斑点追踪超声心动图对左心室功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:现已有充分证据证明心脏再同步化治疗(CRT)对左室收缩功能的改善是有益的,但是CRT对舒张功能的影响尚存在争论。二维斑点追踪超声心动图应变率及解旋(untwisting)对舒张功能的评估价值得深入研究。我们研究的旨在应用2D-STE技术,结合目前常用的E/E’指标,探讨CRT不同反应程度患者2D-STE应变率参数和解旋(untwisting)与左室舒张功能之间的关系。
     方法:本研究包括70名实施心脏再同步化治疗的心力衰竭患者。所有患者均符合心脏再同步化治疗现有的纳入标准,并除外心房颤动和经胸超声图像质量不佳患者。于心脏再同步化治疗前及心脏再同步化治疗后12个月分别采集二维斑点追踪超声心动图图像。我们将病人分为如下3组:A组,CRT超声心动图和临床反应组,即随访中左室收缩末容积减少≥15%;且6分钟步行距离增加≥20%,或该试验没有实施,在无死亡和心脏移植情况下,NYHA心功能分级好转≥1级;B组,CRT仅临床反应组;C组,CRT无反应组,既未达到超声心动图反应标准,也未达到临床反应标准。以舒张早期二尖瓣血流峰值流速和二尖瓣环峰值速度的比值(E/E’)作为衡量左心室充盈的指标。应用2D-STE技术获取患者舒张期早期应变率(LSRE、CSRE、RSRE和RotRE)和舒张晚期应变率(LSRA、CSRA和RSRA和RotRA)、解旋(untwisting)参数(UTRIVR、UTRE)等反映舒张功能的参数,观察这些左室舒张功能参数于心脏再同步化治疗不同反应程度间变化差异。将2D-STE所得的评估舒张功能参数与E/E’比值进行相关性分析。选择有效参数计算受试者工作特征曲线(receiver operating characteristic curve,即ROC曲线)下面积。
     结果:70名患者中,41名(58.6%)患者在12个月的随访中达到了超声心动图和临床反应性的标准;15名(21.4%)患者为仅临床反应者;14名(20%)为无反应者。在A组患者中观察到大多数评估左室舒张功能的参数有所改善。B组部分常规舒张功能参数显著性改善。而在C组患者观察到逐渐恶化的E/E’值。将2D-STE所测得的舒张期应变率参数与E/E’比值分别进行线性相关分析,舒张期应变率均呈负相关,其中以LSRE的相关性最佳(r=-0.778,p<0.01)。将解旋参数与E/E’比值分别进行线性相关分析,均呈负相关,其中以UTRIVR的相关性最佳(r=-0.837,p<0.01)。以2D-STE所测舒张早期应变率及解旋参数预测CRT超声心动图反应与否,绘制ROC曲线。UTRIVR预测CRT超声心动图反应性的ROC曲线下面积最大,为0.822(p=0.032)。UTRIVR≥11.41预测CRT超声心动图反应的敏感性为73%,特异性为75%。
     结论:2D-STE的舒张期应变率指标和解旋参数可以准确评估CRT不同反应程度患者的舒张功能变化差异。其中UTRIVR与E/E’相关性优于其他参数,且与E/E’比值关系更密切,预测CRT超声心动图反应与否价值更大,可能作为评价舒张功能的更为敏感指标。
     目的:为了减少起搏器电极导线相关并发症,相关研究人员开发出了无导线起搏器无导线起搏器的主要优点是它可以经皮植入多个位置,减少感染和血管阻塞等并发症。本研究应用RT-3D STE超声心动图技术,对两组动物的左心室整体功能进行比较,探讨无导线起搏器的安全性和可行性,并验证RT-3D STE参数对评估左室收缩功能的可行性和有效性。
     方法:本研究对象为体重为45-55kg的中华小型猪。实验组动物将依次植入2个无导线起搏器;对照组动物将依次植入带有2根电极导线的常规起搏器。上述装置分次植入,植入间期为4周。在静息状态下,用三维斑点追踪超声心动图评估所有动物左心室的整体三维应变。纵向应变、环形应变、面积应变和径向应变以百分数来表示。同时于植入后1个月、3个月和6个月时,评估无导线起搏器和常规起搏器起搏参数差异及工作状态下与未工作状态下左心室功能的变化。当植入完设备随访6个月后,处死实验动物后,取出心脏,暴露右心室内无导线起搏装置或电极导线。配合使用标尺对右心室中上述装置进行拍照记录。准确测量每个植入装置与心脏组织间形成的纤维粘连物的长度。同时验证RT-3D STE参数对评估左室收缩功能的可行性和有效性,并结合目前常用的左室射血分数,分析RT-3D STE参数与它的相关性。
     结果:两组动物一般情况及常规超声心动图各项指标均无显著性差异。实验组和对照组的动物在植入术前及术后纵向应变、环形应变、面积应变和径向应变上没有明显的差别(P>0.05)。在两组试验动物中,起搏器工作状态和未工作状态下,无导线起搏器组动物左心室整体应变值未见明显差别,常规起搏器组左心室整体应变值未见显著性变化,组间对比未见有统计学意义差别。无导线起搏器的起搏参数随着时间的延长比较稳定。在随访期间,无导线起搏器组无并发症发生,常规起搏器组有1只猪(10%)发生1根导线脱位。RT-3D STE的三维应变值参数在观察者间及观察者内有较好的一致性。RT-3D STE与左室EF值的相关性:在所有的应变值参数中,GAS与左室射血分数有较高的相关性(r=0.914,p<0.01)。组织结果显示,无导线起搏器上的纤维组织明显短于导线电极上的纤维组织(p<0.05)。
     结论:本动物试验初步验证了单腔无导线起搏器是安全、可行的,因此可以把无导线起搏器作为一种替代技术,特别是对于患导线相关并发症风险较高的患者提供帮助。同时本研究验证了RT-3D STE技术评估左心室收缩功能的有效性,证实了GAS可作为除EF值以外评估左室收缩功能的可靠指标。
Objective:we have sufficient evidences to prove that cardiac resynchronization therapy (CRT) have beneficial effects on left ventricular systolic function, but the effects of CRT on diastolic function remains controversial. Strain rate and untwisting of two-dimensional speckle tracking echocardiography on the evaluation of diastolic function is worth further study. In combination with traditional E/E',we sought to explore the value of2D-STE derived strain rate parameters in the assessment of left ventricular diastolic function of different degree of response in patients with CRT.
     Methods:Seventy heart failure patients who under took cardiac resynchronization therapy were enrolled. Before cardiac resynchronization therapy and after cardiac resynchronization therapy for12months, the patients were underwent two dimensional speckle tracking echocardiography. We divided patients into the following3groups:A group, CRT echocardiographic response and clinical response group, the left ventricular end systolic volume was decreased≥15%from baseline to12-month follow-up, and namely the6minute walk test distance increased≥20%, or if that test was not performed, NYHA cardiac functional grading better≥1from baseline to12-month follow-up; B group, only CRT clinical response group from baseline to12-month follow-up; C group, CRT nonresponse group, neither meet the echocardiographic response standard, nor meet the clinical response standard at follow-up. The ratio of early diastolic mitral flow velocity and mitral annulus velocity and the (E/E') was as a measure of left ventricular filling indicator. The following indices of LV diastolic function were obtained from2D speckle tracking echocardiography:early diastolic strain rate (LSRE, CSRE, RSRE and RotRE) and atrial contraction strain rate (LSRA, CSRA, RSRA and RotRA), UTR)VR, UTRE. Observe the differences of left ventricular diastolic function parameters between different degrees of response in cardiac resynchronization therapy. The correlation of diastolic function parameters obtained from2D-STE and E/E'ratio was analyzed. The receiver operating characteristic curve (receiver operating characteristic curve, ROC curve) of2D-STE derived parameters was analyzed to identify the predictive value for CRT echocardiographic response.
