1-5.
    [171] Filip D., Macocinschi D., Thermogravimetric analysis of polyurethane–polysulfone blends, Polymer International, 2002, 51: 699-706.
    [172] Lin M.F., Wang H.H., Shiao K.R., Mechanical behaviour of block copolymers of polyurethane with poly (4,4'-diphenylsulphone terephthalamide), Journal of Material Science, 1995, 30: 1302-1306.
    [173] Qin X., Yang X., Wang X., et al. Synthesis and characterization of poly(imide-urethane) based on novel chain-extender containing both imide and sulphone functions, Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 4469-4477.
    [174] Yeganeh H., Barikani M., Khodabadi F.N., Synthesis and properties of novel thermoplastic poly(urethane-imide)s, European Polymer Journal, 2000, 36: 2207-2211.
    [175] Mallakpour S., Rafiemanzelat F., Synthesis, characterization and properties of a series of copoly(amide-imide-ether-urethane)s with a new hard segment constituent: Study of the effect of hard segment content, High Performance Polymers, 2008, 20: 146-165.
    [176] Schuur M., Noordover B., Gaymans R.J., Polyurethane elastomers with amide chain extenders of uniform length, Polymer, 2006, 47: 1091-1100.
    [177] Yeganeh H., Atai M., Talemi P.H., et al. Synthesis, characterization and properties of novel poly(urethane-imide) networks as electrical insulators with improved thermal stability, Macromolecular Materials and Engineering, 2006, 291: 883-894.
    [178] Mishra A.K., Chattopadhyay D.K., Sreedhar B., et al. Thermal and dynamic mechanical characterization of polyurethane-urea-imide coatings, Journal of Applied Polymer Science, 2006, 102: 3158-3167,
    [179] Santhosh P., Vasudevan T., Gopalan A., et al. Preparation and characterization of polyurethane/poly(vinylidene fluoride) composites and evaluation as polymer electrolytes, Materials Science and Engineering B, 2006, 135: 65-73.
    [180] Ma H., Yang Y., Rheology, morphology and mechanical properties of compatibilized poly(vinylidene fluoride) (PVDF)/thermoplastic polyurethane (TPU) blends, Polymer Testing, 2008, 27: 441-446.
    [181] Honeychuck RV, Ho T., Wynne K., et al. Preparation and characterization of polyurethanes based on a series of fluorinated diols, Chemistry of Materials, 1993, 5 (9): 1299-1306.
    [182] Jiang X., Ding J., Kumar A., Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation, Journal of Membrane Science, 2008, 323: 371-378.
    [183] Seo W.J., Sung Y.T., Han S.J., et al. Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate, Journal of Applied Polymer Science, 2006, 101: 2879-2883.
    [184] Nanda A.K., Wicks D.A., Madbouly S.A., et al. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization, Macromolecules, 2006, 39: 7037-7043.
    [185] Suh K.Y., Choi S.J., Baek S.J., et al. Observation of high-aspect-ratio nanostructures using capillary lithography, Advanced Materials, 2005, 17 (5): 560-564.
    [186] Korley L.T.J., Liff S.M., Kumar N., et al. Preferential association of segment blocks in polyurethane nanocomposites, Macromolecules, 2006, 39: 7030-7036.
    [187] Florian E., Modesti M., Ulbricht M., Preparation and characterization of novel solvent-resistant nanofiltration composite membranes based on crosslinked polyurethanes, Industrial and Engeering Chemistry Research, 2007, 46: 4891-4899.
    [188] Nair P.R., Nair C.P.R., Francis D.J., Phosphazene-modified polyphosphazenes: synthesis, mechanical and thermal characteristics, European of Polymer Journal, 1996, 32 (12): 1415-1420.
    [189] Modesti M., Zanella L., Lorenzetti A., et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes, Polymer Degradation and Stability, 2005, 87: 287-292.
    [1] Raquez J.M., Narayan R., Dubois P., Recent advances in reactive extrusion processing of biodegradable polymer-based compositions, Macromolecular Materials and Engineering, 2008, 293: 447-470.
    [2] Rogovina S.Z., Vikhoreva G.A., Polysaccharide-based polymer blends: Methods of their production, Glycoconj Jounal, 2006, 23: 611-618.
    [3] Breuer O., Sundararaj U., Big returns from small fibers: A review of polymer/carbon nanotube composites, Polymer Composites, 2004, 25(6): 630-645.
