无序黄长石ABC_3O_7系列晶体的生长和性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1960年第一台红宝石激光器运转以来,激光以其单色性、方向性和相干性等特质,被广泛地应用于微(光)电子、通讯、医疗、军事、科研、教育、勘探等众多领域。激光材料是激光技术发展的核心和基础,特别是激光晶体在激光技术发展的各个关键阶段均起了举足轻重的作用。进入21世纪,激光和激光技术正以其强大的生命力继续推动着光电子技术和产业的发展,同时人们也对激光主要工作物质激光晶体提出了更新的和更高的要求,发展LD抽运超快激光增益和放大介质晶体成为晶体材料发展的趋势之一。
     锁模是获得超短脉冲的一种技术,每个脉冲的宽度近似等于振荡线宽的倒数。可见增益线宽愈宽,愈可能得到窄的锁模脉宽。无序晶体材料具有宽的发射光谱,提高晶体无序度,利于获得超短脉冲激光,无序激光晶体研究受到广泛关注。所谓无序晶体,指具有不同化合价的阳离子随机分布在相同的晶格点上导致晶格场的无序分布。无序晶格场导致宽的吸收谱和发射谱,既有利于二极管泵浦又有利于产生超短脉冲。此外,与激光玻璃相比,无序激光晶体具有大的热导率,可应用于高功率激光器中。在无序激光晶体中,温度变化引发钕离子斯塔克能级的迁移,加上宽的发射光谱,有利于产生温度可调谐激光。Nd:ABC3O7晶体是一类无序黄长石激光晶体。其中,A=Ca, Sr, Ba; B=La, Gd; C=Ga,Al。空间群是p421m。沿c方向,C045-四面体构成层状机构,层与层之间,A2+和B3+以1:1比例随机分布在八个氧原子配位的格点上。在无序晶体中,原来的一种离子占据的格位,被两种离子随机占据,基质晶体中形成许多结构上不同的钕离子激活中心,造成光谱包括吸收光谱和发射光谱的非均匀加宽,并使得受激发射截面减小。小发射截面的激光材料适合于在调9激光领域的应用,而宽的发射谱线的激光材料是产生锁模(尤其是飞秒脉冲)激光所梦寐以求的。此外,ABC3O7晶体无对称中心具有压电效应,且熔点较高(SrLaGa3O7熔点1588℃, SrGdGa3O7报道1600℃, BaLaGa3O7报道1560℃),熔点之前无相变,是一类很有潜质的高温压电材料。本论文从材料制各、热学性质、光学性质、激光性质和压电性质几个方面对ABC3O7系列晶体包括Nd:SrLaGa3O7、Nd:SrGdGa3O7和Nd:BaLaGa3O7晶体进行了研究。主要研究内容与结果如下:
     (一)提出了无序黄长石Nd:ABC3O7晶体为优良多功能晶体材料的核心思想和研究意义,以及本论文所涉及的激光晶体材料分类、无序晶体材料的基本概念、脉冲激光技术和高温压电晶体发展。在此基础上,简要介绍了本论文的研究内容。
     (二)晶体生长
     1、采用JTL-400B单晶生长炉,利用Czochralski提拉技术,c向生长lat.%Nd掺杂SrLaGa3O7、SrGdGa3O7和BaLaGa3O7晶体。探索生长工艺参数,生长出透明、无宏观缺陷的质量良好的晶体。
     2、介绍了晶体生长的设备及工艺过程,讨论了影响晶体质量的因素。其中温场、籽晶及生长工艺参数(晶体生长速率、转速、收尾降温速率)等对生长优质单晶都很重要。
     (三)Nd:SrLaGa3O7、Nd:SrGdGa3O7和Nd:BaLaGa3O7晶体的基本物理性质
     1、X射线粉末衍射(XRPD)对Nd:ABC3O7晶体物相和结构研究,Nd:ABC3O7系列晶体属于黄长石结构,空间群为p42,m,利用Fullprof软件计算晶格参数。
     2、高分辨X射线衍射仪(HRXRD)表征晶体质量,摇摆曲线半峰宽最小达到16.92",晶格完整度高。
     3、利用X射线荧光分析法对Nd:ABC3O7系列晶体中各元素浓度测量,计算分凝系数,钕离子在SrLaGa3O7、SrGdGa3O7和BaLaGa3O7晶体中的分凝系数分别约为0.99、1.36和1.12,ABC3O7系列晶体可进行较高浓度钕离子掺杂。
     4、热学性质是激光晶体表征的重要参数。差热扫描量热计(DSC)测量Nd:SrLaGa3O7的熔点为1588℃.系统测量了Nd:ABC3O7晶体的热膨胀、比热、热扩散和热导率。热机械分析仪研究了晶体在30-500℃不同方向的热膨胀性,热膨胀系数在10-6/K数量级,各向异性小。差热扫描量热计(DSC)测得Nd:SrLaGa3O7、Nd:SrGdGa3O7和Nd:BaLaGa3O7晶体30℃下比热分别为0.401J/gK、0.419J/gK和0.365J/gK。激光脉冲法测定了晶体的热扩散系数,30℃下Nd:SrLaGa3O7晶体热扩散系数为λ11=0.93mm2/s, λ33=0.81mm2/s; Nd:SrGdGa3O7晶体热扩散系数为λ11=0.67mm2/s, λ33=0.59mm2/s; Nd:BaLaGa3O7晶体热扩散系数为λ11=0.97mm2/s,λ33=0.85mm2/s。首次利用密度、比热和热扩散系数乘积的方法计算热导率,30℃下Nd:SrLaGa3O7晶体的热导率为κ11.=1.95Wm-1K-1,κ33=1.70W m-1K-1; Nd:SrGdGa3O7热导率为κ11=1.59W m-1K-1, K33=1.40Wm-1K-1; Nd:BaLaGa3O7热导率为κ11=1.96Wm-1K-1, K33=1.72Wm-1K-1,高于玻璃的热导率。测量热导率比文献报道数值11Wm-1K-1小,利用本实验方法测量了YAG晶体热导率作为对比,证明了本实验方法的正确性。Nd:ABC3O7晶体热导率随温度升高而升高,表现了与玻璃类似的性质,无序晶体的特征。
     5、光学性质表征与激光增益介质的激光性能密切相关。最小偏向角法测量Nd:SrGdGa3O7晶体253-2325nm范围13个波长折射率,拟合Sellmerier方程,结果表明Nd:SrGdGa3O7为正单轴晶,双折射较小。激光晶体的光谱特性决定了该晶体应用范围和激光特性。我们测量了Nd:ABC3O7系列晶体的吸收和发射光谱,利用J-O理论计算了光谱参数。三种晶体吸收特性保持一致,σ偏振吸收强于π偏振吸收,具有大的吸收半峰宽和发射半峰宽,受激发射截面较小,荧光寿命长,具有大能量存储能力,适合在调Q激光器中的应用,而其宽的发射谱线使这种材料适合于锁模和调谐激光器中的应用。