     Results:In70patients,41(58.6%) patients in the follow-up of12months was CRT echocardiographic and clinical responders;15(21.4%) patients for only clinical responders;14(20%) for the nonresponders. Most Parameters of evaluation left ventricular diastolic function were observed significant improved in the A group. Part of conventional parameters of diastolic function improved significantly in the B group. The gradual deterioration of E/E'was observed in the C group patients. Compare with other strain rate, SLRE had good correlated with E/E'(r=-0.778, P<0.01). But UTRIVRwas better correlated with E/E'(r=-0.837, P<0.01) than SLRE. By the ROC curve, UTRIvR predicted CRT echocardiographic response had maximum area under the ROC curve (0.822, p=0.032). The sensitivity of UTRIVR≥11.41for predicting CRT echocardiographic response was73%, and the specificity was75%.
     Conclusions:Diastolic strain rate of2D-STE and untwisting parameters can accurately assess the extent of response of CRT with different changes of diastolic function. The UTRIVR had better correlation of E/E'than the other parameters, and had greater value in prediction of CRT echocardiographic response, which could be used as more sensitive index to evaluation of diastolic function.
     Objective:In order to reduce the pacemaker lead related complications, researchers developed leadless pacemaker. The main advantages are that it can implanted percutaneous multiple positions, reduce infection and vascular obstruction and other complications. Our research compared the left ventricular global function of two group pigs using RT-3D STE technology, which were implanted with leadless pacemakers and commen pacemakers respectively; we sought to explore the feasibility of leadless pacemaker, and demonstrate the feasibility and effectiveness of RT-3D STE technology assessment of the left ventricular systolic function.
     Methods:The objects of our study were the Chinese Mini pigs (weight of45-55kg). The experimental group pigs were implanted2leadless pacemakers in right ventricular; control group pigs were implanted in commen pacemakers with2defibrillation leads in the right ventricular. The devices implanted intervals were4weeks. In the resting state, we used3D speckle tracking echocardiography to assessment global left ventricle strain of two group pigs. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS) and global radial strain (GRS) were calculated as percentages. At time flow-up, we measured leadless pacemaker performance (impedance and pacing threshold). When6months after implantation of two devices, the animals were sacrificed, we accurately measured the fiber adhesive lengths of each device and heart tissue was formed. At the same time, we verified feasibility and effectiveness of RT-3D STE technology assessment of the left ventricular function. In combination with the traditional left ventricular ejection fraction, the correlations of RT-3D STE derived parameters and left ventricular ejection fractions were analyzed.
     Results:Control and test pigs showed no statistically significant difference in GLS, GCS, GAS or GRS (p>0.05) before and after implantation. In two groups of pigs, before and after pacemaker working, there were no significant differences in each group and between two groups. After6months of follow-up, the measures of pacing performance (impedance and pacing threshold) were stably within the accepted range. During flow-up, the leadless pacemakers group had no complications such as infection; there was lcase (10%) of one lead dislocation in the commen pacemakers group. The three-dimensional strain RT-3D STE values are in good agreement with inter and intraobserver. The correlations between RT-3D STE and left ventricular EF value:in all the strain value parameters, the correlation between GAS and left ventricular ejection fraction was higher (r=0.914, P<0.01) than the others. Test pigs and controls showed statistically significant difference in the length of fibrosis along the device body (p< 0.05).
     Conclusions:It is suggested that a completely self-contained single-chamber leadless cardiac pacemaker has shown to be safe and feasible. The result can make it as alternative technology, especially for patients who with high risk of lead related complications. At the same time, this study tested the effectiveness of RT-3D STE technique to assess left ventricular systolic function, confirmed that GAS can be used as a reliable index for assessing except EF values.
引文
[1]Porciani MC, Valsecchi S, Demarchi G, et al. Evolution and prognostic significance of diastolic filling pattern in cardiac resynchronization therapy [J]. International Journal of Cardiology 2006,112:322-328.
    [2]Doltra A, Bijnens B, Tolosana JM, et al. Effect of Cardiac Resynchronization Therapy on Left Ventricular Diastolic Function:Implications for Clinical Outcome [J]. Journal of Cardiac Failure 2013,19:795-801.
    [3]Miriam Shanks, Antonil ML, Ulas Hoke, et al. The effect of cardiac resynchronization therapy on left ventricular diastolic function assessed with speckle-tracking echocardiography [J]. European Journal of Heart Failure 2011, 13:1133-1139.
    [4]Sengupta PP, Khandheria BK, Narula J. Twist and untwist mechanics of the left ventricle [J]. Heart Fail Clin 2008,4:315-324.
    [5]Korinek J, Wang J, Sengupta PP et al. Two-dimensional strain- A Doppler-independent ultrasound method for quantitationm of regional deformation: Validation in vitro and in vivo [J]. J Am Soc Echocardiogr 2005,18:1247-1253.
    [6]Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Left ventricular untwisting rate by speckle tracking echocardiography [J]. Circulation 2007,116: 2580-2586.
    [7]Amundsen BH, Helle-Valle T, Edvardsen T et al. Noninvasive myocardial strain measured by speckle tracking echocardiography. Validation against sonomicrometry and tagged magnetic resonance imaging [J]. J Am Coll Cardiol 2006,47:789-793.
    [8]Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging:Validation study with tagged magnetic resonance imaging [J]. Circulation 2005,111:1141-1147.
    [9]Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two dimensional ultrasound speckle tracking imaging [J]. JACC 2005,45:2034-2041.
    [10]Becker M, Bilke E, Kuhl H, et al. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function [J]. Heart 2006,92:1102-1108.
    [11]Langeland S, D'hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle [J] Circulation 2005,112:2157-2162.
    [12]Toyoda T, Baba H, Akasaka T, et al. Assessment of regional myocardial strain by a novel automated tracking system from digital image files [J]. J Am Soc Echocardiogr 2004,17:1234-1238.
    [13]Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography: American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of the Two-Dimensional Echocardiograms [J]. J Am Soc Echocardiogr 1989,2:358-367.
    [14]Werner GS, Schaefer C, Dirks R, Figulla HR, Kreuzer H. Prognostic value of Doppler echocardiographic assessment of left ventricular filling in idiopathic dilated cardiomyopathy [J]. Am J Cardiol 1994,73:792-798.
    [15]Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures:a comparative simultaneous Doppler-catheterization study [J]. Circulation 2000,102:1788-1794.
    [16]Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography [J]. J Am Soc Echocardiogr 2009,22:107-133
    [17]Lam W, Leano R, Haluska B, et al. Effects of myocardial ischaemia on left ventricular untwist and filling pressure [J]. Heart 2011,97:757-761.