    [4] Bajsic E.G., ?mit I., Leskovac M., Blends of thermoplastic polyurethane and polypropylene. I. Mechanical and phase Behavior, Journal of Applied Polymer Science, 2007, 104: 3980-3985.
    [5] Hou L., Liu H., Yang G., Preparation and characterization of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization ofε-caprolactam, Polymer Engineering and Science, 2006: 1196-1203.
    [6] Król P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Progress in Materials Science, 2007, 52: 915-1015.
    [7] Lambour S., Mechin F., Pascault J.P., A new process for crosslinking thermoplastic polyurethanes using rubber industry techniques, Polymer Engineering and Science, 2002, 42(1): 68-77.
    [8] Mahmood N., Busse K., Kressler J., Investigations on the adhesion and interfacial properties of polyurethane foam/thermoplastic materials, Journal of Applied Polymer Science, 2007, 104: 479-488.
    [9] Vega B.J., Sibaja B.M., Vázquezb P., et al. Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content, International Journal of Adhesion & Adhesives, 2007, 27: 469-479.
    [10] Eceiza A., Martin M.D., Caba K., et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties, Polymer Engineering and Science, 2008: 297-306.
    [11] Qin X., Yang X., Wang X., et al. Synthesis and characterization of poly(imide-urethane) based on novel chain-extender containing both imide and sulphone functions, Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 4469-4477.
    [12] Ma X., Lu H., Lian G., et al. Rectorite/thermoplastic polyurethane nanocomposites. II. Improvement of thermal and oil-resistant properties, Journal of Applied Polymer Science, 2005, 96: 1165-1169.
    [13] Zhang S.L., Zhang Z.X., Kim J.K., Influence of third component on mechanical properties and thermal stability of polypropylene/(regenerated polyurethane) blends, Journal of Vinyl & Additive Technology, 2008: 55-59.
    [14]卢经扬,抗烈焰灼烧的热塑性聚氨酯弹性体,化工新型材料,2007, 35(6): 72-73.
    [15] Beyer G., Flame retardancy of thermoplastic polyurethane and polyvinyl chloride by organoclays, Journal of Fire Sciences, 2007, 25: 65-78.
    [16] Wang Z.Y., Feng Z.Q., Liu Y., et al. Flame retarding glass fibers reinforced polyamide 6 by melamine polyphosphate/polyurethane-encapsulated solid acid, Journal of Applied PolymerScience, 2007, 105: 3317-3322.
    [17] Ha C.S., Kim Y., Lee W.K., et al. Fracture toughness and properties of plasticized PVC and thermoplastic polyurethane blends, Polymer, 1998, 39(20): 4765-4772.
    [18] Bugajny M., Bras M.L., Bourbigot S., et al. Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 1: Fire retardancy of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends, Journal of Fire Sciences, 1999, 17: 494-513.
    [19] Pinto U.A., Visconte L.L.Y., Gallo J., et al. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH), Polymer Degradation and Stability, 2000, 69: 257-260.
    [20] Kumar D., Adhesives produced by reaction of hexachlorocyclotriphosphazene with phenols, bisphenols and benzilic acid, International Journal of Adhesion & Adhesives,1998, 18: 109-113.
    [21] Cui Y., Ma X., Tang X., et al. Synthesis, characterization, and thermal stability of star-shaped poly(e-caprolactone) with phosphazene core, European Polymer Journal, 2004, 40: 299-305.
    [22] Allcock H.R., Coggio W.D., Synthesis and properties of high polymeric phosphazenes with (trimethylsilyl)methyl side groups, Macromolecules, 1993, 26: 764-771.
    [23] Allcock H.R., Nelson C.J., Coggio W.D., Synthesis and reactivity of cyclotriphosphatenes bearing reactive silane functionalities: novel derivatives via hydrosilylation reactions, Organometallics, 1991, 10: 3819-3825.
    [24] Allcock H.R., Hartle T.J., Taylor J.P., et al. Organic polymers with cyclophosphazene side groups: influence of the phosphazene on physical properties and thermolysis, Macromolecules, 2001, 34: 3896-3904.
    [25] Allcock H.R., Kellam E.C., Incorporation of cyclic phosphazene trimers into saturated and unsaturated ethylene-like polymer backbones, Macromolecules, 2002, 35: 40-47.