     (四)激光性能
     1、对Nd:SrLaGa3O7、Nd:SrGdGa3O7和Nd:BaLaGa3O7晶体的连续激光性能进行了研究。在1.061μm波段获得了远超已报道的连续激光输出,最大输出功率分别为3.88W、1.71W和0.57W,相应斜效率分别为16.8%,11%和6%。在Nd:SrLaGa3O7连续激光输出实验中,首次发现输出波长随温度增加而长移的可调谐激光输出。深入研究Nd:SrGdGa3O7晶体输出波长随泵浦功率增加的变化,热电偶测量晶体温度升高情况,用钕离子的斯塔克能级热迁移理论解释了这种现象。
     2、首次使用Cr4+:YAG作为被动调Q器件,LD泵浦,对Nd:SrLaGa3O7和Nd:SrGdGa3O7晶体被动调Q激光性能进行了研究。分别得到了输出能量为60.3μJ、脉冲宽度为10.6ns以及峰值功率为5.3kW的被动调Q脉冲激光和输出能量为89.1μJ、脉冲宽度为15.8ns以及峰值功率为5.6kW的脉冲激光,比以前报道的调Q激光性能优良。
     3、首次对Nd:SrGdGa3O7的自锁模特性进行了研究,得到了平均输出功率为415mW,脉冲宽度为616fs的锁模激光。据我们所知,这是到目前为止钕掺杂激光晶体自锁模激光输出得到的最短脉冲。
     (五)压电性能
     采用谐振法和平衡电桥法对Nd:ABC3O7系列晶体的介电、弹性和机电性能进行了表征。测量了-50~120℃范围电弹常数温度变化。研究结果表明:Nd:ABC3O7晶体具有优良的压电弹性性能,介电常数ε11、压电常数d14和机电耦合系数K'12分别在15-17、12-15pC/N和16-19%数量级。对应于不用的切型,频率温度系数为-16~-55ppm/K,介电常数、压电常数和机电耦合系数表现出好的温度稳定性。并且这类晶体熔点较高,熔点之前无相变,是一类很有潜质的高温压电晶体材料。
     通过以上的研究,我们验证了Nd:ABC3O7晶体是一种优良的功能晶体材料,无论在锁模激光还是在高温压电领域都有良好的应用前景。
Since the operation of the first Ruby laser device in1960, laser has been widely used in the fields of microelectronics, communication, medical treatment, military, reaserch, education and exploration, due to its unique optical characteristics, such as monochrome, orientation, coherence, which have been used to generate ultrabright and ultrashort pulses. Laser materials, especially the laser crystals, played a vital role in the development of laser techniques. Into21st century, laser and laser techniques will continue to promote the fast progress of optoelectronics industry. At the same time, people will also propose newer and higher criteria for the laser crystals, which make them become the leading frontier and hot topic both in the fields of material science and engineering development. The development of ultrafast laser gain and amplifier media suitable for LD pumping will become one of the main trends of laser crystals.
     Mode-locking is a technique to generate ultrashort pulses from lasers. The width of the individual mode-locked pulses is is approximately equal to the inverse of the oscillation bandwidth. Therfore, the narrower the pulse width, the larger the bandwidth required to generate the pulse. Improvement of the disorder degree of the crystal facilitates the production of short, mode-locked pulses. So disordered laser crystals have attracted a great deal of research interest. It is clearly manifested that disordered crystals have statistical structual elements or statistical occupation of similar crystallographic positions in the lattice