    [18]Gregoy F, Egnaczyk, Eugene S, et al. The Relationship Between Cardiac Resynchronization Therapy and Diastolic Function [J]. Current Heart Failure Reports 2014,11:64-69.
    [19]Jansen AH, van Dantzig J, Bracke F, et al. Improvement in diastolic function and left ventricular filling pressure induced by cardiac resynchronization therapy [J]. Am Heart J 2007,153:843-849.
    [20]Waggoner AD, Faddis MN, Gleva MJ, et al. Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance [J]. J Am Coll Cardiol 2005,46:2244-2249.
    [21]Yu CM, Zhang Q, Yip GW, et al. Are left ventricular diastolic function and diastolic asynchrony important determinants of response to cardiac resynchronization therapy? [J]. Am J Cardiol 2006,98:1083-1087.
    [22]Cleland GF, Ghio S. The determinants of clinical outcome and clinical response to CRT are not the same [J]. Heart Failure Reviews 2012,17(6):755-766.
    [23]Auger D, van Bommel RJ, Bertini M, et al. Prevalence and characteristics of patients with clinical improvement but not significant left ventricular reverse remodeling after cardiac resynchronization therapy [J]. Am Heart J 2010,160:737-743.
    [24]Bleeker GB, Bax JJ, Fung JW, et al. Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy [J]. Am J Cardiol 2006,97: 260-263.
    [25]Vidal B, Sitges M, Marigliano A, et al. Relation of response to cardiac resynchronization therapy to left ventricular reverse remodeling [J]. Am J Cardiol 2006, 97:876-881.
    [26]van Bommel RJ, Bax JJ, Abraham WT, et al. Characteristics of heart failure patients associated with good and poor response to cardiac resynchronization therapy:a PROSPECT (Predictors of Response to CRT) sub-analysis [J]. Eur Heart J 2009,30: 2470-2477.
    [27]Bertini M, Hoke U, van Bommel RJ, et al. Impact of clinical and echocardiographic response to cardiac resynchronization therapy on long-term survival [J]. Eur Heart J Cardiovasc 2013,14:774-781.
    [28]Adelina, Bart, Jose, et al. Effect of Cardiac Resynchronization Therapy on Left Ventricular Diastolic Function:Implications for Clinical Outcome [J]. Journal of Cardiac Failure 2013,19(12):795-801.
    [29]Leitman M, Lysyansky P, Sidenko S, et al. Two dimensional strains-a novel software for real-time quantitative echocardiographic assessment of myocardial function [J]. J Am Soc Echocardiogr 2004,17(10):1021-1029.
    [30]Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans:validation against three-dimensional tagged magnetic resonance imaging [J]. Circulation 2002, 106(1):50-56.
    [31]Wang J, Khoury DS, Thohan V, et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures [J]. Circulation 2007,115:1376-1383.
    [32]Dokainish H, Sengupta R, Pillai M, et al. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure [J]. Am J Cardiol 2008,101:1504-1509.
    [33]Goebel B, Haugaa KH, Meyer K, et al. Early diastolic strain rate predicts response to heart failure therapy in patients with dilated cardiomyopathy [J]. Int J Cardiovasc Imaging 2014,3:505-513.
    [34]Mizuguchi Y, Oishi Y, Miyoshi H, et al. The Functional Role of Longitudinal, Circumferential, and Radial Myocardial Deformation for Regulating the Early Impairment of Left Ventricular Contraction and Relaxation in Patients With Cardiovascular Risk Factors: A Study With Two-Dimensional Strain Imaging [J]. J Am Soc Echocardiogr 2008,21:1138-1144.
    [35]Perry R, De Pasquale CG, Chew DP, et al. Assessment of early diastolic left ventricular function by two-dimensional echocardiographic speckle tracking [J]. European Journal of Echocardiography 2008,9:791-795
    [36]Sengupta PP, Khandheria BK, Narula J.Twist and untwist mechanics of the left ventricle [J]. Heart Fail Clin 2008,4:315-324.
    [37]Anders O, Espen W R, Thomas HV, et al. Myocardial Relaxation, Restoring Forces, and Early-Diastolic Load Are Independent Determinants of Left Ventricular Untwisting Rate [J]. Circulation2012,126:1441-1451.
    [38]Matteo B, Gaetano N, Marsan NA, et al. Left Ventricular Rotational Mechanics in Acute Myocardial Infarction and in Chronic (Ischemic and Nonischemic) Heart Failure Patient [J]. Am J Cardiol 2009,103:1506-1512.
    [39]Notomi Y, Martin-Miklovic MG, Oryszak SJ, et al.Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging [J]. Circulation 2006,113:2524-2533.
    [40]Xie MX, Zhang WJ, Cheng TO, et al. Left ventricular torsion abnormalities in patients after the arterial switch operation for transposition of the great arteries with intact ventricular septum [J]. International Journal of Cardiology 2013,168(5): 4631-4637.
    [41]Saito M, Okayama H, Nishimura K, et al. Determinants of left ventricular untwisting behaviour in patients with dilated cardiomyopathy:analysis by two-dimensional speckle tracking[J]. Heart 2009,95:290-296
    [42]Pinamonti B, Zecchin M, Di Lenarda A, et al. Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy:an ominous prognostic sign [J]. J Am Coll Cardiol 1997,29(3):604-612.
    [43]Meta-analysis Research Group in Echocardiography (MeRGE) Heart Failure Collaborators Independence of restrictive filling pattern and LV ejection fraction with mortality in heart failure:an individual patient meta-analysis. Eur J Heart Fail [J].2008, 10(8):786-792.
    [1]Mond HG, Irwin M, Ector H, Proclemer A. The world survey of cardiac pacing and cardioverter-defibrillators:calendar year 2005 an International Cardiac Pacing and Electrophysiology Society (ICPES) project [J]. Pacing Clin Electrophysiol 2008,31: 1202-1212.
    [2]Brignole M, Auricchio A, Baron-Esquivias G, et al.2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy:the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA) [J]. Eur Heart J 2013,34:2281-2329.
    [3]Reynolds MR, Cohen DJ, Kugelmass AD, et al. The frequency and incremental cost of major complications among medicare beneficiaries receiving implantable cardioverter-defibrillators [J]. J Am Coll Cardiol 2006,47:2493-2497.
    [4]Al-Khatib SM, Lucas FL, Jollis JG, et al. The Relation BetweenPatients'Outcomes and the Volume of Cardioverter-Defibrillator Implantation ProceduresPerformed by Physicians Treating Medicare Beneficiaries [J]. J Am Coll Cardiol 2005,46:1536-1540.
    [5]Swindle JP, Rich MW, McCann P, et al. Implantable cardiacdevice procedures in older patients:use and in-hospital outcomes [J]. Arch Intern Med 2010,170:631-637.
    [6]Lee DS, Krahn AD, Healey JS, et al. Evaluation of early complications related to De Novo cardioverter defibrillator implantation insights from the Ontario ICD database [J]. J Am Coll Cardiol 2010,55:774-782.
    [7]Rikke EK, Jens BJ, Ellen AN, et al. Complications after cardiac implantable electronic device implantations:an analysis of a complete, nationwide cohort in Denmark [J]. European Heart Journal.2013:doi:10.1093/eurheartj/eht511
    [8]Pojar M, Vobornik M, Novy J. Left hemothorax:an unusual complication of delayed right ventricular perforation by a permanent pacemaker lead [J]. J Card Surg 2013,28: 325-327.