    [26] Levchik G.F., Grigoriev Y.V., Balabanovich A.I., et al. Phosphorus-nitrogen containing fire retardants for poly(butylene terephthalate), Polymer International, 2000, 49: 1095-1100.
    [27] Singh, H., Jain, A.K., Sharma T.P., Effect of Phosphorus-Nitrogen Additives on Fire Retardancy of Rigid Polyurethane Foams, Journal of Applied Polymer Science, 2008, 109: 2718-2728.
    [28]邓如生,共混改性工程塑料,北京:化学工业出版社,2003.
    [29] Li C.Y., Chiu W.Y., Don T.M., Morphology of PU/PMMA hybrid particles from miniemulsion polymerization: Thermodynamic considerations, Journal Polymer Science, Part A: Polymer Chemistry, 2007, 45: 3359-3369.
    [30] Allcock H.R., Steely L.B., Singh A., Hydrophobic and superhydrophobic surfaces from polyphosphazenes, Polymer International, 2006, 55: 621-625.
    [1] Yeganeh H., Atai M., Talemi P.H., et al. Synthesis, characterization and properties of novel poly(urethane-imide) networks as electrical insulators with improved thermal stability, Macromolecular Materials and Engineering, 2006, 291: 883-894.
    [2] Chattopadhyay D.K., Mishra A.K., Sreedhar B., et al. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings, Polymer Degradation and Stability, 2006, 91: 1837-1849.
    [3] Chuang F.S., Tsen W.C., Shu Y.C., The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes, Polymer Degradation and Stability, 2004, 84: 69–77.
    [4] Gunatillake P.A., Meijs G.F., Mccarthy S.J., et al. Poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol based polyurethane elastomers. I. Synthesis and properties, Journal of Applied Polymer Science, 2000, 76: 2026-2040.
    [5] Semsarzadeh M.A., Navarchian A.H., Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate), Journal of Applied Polymer Science, 2003, 90: 963-972
    [6] Kumar D., Adhesives produced by reaction of hexachlorocyclotriphosphazene with phenols, bisphenols and benzilic acid, International Journal of Adhesion & Adhesives,1998, 18: 109-113.
    [7] Cui Y., Ma X., Tang X., et al. Synthesis, characterization, and thermal stability of star-shaped poly(e-caprolactone) with phosphazene core, European Polymer Journal 2004, 40: 299-305.
    [8] Allcock H.R., Coggio W.D., Synthesis and properties of high polymeric phosphazenes with (trimethylsilyl) methyl side groups, Macromolecules, 1993, 26: 764-771.
    [9] Allcock H.R., Nelson C.J., Coggio W.D., Synthesis and reactivity of cyclotriphosphatenes bearing reactive silane functionalities: Novel derivatives via hydrosilylation reactions, Organometallics, 1991,10: 3819-3825.
    [10] Allcock H.R., Hartle T.J., Taylor J.P., et al. Organic polymers with cyclophosphazene side groups: influence of the phosphazene on physical properties and thermolysis, Macromolecules, 2001, 34: 3896-3904.
    [11] Ainscough E.W., Brodie A.M., Davidson R.J., et al. The first structurally characterised cyclotriphosphazene substituted with sulfonamide nitrogen, Inorganic Chemistry Communications, 2007, 10: 1005-1008.
    [12] Allcock H.R., Kellam E.C., Incorporation of cyclic phosphazene trimers into saturated and unsaturated ethylene-like polymer backbones, Macromolecules, 2002, 35: 40-47.
    [13] Allcock H.R., Connolly M.S., Polymerization and halogen scrambling behavior of phenyl-substituted cyclotriphosphazenesl, Macromolecules, 1985, 18: 1330-1340.
    [14] Carriedo G.A., Alonso F.J.G., González P.A, et al. Direct synthesis of cyclic and polymeric phosphazenes bearing diphenylphosphine groups and their complexes with [W(CO)] fragments, Polyhedron, 1999, 18: 2853-2859.
    [15] Dez I., Jaeger R.D., A new cyclolinear phosphazene polyurethane: synthesis from a diisocyanate and a bis-spiro-substituted cyclotriphosphazene diol, Phosphorus, Sulfur, and Silicon and the Related Elements, 1997, 130: 1-14.
    [16] Modesti M., Zanella L., Lorenzetti A., et al. Thermally stable hybrid foams based oncyclophosphazenes and polyurethanes, Polymer Degradation and Stability, 2005, 87: 287-292.
    [17] Dez I., Levalois M.J., Grützmacher H., et al. Syntheses of chiral cyclotriphosphazenes and their use in cyclolinear polymers, European Journal Inorganic Chemistry, 1999: 1673-1684.
    [18] Allcock H.R., Kellam E.C., Hofmann M.A., Synthesis of cyclolinear phosphazene-containing polymers via ADMET polymerization, Macromolecules 2001, 34: 5140-5146.
    [19] Chai S.L., Tan H.M., Structure and property characterization of nanograde core-shell polyurethane/polyacrylate composite emulsion, Journal of Applied Polymer Science, 2008, 107: 3499-3504.
    [20] Jaeger R.D., Gleria M., Poly(organophosphazene)s and related composites: synthesis, properties and applications, Progress Polymer Science, 1998, 23: 179-276.
    [21] Chu B., Gao T., Li Y., et al. Microphase separation kinetics in segmented polyurethanes: effects of soft segment length and structure, macromolecules, 1992, 25: 5724-5729.
    [22] Allcock H.R., Steely L.B., Singh A., Hydrophobic and superhydrophobic surfaces from polyphosphazenes, Polymer International, 2006, 55: 621-625.
    [1] Jung H.C., Kang S.J., Kim W.N., et al. Properties of crosslinked polyurethanes synthesized from 4,4'-diphenylmethane diisocyanate and polyester polyol, Journal of Applied Polymer Science, 2000, 78: 624-630.
    [2] Stanciu A., Airinei A., Oprea S., Poly(ester-siloxane)urethane network structure from tensile properties, Polymer, 2001, 42: 6081-6087.
    [3] Thomasson D., Boisson F., Girard R.E., et al. Hydroxylated hyperbranched polyesters as crosslinking agents for polyurethane networks: Partial modification of the OH chain ends, Reactive & Functional Polymers 2006, 66: 1462-1481.
    [4] Buckley C.P., Prisacariu C., Caraculacu A., Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials, Polymer, 2007, 48: 1388-1396.
    [5] Hourston D.J., Song M., Schafer F.U., et al. Modulated-temperature differential scanning calorimetry: 15. Crosslinking in polyurethane-poly(ethyl methacrylate) interpenetrating polymer networks, Polymer, 1999, 40: 4769-4775.
    [6] Chattopadhyay D.K., Sreedhar B., Raju K.V.S.N., Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44: 102-118.
    [7] Carriedo G.A., García A.F.J., Gómez E.P., et al. A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5, Chemistry-A European Journal, 2003, 9: 3833-3836.
    [8] Cui Y., Zhao X., Tang X., et al. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix, Biomaterials, 2004, 25: 451-457.
    [9] Goddard R.J., Cooper S.L., Polyurethane cationomers with pendant trimethylammonium groups. 1. Fourier transforms infrared temperature studies, Macromolecules, 1995, 28: 1390-1400.
    [10] Singh M., Mishra A.K., Saxena V., et al. Vibrational dynamics and heat capacity in polydichlorophosphazene (PDCP), Journal of Macromolecular Science, Part B: Physics, 2007, 46: 899-914.
    [11] Finnigan B., Halley P., Jack K., et al. Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites, Journal of Applied Polymer Science, 2006, 102: 128-139.
    [12] Kojio K., Nakashima S., Furukawa M., Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes, Polymer, 2007, 48: 997-1004.
    [13] Su T., Wang G.Y., Hu C.P., Preparation and properties of well-defined waterborne polyurethaneurea with fluorinated siloxane units in hard or soft segments, Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45: 5005-5016.
    [1] Gleria M., Bertani R., Jaeger R.D., Fluorinated polyphosphazenes: a survey, Journal of Inorganic and Organometallic Polymers, 2004, 14(1): 1-28.
    [2] Zhu J., Liu W., Liang Y., Friction-reducing and antiwear behavior of metal halide-stabilized linear phosphazene derivatives as lubricants for a steel-on-steel contact , Science in China Series E Engineering & Materials Science, 2005, 48(3): 282-291.
    [3] Cho Y.W., Lee J.R., Song S.C., Novel thermosensitive 5-fluorouracil-cyclotriphosphazene conjugates: synthesis, thermosensitivity, degradability, and in vitro antitumor activity, Bioconjugate Chemistry 2005, 16: 1529-1535.