    [9]Osmonov D, Ozcan KS, Erdinler I, et al. Cardiac device-related endocarditis: 31-years'experience [J]. Journal of Cardiology 2013,61:175-180.
    [10]Borek PP, Wilkoff BL. Pacemaker and ICD leads:strategies for long-term management [J]. J Interv Card Electrophysiol 2008,23:59-72.
    [11]Verma A, Wilkoff BL. Intravascular pacemaker and defibrillator lead extraction: a state-of-the-art review [J]. Heart Rhythm 2004,1:739-745.
    [12]Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy part 2-issues during and after device implantation and unresolved questions [J]. J Am Coil Cardiol 2005,46:2168-2184.
    [13]Wazni O, Epstein LM, Carrillo RG, et al. Lead extraction in the contemporary setting:the LExICon study:an observational retrospective study of consecutive laser lead extractions [J]. J Am Coll Cardiol 2010,55 (6):579-586.
    [14]F. Bracke, A. Meijer, B. Van Gelder. Extraction of pacemaker and implantable cardioverter defibrillator leads:patient and lead characteristics in relation to the requirement of extraction tools [J]. Pacing Clin Electrophysiol 2002,25 (7):1037-1040.
    [15]Epstein AE, Kay GN, Plumb VG, et al. Gross and microscopic pathological changes associated with nonthoracotomy implantable defibrillator leads [J]. Circulation 1998,98 (15):1517-1524
    [16]Candinas R, Duru F, Schneider J, et al. Post mortem analysis of encapsulation around long-term ventricular endocardial pacing leads [J]. Mayo Clin Proc 1999,74 (2): 120-125
    [17]Seo Y, Ishizu T, Enomoto Y, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation [J]. Circ Cardiovasc Imaging 2009, 2:451-459.
    [18]Perez de IL, Balcones DV, Fernandez-Golfin C, et al. Three-dimensional-wall motion tracking:a new and faster tool for myocardial strain assessment:comparison with two-dimensional-wall motion tracking [J]. J Am Soc Echocardiogr 2009,22:325-330.
    [19]Cheung YF.The role of 3D wall motion tracking in heart failure [J]. Nat Rev Cardiol 2012,9:644-657.
    [20]Yu HK, Yu W, Cheuk DKL, et al. New three-dimensional speckle-tracking echocardiography identifies global impairment of left ventricular mechanics with a high sensitivity in childhood cancer survivors [J]. J Am Soc echocardiogr 2013,26:846-852. [21] Christophe T, Erwan D, Anne B, et al. Real-time three-dimensional speckle tracking echocardiography:a novel technique to quantify global left ventricular mechanical dyssynchrony [J]. Eur J Echocardiogr 2011,12:26-32.
    [22]Shelby K, Anil TK, Asif P, et al. Validation of admittance computed left ventricular volumes against real-time three-dimensional echocardiography in the porcine heart. Exp Physiol 2013,98(6):1092-1101.
    [23]Auricchio A, Delnoy PP, Regoli F, et al. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system:novel endocardial left ventricular resynchronization therapy in heart failure patients [J]. Europace 2013,15(8):1191-1197.
    [24]Lee KL. In the wireless era: leadless pacing [J]. Expert Rev Cardiovasc Ther 2010, 8(2):171-174.
    [25]Reddy VY, Knops RE, Sperzel J, et al. Permanent Leadless Cardiac Pacing:Results of the LEADLESS Trial [J]. Circulation 2014, doi:10.1161
    [26]Venditti FJ, Martin DT, Vassolas G, Bowen S. Rise in chronic defibrillation thresholds in nonthoracotomy implantable defibrillator [J]. Circulation 1994,89:216-223.
    [27]Schwartzman D, Callans DJ, Gottlieb CD, et al. Early postoperative rise in defibrillation threshold in patients with nonthoracotomy defibrillation lead systems: attenuation with biphasic shock waveforms [J]. J Cardiovasc Electrophysiol 1996,7: 483-493.
    [28]Daoud EG, Man KC, Morady R, Strickberger SA. Rise in chronic defibrillation energy requirements necessitating implantable defibrillator lead [J]. Pacing Clin Electrophysiol 1997,20:714-719
    [29]Lawton JS, Ellenbogen KA, Wood MA, et al. Sensing lead-related complications in patients with transvenous implantable cardioverter-defibrillators [J]. Am J Cardiol 1996, 78:647-651.
    [30]Brown J, Jenkins C, Marwick TH. Use of myocardial strain to assess global left ventricular function:a comparison with cardiac magnetic resonance and 3-dimensional echocardiography [J]. Am Heart J 2009,157:102e1-5.
    [31]Mignot A, Donal E, Zaroui A, et al. Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function:a multicenter study [J]. J Am Soc Echocardiogr 2010,23:1019-1024.
    [32]Nahum J, Bensaid A, Dussault C, et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging [J].2010,3:249-256.
    [33]Cho GY, Marwick TH, Kim HS, et al. Global 2-dimensional strain as a new prognosticator in patients with heart failure [J]. J Am Coll Cardiol 2009,54:618-624.
    [34]Woo JS, Kim WS, Yu TK, et al. Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction [J]. Am J Cardiol 2011,108:340-347.
    [35]Vartdal T, Brunvand H, Pettersen E, et al. Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion [J]. J Am Coll Cardiol 2007, 49:1715-1721.
    [36]Bertini M, Ng AC, AntoniML, et al. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy [J]. Circ Cardiovasc Imaging 2012,5:383-391.
    [37]Kearney LG, Lu K, Ord M, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis [J]. Eur Heart J Cardiovasc Imaging 2012,13:827-833.
    [38]Dahl JS, Videbaek L, Poulsen MK, et al. Global strain in severe aortic valve stenosis: relation to clinical outcome after aortic valve replacement [J]. Circ Cardiovasc Imaging 2012,5:613-620.
    [39]Sarvari SI, Gjesdal O, Gude E, et al. Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients [J]. J Am Soc Echocardiogr 2012,25:1007-1014.
    [40]Saito K, Okura H, Watanabe N, et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults:comparison of three-dimensional and two-dimensional approaches [J]. J Am Soc Echocardiogr 2009, 22(9):1025-1030.
    [41]Zhou Z, Ashraf M, Hu D, et al. Three-dimensional speckle-tracking imaging for left ventricular rotation measurement:an in vitro validation study [J]. J Ultrasound Med 2010, 29(6):903-909.
    [42]Seo Y, Ishizu T, Enomoto Y, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation [J]. Circ Cardiovasc Imaging 2009, 2(6):451-459.
    [43]Kleijn SA, Aly MF, Terwee CB, et al. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain [J]. J Am Soc Echocardiogr 2011,24:314-321.
    [44]Li SN,Wong SJ, Cheung YF. Novel area strain based on three-dimensional wall motion analysis for assessment of global left ventricular performance after repair of tetralogy of Fallot[J]. J Am Soc Echocardiogr 2011,24:819-825.
    [45]Reant P, Barbot L, Touche C, et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters [J]. J Am Soc Echocardiogr 2012,25(1):68-79.
    [46]Hayat D, Kloeckner M, Nahum J, et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease [J]. Am J Cardiol 2012,109(2):180-186.