    [4] Montague R.A., Matyjaszewski K., Synthesis of poly[bis(trifluoroethoxy)phosphazene] under mild conditions using a fluoride initiator, Journal of the American Chemical Society, 1990, 112: 6721-6723.
    [5] Ferrar W.T., Marshall A.S., Whitefield J., Polymer morphology of poly[bis(trifluoroethoxy)phosphazene], [NP(OCH2CF3)2]n, Macromolecules, 1987, 20: 317-322.
    [6] Allcock H.R., Powell E.S., Maher A.E., et al. Poly(methyl methacrylate)-graft- poly-[bis(trifluoroethoxy)phosphazene] copolymers: Synthesis, characterization, and effects of polyphosphazene incorporation, Macromolecules, 2004, 37: 5824-5829.
    [7] Chang Y., Prange R., Allcock H.R., et al. Amphiphilic poly[bis(trifluoroethoxy)phosphazene]- poly(ethylene oxide) block copolymers: synthesis and micellar characteristics, Macromolecules, 2002, 35: 8556-8559.
    [8] Allcock H.R., Prange R., Properties of poly(phosphazene-siloxane) block copolymers synthesized via telechelic polyphosphazenes and polysiloxane phosphoranimines, Macromolecules, 2001, 34: 6858-6865.
    [9] Carriedo G.A., García A.F.J., Gómez E.P., et al. A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5, Chemistry-A European Journal, 2003, 9: 3833-3836.
    [10] Singh A., Steely L., Allcock H.R., Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers, Langmuir, 2005 21: 11604-11607.
    [11] Goddard R.J., Cooper S.L., Polyurethane cationomers with pendant trimethylammonium groups. 1. Fourier transforms infrared temperature studies, Macromolecules, 1995, 28: 1390-1400.
    [12] Xu Y., Petrovic Z., Das S., et al. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments, Polymer, 2008, 49: 4248-4258.
    [13] Li C.Y., Chiu W.Y., Don T.M., Morphology of PU/PMMA hybrid particles from miniemulsion polymerization: Thermodynamic considerations, Journal Polymer Science, Part A: Polymer Chemistry, 2007, 45: 3359-3369.
    [14] Li K., Wu P., Han Z., Preparation and surface properties of fluorine-containing diblock copolymers, Polymer, 2002, 43: 4079-4086.
    [1] Kazama H., Ono T., Tezuka Y., et al. Synthesis of polyurethane-polysiloxane graft copolymer using uniform-size poly(dimethylsiloxane) with a diol end group, Polymer, 1989, 30: 553-557.
    [2] Gunatillake P.A., Meijs G.F., Mccarthy S.J., et al. Poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol based polyurethane elastomers. I. Synthesis and properties, Journal of Applied Polymer Science, 2000, 76: 2026-2040.
    [3] Xu G., Gong M., Shi W., Effects of hyperbranched poly(ester-silane) as a coupling agent on the mechanical behavior of glass bead filled epoxy resin, Polymers for Advanced Technologies, 2005, 16: 473-479.
    [4] Park M.H., Jang W., Yang S.J., et al. Synthesis and characterization of new functional poly(urethane-imide) crosslinked networks, Journal of Applied Polymer Science, 2006, 100: 113-123.
    [5] Qin X., Yang X., Wang X., et al. Synthesis and Characterization of Poly(imide-urethane) Based on Novel Chain-Extender Containing Both Imide and Sulphone Functions, Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 4469-4477.
    [6] Mishra A.K., Chattopadhyay D.K., Sreedhar B., et al. Journal of Applied Polymer Science, 2006, 102, 3158-3167.
    [7] Wang L.F., Ji Q., Glass T.E., et al. Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes, Polymer, 2000, 41: 5083-5093.
    [8] Takeichi T., Ujiie K., Inoue K., High performance poly(urethane-imide) prepared by introducing imide blocks into the polyurethane backbone, Polymer, 2005, 46: 11225-11231.
    [9] Wang H., Shen Y., Fei G., et al. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane, Journal of Colloid and Interface Science, 2008, 324: 36-41.
    [10] Krevelen D.W., Some basic aspects of flame resistance of polymeric materials, Polymer, 1975, 16: 615-620.
    [11] Icnatious F., Sein A., Cabasso I., et al. Novel Carbamoyl Phosphonate Monomers and Polymers from Unsaturated lsocyanates, Journal of Polymer Science: Part A Polymer Chemistry, 1993, 31: 239-247.