    [47]Xiu-Xia Luo, Fang Fang, Wai Lee, et al. What can three-dimensional speckle-tracking echocardiography ontribute to evaluate global left ventricular systolic performance in atients with heart failure? [J]. International Journal of Cardiology 2014, 172:132-137.
    [1]Cheng C, Noda T, Nozawa T, Little W. Effect of heart failure on the mechanism of exercise induced augmentation of mitral valve flow [J]. Circ Res 1993,72:795-806.
    [2]Little W, Oh J. Echocardiographic evaluation of diastolic function can be used to guide clinical care [J]. Circulation 2009,120:802-809.
    [3]Oki T, Tabata T, Yamada H, et al. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation [J]. Am J Cardiol 1997,79: 921-928.
    [4]Ommen S, Nishimura R, Appleton C, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures:a comparative simultaneous [J]. Circulation 2000,102:1788-1794.
    [5]Zile M, Baicu C, Gaasch W. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle [J] N Engl J Med 2004,350: 1953-1959.
    [6]Ha J, Oh J, Redfield M, et al. Triphasic mitral inflow velocity with middiastolic filling:clinical implications and associated echocardiographic findings [J]. J Am Soc Echocardiogr 2004,17:428-431.
    [7]Lam C, Han L, Ha J, Oh J, Ling L. The mitral L wave:a marker of pseudonormal filling and predictor of heart failure in patients with left ventricular hypertrophy [J]. J Am Soc Echocardiogr 2005,18:336-341.
    [8]Oh J, Hatle L, Tajik A, Little W. Diastolic heart failure can be diagnosed by comprehensive two-dimensional and doppler echocardiography [J]. J Am Coll Cardiol 2006,47:500-506.
    [9]Nagueh S, Middleton K, Kopelen H, et al. Doppler tissue imaging:a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures [J]. J Am Coll Cardiol.1997,30:1527-1533.
    [10]Sohn D, Chai I, Lee D. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 1997, 30:474-480.
    [11]Tsang T, Abhayaratna WB, Miyasaka Y, et al. Prediction of cardiovascular outcomes with left atrial size:is volume superior to area or diameter? [J]. J Am Coll Cardiol 2006,47:1018-1023.
    [12]Appleton C, Hatle L, Popp R. Relation of transmitral flow velocity patterns to left ventricular diastolic function:new insights from a combined hemodynamic and Doppler echocardiographic study [J]. J Am Coll Cardiol 1988,12:426-440.
    [13]Oh J, Appleton C, Hatle L, et al. The noninvasive assessment of left ventricular diastolic function with twodimensional and Doppler echocardiography [J]. J Am Soc Echocardiogr 1997,10:246-270.
    [14]Geske J, Sorajja P, Nishimura R, Ommen S. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization [J]. Circulation 2007,116:2702-2708.
    [15]Hatle L. How to diagnose diastolic heart failure:a consensus statement [J]. Eur Heart J 2007,28:2421-2423.
    [16]Hurrell D,Nishimura R,Higano S,et al.Value of dynamic respiratory changes inleft and right ventricular pressures for the diagnosis of constrictive pericarditis [J]. Circulation 1996,93:2007-2013.
    [17]Mullens W, Borowski A, RJ C, et al. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure [J]. Circulation 2009,119:62-70.
    [18]Nagueh SF, Bhatt R, Vivo RP, et al. Echocardiographic evaluation of hemodynamics in patients with decompensated systolic heart failure [J]. Circ Cardiovasc Imaging 2011,4:220-227.
    [19]Oh J. Echocardiography as a noninvasive Swan-Ganz catheter [J]. Circulation 2005,111:3192-3194.
    [20]Ha J-W, Oh J, Pellikka P, et al. Diastolic stress echocardiography:a novel noninvasive diagnostic test for diastolic dysfunction using supine bicycle exercise Doppler echocardiography [J]. J Am Soc Echocardiogr 2005,18:63-68.
    [21]Burgess M, Jenkins C, Sharman J, Marwick T. Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise [J]. J Am Coll Cardiol,2006,47:1891-1900.
    [22]Grewal J, McCully R, Kane G, Lam C, Pellikka P. Left ventricular function and exercise capacity [J]. JAMA 2009,301:286-294.
    [23]Holland D, Prasad S, Marwick T. Prognostic implications of left ventricular filling pressure with exercise [J]. Circ Cardiovasc Imaging 2010,3:149-156.
    [24]Duncan A, Lim E, Gibson D, Henein M. Effect of dobutamine stress on left ventricular filling in ischemic dilated cardiomyopathy [J]. J Am Coll Cardiol 2005,46: 488-496.
    [25]Hurrell D, Oh J, Mahoney D, et al. Short deceleration time of mitral inflow e velocity:prognostic implication with atrial fibrillation versus sinus rhythm [J] J Am Soc Echocardiogr 1998,11:450-457.
    [26]Okura H, Takada Y, Kubo T, et al. Tissue Doppler-derived index of left ventricularfilling pressure, e/e'predicts survival of patients with non-valvular atrial fibrillation [J] Heart 2006,92:1248-1252.
    [27]Sohn D, Song J, Zo J, et al. Mitral annulus velocity in the evaluation of left "ventricular diastolic function in atrial fibrillation [J]. J Am Soc Echocardiogr 1999,12: 927-931.
    [28]Garcia M, Rodriguez L, Ares M, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy:assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging [J]. J Am Coll Cardiol 1996,27:108-114.
    [29]Ha J, Ommen S, Tajik A, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol.2004,94:316-319.
    [30]Edvardsen T, Gerber B, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans:validation against three-dimensional tagged magnetic resonance imaging [J]. Circulation 2002,106: 50-56.
    [31]Hoit BD. Strain and strain rate echocardiography and coronary artery Disease [J]. Circ Cardiovasc Imaging 2011,4:179-190.
    [32]Pirat B, Khoury D, Hartley C, et al. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function:validation in an animal model of ischemia-reperfusion [J]. J Am Coll Cardiol 2008,51:651-659.
    [33]Nagueh S, Rao L, Soto J, et al. Haemodynamic insights into the effects of ischaemia and cycle length on tissue Doppler-derived mitral annulus diastolic velocities [J]. Clin Sci 2004,106:147-154.
    [34]Ishii K, Suyama T, Imai M, et al. Abnormal regional left ventricular systolic and diastolic function in patients with coronary artery disease undergoing percutaneous coronary intervention. Clinical significance of post-ischemic diastolic stunning [J]. J Am Coll Cardiol 2009,54:1589-1597.
    [35]Park T, Nagueh S, Khoury D, et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements:implications for assessment of myocardial viability [J]. Am J Physiol Heart Circ Physiol 2006,290:724-731.
    [36]Hoffmann R, Altiok E, Nowak B, et al. Strain rate analysis allows detection of differences in diastolic function between viable and nonviable myocardial segments [J].J Am Soc Echocardiogr 2005,18:330-335.
    [37]Park S, Miyazaki C, Prasad A, et al. Feasibility of prediction of myocardial viability with Doppler tissue imaging following percutaneous coronary intervention for ST elevation anterior myocardial infarction. J Am Soc Echocardiogr 2009,22:183-189.
    [38]Nagueh S, Appleton C, Gillebert T,et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography [J]. J Am Soc Echocardiogr 2009,22: 107-133.
    [39]Min P, Ha J, Jung J, et al. Incremental. value of measuring the time difference between onset of mitral inflow and onset of early diastolic mitral annulus velocity for the evaluation of left ventricular diastolic pressures in patients with normal systolic function and an indeterminate e/e [J]. Am J Cardiol 2007,100:326-330.
    [40]Kusunose K, Yamada H, Nishio S, et al. Clinical utility of single-beat e/e obtained by simultaneous recording of flow and tissue Doppler velocities in atrial fibrillation with preserved systolic function [J]. J Am Coll Cardiovasc Imaging 2009,2:1147-1156.
    [41]Wang J, Khoury D, Thohan V, et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures [J]. Circulation.2007,115:1376-1383.
    [42]Dokainish H, Sengupta R, Pillai M, et al. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure [J]. Am J Cardiol 2008,101:1504-1509.
    [43]Park S, Miyazaki C, Bruce C, et al. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction [J]. J Am Soc Echocardiogr 2008,21:1129-1137.
    [44]Park S, Nishimura R, Borlaug BS, et al. The effect of loading alterations on left ventricular torsion:a simultaneous catheterization and two-dimensional speckle tracking echocardiographic study. Eur J Echocardiogr.2010,11:770-777.
    [45]Tan Y, Wenzelburger F, Lee E, et al. The pathophysiology of heart failure with normal ejection fraction:exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion [J]. J Am Coll Cardiol 2009,54:36-46.
    [46]Wakami K, Ohte N, Sakata S, Kimura G. Myocardial radial strain in early diastole is useful for assessing left ventricular early diastolic function:comparison with invasive parameters [J]. J Am Soc Echocardiogr 2008,21:446-451.
    [47]Kurt M, Wang J, Torre-Amione G, Nagueh S. Left atrial function in diastolic heart failure [J]. Circ Cardiovasc Imaging 2009,2:10-15.
    [48]Yotti R, Bermejo J, Benito Y, et al. Noninvasive estimation of the rate of relaxation by the analysis of intraventricular pressure gradients [J]. Circ Cardiovasc Imaging 2011, 4:94-104.
    [49]Hasegawa H, Little W, Ohno M, et al. Diastolic mitral annular velocity during the development of heart failure [J]. J Am Coll Cardiol.2003,41:1590-1597.
    [50]Rivas-Gotz C, Khoury D, Manolios M,et al. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler:a novel index of left ventricular relaxation:experimental studies and clinical application [J]. J Am Coll Cardiol 2003,42:1463-1470.
    [51]Diwan A, McCulloch M, Lawrie G, Reardon M, Nagueh S. Doppler estimation of left ventricular filling pressures in patients with mitral valve disease [J]. Circulation 2005,111:3281-3289.
    [52]Kato T, Noda A, Izawa H, et al. Myocardial velocity gradient as a noninvasively determined index of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy [J]. J Am Coll Cardiol 2003,42:278-285.
    [53]Shanks M, Ng A, van de Veire N, et al. Incremental prognostic value of novel left ventricular diastolic indexes for prediction of clinical outcome in patients with ST-elevation myocardial infarction [J]. Am J Cardiol 2010,105:592-597.
    [54]Yotti R, Bermejo J, Antoranz JC, et al. Noninvasive assessment of ejection intraventricular pressure gradients [J]. J Am Coll Cardiol 2004,43:1654-1662.
    [55]Notomi Y, Lysyansky P, Setser R, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging [J] J Am Coll Cardiol 2005,45: 2034-2041.
    [56]Notomi Y, Setser R, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging [J]. Circulation2005,111:1141-1147.
    [57]Wang J, Khoury D, Yue Y, Torre-Amione G, Nagueh S. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure [J]. Eur Heart J.2008,29:1283-1289.
    [58]Fukuda N, Terui T, Ishiwata S, Kurihara S. Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle [J}. J Mol Cell Cardiol 2010,48: 876-881.
    [59]Dong S, Hees P, Siu C, et al. MRI assessment of LV relaxation by untwisting rate:a new isovolumic phase measure of tau [J]. Am J Physiol Heart Circ Physiol 2001,281: 2002-2009.
    [60]Wang J, Khoury D, Yue Y, et al. Left ventricular untwisting rate by speckle tracking echocardiography [J]. Circulation 2007,116:2580-2586.
    [61]孙步高,施广飞,张宁等.三维超声测量左心房容积及其对左室舒张功能的评价.中国超声医学杂志[J].2011,27(6):522-525.
    [61]Di Salvo G, Caso P, Lo Piccolo R,et al. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recent-onset long atrial fibrillation:a color Doppler myocardial imaging and transthoracic and thransesophageal echocardiographic study [J]. Circulation 2005,112:387-395.
    [62]Inaba Y, Yuda S, Kobayashi N, et al. Strain rate imaging for noninvasive functional quantification of the left atrium:comparative studies in controls and patients with atrial fibrillation [J]. J Am Soc Echocardiogr.2005,18(7):729-736.
    [63]Wakami K, Ohte N, Asada K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole [J]. J Am Soc Echocardiogr 2009,22:847-851.
    [1]Hanekom L, Jenkins C, Jeffries L, et al. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography:a follow-up study after revascularization [J]. Circulation 2005,112: 3892-3900.
    [2]Weidemann F, Wacker C, Rauch A, et al. Sequential changes ofmyocardial function during acute myocardial infarction, in the early and chronic phase after coronary intervention described by ultrasonic strain rate imaging [J]. J Am Soc Echocardiogr 2006, 19:839-847.
    [3]Chan J, Hanekom L, Wong C, et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function [J]. J Am Coll Cardiol 2006,48:2026-2033.
    [4]Weidemann F, Eyskens B, Mertens L, et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes in Friedreich's ataxia [J]. Am J Cardiol 2003,91:622-626.
    [5]Lee R, Hanekom L, Marwick TH, et al. Prediction of subclinical left ventricular dysfunction with strain rate imaging in patients with asymptomatic severe mitral regurgitation [J]. Am J Cardiol 2004,94:1333-1337.
    [6]Mertens L, Ganame J, Claus P, et al. Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy [J]. J Am Soc Echocardiogr 2008, 21:1049-1054.
    [7]Weidemann F, Niemann M, Ertl G, Stork S. The different faces of echocardiographic left ventricular hypertrophy:clues to the etiology [J]. J Am Soc Echocardiogr 2010, 23:793-801.
    [8]Ganame J, Claus P, Eyskens B, et al. Acute cardiac functional and morphological changes after Anthracycline infusions in children [J]. Am J Cardiol 2007,99:974-977.
    [9]Jurcut R, Wildiers H, Ganame J, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer [J]. J Am Soc Echocardiogr 2008,21:1283-1289.
    [10]Picano E, Lattanzi F, Orlandini A, et al. Stress echocardiography and the human factor:the importance of being expert [J]. J Am Coll Cardiol 1991,17:666-669.
    [11]Hoffmann R, Lethen H, Marwick T, et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms [J]. J Am Coll Cardiol 1996,27:330-336.
    [12]Heimdal A, Stoylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound [J]. J Am Soc Echocardiogr 1998,11:1013-1019.
    [13]Kanai H, Hasegawa H, Chubachi N, et al. Noninvasive evaluation of local myocardial thickening and its color-coded imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control 1997,44:752-768.