    [12] Allcock H.R., Steely L.B., Singh A., Hydrophobic and superhydrophobic surfaces from polyphosphazenes, Polymer International, 2006, 55: 621-625.
    [1] Fu J., Huang X., Huang Y., et al. Preparation of silver nanocables wrapped with highly cross-linked organic-inorganic hybrid polyphosphazenes via a hard-template approach, Journal of Physics Chemistry C, 2008, 112: 16840-16844.
    [2] Zhu L., Huang X., Tang X., One-Pot synthesis of novel poly(cyclotriphosphazene- co-sulfonyldiphenol) microtubes without external templates, Macromolecular Materials and Engineering, 2006, 291: 714-719.
    [3] Zhu L., Xu Y., Yuan W., et al. One-pot synthesis of poly(cyclotriphosphazene-co- 4,4′-sulfonyldiphenol) nanotubes via an in situ template approach, Advanced Materials, 2006, 18: 2997-3000.
    [4] Fu J., Huang X., Zhu L., Tang X., One-pot synthesis of porous cyclomatrix-type polyphosphazene nanotubes with closed ends via an in situ template approach, Scripta Materialia, 2008, 58: 1047-1049.
    [5] Fu J., Huang X., Huang Y., et al. One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes, Chemical Communication, 2009: 1049-1051.
    [6] Zhu L., Yuan W., Pan Y., et al. Preparation and characterization of novel poly [cyclotriphosphazene-co-(4,4-sulfonyldiphenol)] nanofiber matrices, Polymer International, 2006, 55: 1357-1360.
    [7] Zhu L., Zhu Y., Pan Y., et al. Fully crosslinked poly[cyclotriphosphazene-co- (4,4'-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties, Macromolecular Reaction Engineering, 2007, 1: 45-52.
    [8] Zhu Y., Huang X., Li W., et al. Preparation of novel hybrid inorganic-organic microspheres with active hydroxyl groups using ultrasonic irradiation via one-step precipitation polymerization, Materials Letters, 2008, 62: 1389-1392.
    [9] Fu J., Huang X., Zhu Y., et al. Facile fabrication of novel cyclomatrix-type polyphosphazene nanotubes with active hydroxyl groups via an in situ template approach, Applied Surface Science, 2009, 255: 5088-5091.
    [10] Fu J., Huang X., Huang Y., et al. Facile preparation of branched phosphazene-containing nanotubes via an in situ template approach, Macromolecular Materials Engineering, 2008, 293: 173-177.
    [11] Zhu Y., Huang X., Fu J., et al. Morphology control between microspheres and nanofibers by solvent-induced approach based on crosslinked phosphazene-containing materials, Materials Science and Engineering B, 2008, 153: 62-65.
    [12] Chen D., Jordan E.H., Synthesis of porous, high surface area MgO microspheres, Materials Letters, 2009, 63: 783-785.
    [13] Makuta T., Takada S., Daiguji H., et al. Simple fabrication of hollow poly-lactic acid microspheres using uniform microbubbles as templates, Materials Letters, 2009, 63, 703-705.
    [14] Nguyen V.B., Wang C., Thomas X.C.R., et al. Mechanical properties of single alginatemicrospheres determined by microcompression and finite elementmodelling, Chemical Engineering Science, 2009, 64: 821-829.
    [15] Wu H.L., Ma C.C.M., Yang Y.T., et al. Morphology, electrical resistance, electromagneticinterference shielding and mechanical properties of functionalized MWNT and poly(urea urethane) nanocomposites, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44: 1096-1105.
    [16] Jung Y.C., Sahoo N.G., Cho J., Polymeric nanocomposites of polyurethane block bopolymers and functionalized multi-walled carbon nanotubes as crosslinkers, Macromolecular Rapid Communications, 2006, 27: 126-131.
    [17] Chen W., Tao X., Liu Y., Carbon nanotube-reinforced polyurethane composite fibers, Composites Science and Technology, 2006, 66: 3029-3034.
    [18] Xiong J., Liu Y., Yang X., et al. Thermal and mechanical properties of polyurethane/ montmorillonite nanocomposites based on a novel reactive modifier, Polymer Degradation and Stability, 2004, 86: 549-555.
    [19] Allcock H.R., Steely L.B., Singh A., Hydrophobic and superhydrophobic surfaces from polyphosphazenes, Polymer International, 2006, 55: 621-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700