    [14]D'hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound:principles, implementation and limitations [J]. Eur J Echocardiography 2000,1:154-170.
    [15]Kowalski M, Kukulski T, Jamal F, et al. Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects [J]. Ultrasound Med Biol 2001,27:1087-1097.
    [16]Sutherland GR, Di Salvo G, Claus P, et al. Strain and strain rate imaging:a new clinical approach to quantifying regional myocardial function [J]. J Am Soc Echocardiogr 2004,17:788-802.
    [17]D'hooge J, Konofagou E, Jamal F, et al. Two-dimensional ultrasonic strain rate measurement of the human heart in vivo [J]. IEEE Trans Ultrason Ferroelectr Freq Control 2002,49:281-286.
    [18]Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function [J]. J Am Soc Echocardiogr 2004,17:1021-1029.
    [19]Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography-from technical considerations to clinical applications [J]. J Am Soc Echocardiogr 2007,20:234-243.
    [20]Papademetris X, Sinusas AJ, Dione DP, Duncan JS. Estimation of 3D left ventricular deformation from echocardiography [J]. Med Image Anal 2001,5:17-28.
    [21]Elen A, Choi HF, Loeckx D, et al. Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images:a feasibility study [J]. IEEE Trans Med Imaging 2008,27:1580-1591.
    [22]Crosby J, Amundsen BH, Hergum T, et al.3-D speckle tracking for assessment of regional left ventricular function [J]. Ultrasound Med Biol 2009,35:458-471.
    [23]Lubinski MA, Emelianov SY, O'Donnell M. Speckle tracking methods for ultrasonicelasticity imaging using short-time correlation [J]. IEEE Trans Ultrason Ferroelectr Freq Control 1999,46:82-96.
    [24]Reant P, Barbot L, Touche C, et al. Evaluation of global left ventricular systolic
    function using three-dimensional echocardiography speckle-tracking strain parameters [J].
    J Am Soc Echocardiogr 2012,25:68-79.
    [25]Sahn DJ, Ashraf M, Balbach T, DesRochers K. A new 3D strain method for
    processing of 4D echo images can delineate regional myocardial dysfunction:validation
    against sonomicrometry [J]. J Am Coll Cardiol 2011,57:E707.
    [26]. Zhang L, Gao J, Xie M, et al. Three-dimensional global longitudinal strain analysis
    of left ventricle by real-time 3-D speckle tracking imaging in pediatric population:
    feasibility, reproducibility, maturational changes, and normal ranges [J]. Circulation
    2011,24:A10777.
    [27]Schueler R, Sinning JM, Momcilovic D, et al. Three-dimensional speckle-tracking
    analysis of left ventricular function after transcatheter aortic valve implantation [J]. J Am
    Soc Echocardiogr 2012,25:827-834.
    [28]Saito K, Okura H,Watanabe N, et al. Comprehensive evaluation of left ventricular
    strain using speckle tracking echocardiography in normal adults:comparison of
    three-dimensional and two-dimensional approaches [J]. J Am Soc Echocardiogr 2009,
    22:1025-1030.
    [29]Perez de Isla L, Balcones DV, Fernandez-Golfin C, et al. Three-dimensional-wall
    motion tracking:a new and faster tool for myocardial strain assessment:comparison with
    two-dimensional-wall motion tracking [J]. J Am Soc Echocardiogr 2009,22:325-330.
    [30]Kleijn SA, AlyMF, Terwee CB, et al. Reliability of left ventricular volumes and
    function measurements using three-dimensional speckle tracking echocardiography [J].
    Eur Heart J Cardiovasc Imaging 2012,13:159-168.
    [31]Kybic J, Unser M. Fast parametric elastic image registration [J]. IEEE Trans Image
    Proc 2003,12:1427-1442.
    [32]Heyde B, Cygan S, ChoiHF, et al. Regional cardiac motion and strain estimation in
    three-dimensional echocardiography:a validation study in thick-walled univentricular
    phantoms [J]. IEEE Trans Ultrason Freq Control 2012,59:668-682.
    [33]Myronenko A, Song X, Sahn D. Maximum likelihood motion estimation in 3D
    echocardiography through non-rigid registration in spherical coordinate [J]. Lecture
    Notes and Computer Sciences 2009,5528:427-436.
    [34]De Craene M, Piella G, Camara O, et al. Temporal diffeomorphic free-form
    deformation:application to motion and strain estimation from 3D echocardiography [J].
    Med Image Anal 2012,16:427-450.
    [35]Somphone O, Makram-Ebeid S, Cohen LD. Robust image registration
    based on a partition of unity finite element method [C]. In:Proceedings of the Fifth IEEE International Symposium on Biomedical Imaging. Paris, France:IEEE; 2008:1123-1126.
    [36]Leung KY, Danilouchkine MG, van Stralen M, et al. Left ventricular border tracking using cardiac motion models and optical flow [J]. Ultrasound Med Biol 2011,37: 605-616.
    [37]Wang Y, Georgescu B, Houle H, Comaniciu D. Volumetric myocardial mechanicsfrom 3D ultrasound data with multi-modal tracking [J]. Lecture Notes and Computer Sciences 2010,6364:184-193.
    [38]Yang L, Georgescu B, Zheng Y, et al. Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking [J]. IEEE Trans Med Imaging 2011,30:1921-1932.
    [39]Thavendiranathan P, Liu S, Calleja A, et al. Automated 3-D "voxel" longitudinal, circumferential, and radial myocardial mechanis by real-time volume transthoracic echocardiography:feasibility and reproducibility [R]. Presented at:American Society of Echocardiography Annual Scientific Session; 2011.
    [40]Bouchez S, Heyde B, Vandenheuvel M, et al. In-vivo validation of a new 3D myocardial strain estimation tool [R]. Presented at:American Society of Echocardiography Annual Scientific Session; 2012.
    [41]Gayat E, Ahmad H, Weinert L, et al. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography [J]. J Am Soc Echocardiogr 2011,24:878-885.
    [42]Orderud F, Kiss G, Langeland S, et al. Combining edge detection with speckle-tracking for cardiac strain assessment in 3D echocardiography [C]. IEEE Trans Med Imag 2008,1959-1962.
    [43]Langeland S, Rabben SI, Heimdal A, Gerard O.4D strain:validation of new 3D speckle tracking and left ventricular function tool in simulated echocardiographic data [J]. Eur J Echocardiography 2010,11:86-87.
    [44]Lesniak-Plewinska B, Cygan S, Kaluzynski K, et al. A dual-chamber, thick-walled cardiac phantom for use in cardiac motion and deformation imaging by ultrasound [J]. Ultrasound Med Biol 2010,36:1145-1156.
    [45]Ashraf M, DesRochers K, Sahn DJ. A new high resolution 3D echo based strain method gives robust characterization of myocardial mechanics:an in vitro validation study [C]. Circulation 2010:12781.
    [46]Jia C, Kim K, Kolias TJ, et al.4D elasticity imaging of PVA LV phantom integrated with pulsatile circulation system using 2D phased array [C]. In:Proceedings of the IEEE Ultrasonics Symposium. Piscataway, NJ:IEEE; 2007:876-879.
    [47]Hjertaas JJ, Fossa H, DybdahlGL, et al. Accuracy of real-time single and multi beat 3D speckle tracking echocardiography in vitro [J]. Eur J Echocardiography 2011,12: 5-6.
    [48]Shi P, Sinusas AJ, Constable RT, et al. Point-tracked quantitative analysis of left ventricular motion from 3-D image sequences [J]. IEEE Trans Med Imag 2000; 19:36-50.
    [49]Papademetris X, Sinusas AJ, Dione DP, et al. Estimation of 3-D left ventricular deformation from medical images using biomechanical models [J] IEEE Trans Med Imaging 2002,21:786-800.
    [50]Duan Q, Homma S, Laine AF. Analysis of 4D ultrasound for dynamic measures of cardiac function [C]. In:Proceedings of the IEEE Ultrasonics Symposium. New York, NY:IEEE; 2007:463-473.
    [51]Seo Y, Ishizu T, Enomoto Y, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation [J]. Circ Cardiovasc Imaging 2009, 2:451-459.
    [52]Jia C, Kolias TJ, Rubin JM, et al.3D elasticity imaging on an open-chest dog heart[C]. In:Proceedings of the IEEE Ultrasonics Symposium. Piscataway, NJ:IEEE; 2009:155-158.
    [53]Ashraf M, Myronenko A, Nguyen T, et al. Defining left ventricular apex-to-base twist mechanics computed from highresolution 3D echocardiography:validation against sonomicrometry[J]. JACC Cardiovasc Imaging 2010,3:227-234.
    [54]Seo Y, Ishizu T, Enomoto Y, et al. Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging [J]. JACC Cardiovasc Imaging 2011,4:358-365.
    [55]Maffessanti F, Nesser HJ, Weinert L, et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease [J]. Am J Cardiol 2009,104:1755-1762.
    [56]Heyde B, Jasaityte R, Bouchez S, et al. Three-dimensional myocardial strain estimation from volumetric ultrasound:experimental validation in an animal model [C]. In:Proceedings of the IEEE Ultrasonics Symposium. Piscataway, NJ:IEEE; 2011:1862-1865.
    [57]Duan Q, Parker KM, Lorsakul A, et al. Quantitative validation of optical flow based myocardial strain measures using sonomicrometry[C]. In:Proceedings of the Sixth IEEE International Symposium on Biomedical Imaging (ISBI'09). Boston, Massachusetts: IEEE; 2009:454-457.
    [58]Hayat D, Kloeckner M, Nahum J, et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease [J]. Am J Cardiol 2012,109:180-186.
    [59]Negishi K, Negishi T, Agler DA, et al. Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction [J]. Echocardiography 2011,29:334-339.
    [60]Jasaityte R, Heyde B, Ferferieva V, et al. Comparison of a new methodology for the assessment of 3D myocardial strain from volumetric ultrasound with 2D speckle tracking[J]. Int J Cardiovasc Imaging 2012,28:1049-1060.
    [61]Kleijn SA, Brouwer WP, Aly MF, et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function [J]. Eur Heart J Cardiovasc Imaging 2012,13:834-839.
    [62]Kleijn SA, Aly MF, Terwee CB, et al. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain [J]. J Am Soc Echocardiogr 2011,24:314-321.
    [63]Galderisi M, Esposito R, Schiano-Lomoriello V, et al. Correlates of global area strain in native hypertensive patients:a three-dimensional speckle-tracking echocardiography study [J]. Eur Heart J Cardiovasc Imaging 2012,13:730-738.
    [64]Bogaert J, Rademakers FE. Regional nonuniformity of normal adult human left ventricle [J]. Am J Physiol Heart Circ Physiol 2001,280:610-620.
    [65]冉红,张平洋.超声三维斑点追踪技术应用研究的进展及前景[J].心血管病学进展2013,34(2):194-199.
    [66]Langeland S,Wouters PF, Claus P, et al. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain [J]. Ultrasound Med Biol 2006,32:1509-1513.
    [67]Kuznetsova T, Herbots L, Richart T, et al. Left ventricular strain and strain rate in a general population [J]. Eur Heart J 2008,29:2014-2023.
    [68]Hurlburt HM, Aurigemma GP, Hill JC, et al. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults [J]. Echocardiography 2007,24:723-731.
    [69]Thorstensen A, Dalen H, Amundsen BH, et al. Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the HUNT study [J]. Eur J Echocardiography 2010,11:149-156.
    [70]Galema TW, Geleijnse ML, Yap SC, et al. Assessment of left ventricular ejection fraction after myocardial infarction using contrast echocardiography [J]. Eur J Echocardiography 2008,9:250-254.
    [71]McGowan JH, Cleland JG. Reliability of reporting left ventricular systolic function by echocardiography:a systematic review of 3 methods [J]. Am Heart J 2003,146: 388-397.
    [72]Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J]. Circulation 2002,105:539-542.
    [73]Masci PG, Dymarkowski S, Rademakers FE, et al. Determination ofregional ejection fraction in patients with myocardial infarction by using merged late gadolinium enhancement and cine MR:feasibility study [J]. Radiology 2009,250:50-60.
    [74]Ryan T, Armstrong WF, Khandheria BK. Task Force 4:training in echocardiography endorsed by the American Society of Echocardiography [J]. J Am Coll Cardiol 2008,51:361-367.
    [75]Marwick TH, Leano RL, Brown J, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography:definition of normal range [J]. JACC Cardiovasc Imaging 2009.2:80-84.
    [76]Koopman LP, Slorach C, Hui W, et al. Comparison between different speckle tracking and color tissue Doppler techniques to measure global and regional myocardial deformation in children [J]. J Am Soc Echocardiogr 2010,23:919-928.
    [77]Kjaergaard J, Korinek J, Belohlavek M, et al. Accuracy, reproducibility, and comparability of Doppler tissue imaging by two high-end ultrasound systems [J]. J Am Soc Echocardiogr 2006,19:322-328.
    [78]Martensson M, Bjallmark A, Brodin LA. Evaluation of tissue Dopplerbased velocity and deformation imaging:a phantom study of ultrasound systems [J]. Eur J Echocardiography 2011,12:467-476.
    [79]Thebault C, Donal E, Bernard A, et al. Realtime three-dimensional speckle tracking echocardiography:a novel technique to quantify global left ventricular mechanical dyssynchrony [J]. Eur J Echocardiography 2011,12:26-32.
    [80]Matsumoto K, Tanaka H, Tatsumi K, et al. Left ventricular dyssynchrony using three-dimensional speckletracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy [J]. Am J Cardiol 2012,109:1197-205.
    [81]Byram B, Holley G, Giannantonio D, et al.3-D phantom and in vivo cardiac speckle tracking using a matrix array and raw echo data [C].IEEE Trans Ultrason Ferroelectr Freq Control 2010:839-854.
    [82]Ferferieva V, Van den Bergh A, Claus P, et al. The relative value of strain and strain rate for defining intrinsic myocardial function [J]. Am J Physiol Heart Circ Physiol 2012, 302:188-195.
    [83]Weidemann F, Jamal F, Sutherland GR, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate [J]. Am J Physiol Heart Circ Physiol 2002,283:792-799.
    [84]Sutherland GR, Hatle L, Rademakers FE, et al. Doppler myocardial imaging. [B]. Hasselt, Belgium:BSWK bvba, Scientific Consulting and Publishing 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700