with different calences. The crystal-field disorder at activators ions produces a large inhomogeneous broadening of the spectrum. Strong inhomogeneous broadening of the pumping band improves spectral overlap with the relatively broad emission band of a diode laser (DL). A broad fluorescence linewidth facilitates the production of short, mode-locked pulses. In addition, compared with glass, disordered crystals have large thermal conductivity, which can be applied to high-power lasers. In disordered crystals, temperature change will lead to shift of activator-ion Stark Levels. Therefore, the spectra including absorption and emission are inhomogeneously broadened, which determines its output laser wavelength to be tunable. ABC3O7crystals belong to a large disordered family with space group p42, m.Here, A=Ca, Sr, Ba; B=La, Gd; and C=Al, Ga. The ABC3O7crystal is built up from CO4layers formed in the a-b plane. Between the layers, A2+and B3+ions are distributed randomly in eight coordinated sites with Cs symmetry. The ratio is1:1. In those disordered crystals, due to the variation of the local crystal fields surrounding the Nd ions, the spectra, including absorption and fluorescence lines, are inhomogeneous broadened and the emission cross-sections are reduced. In the laser field, smaller emission cross-sections and broadened fluorescence spectra are favorable by the Q-switched and mode-locked lasers, respectively. Furthermore, ABC3O7crystals have favorable properties.Since the reported melting points are higher (about1588℃for SrLaGa3O7,1600℃for SrGdGa3O7,1560℃for BaLaGa3O7) and there are no phase transitions below the melting point, these crystals could possibly be used in high temperature piezoelectric applications. In this thesis, characterization on crystal quality, thermal properties, optical properties, laser performance and high temperature piezoelectric application were carried out. The outline is shown as follows:
     (1) We introduce the research ideas and significance on disordered ABC3O7crystals being excellent multi-functional crystal materials, as well as the basic concepts about disorderded crystals, pulse laser generation technique, and review their recent research progresses. On this basis, we briefly introduce the research ideas and concents of this dissertation.
     (2) Crystal growth
     High quality single crystals with the melilite ABC3O7structure, including Nd:SrGdGa3O7, Nd:SrLaGa3O7, and Nd:BaLaGa3O7, were grown using the Czochralski technique. Influence of thermal field, crystal seed and growth process parameters (the pulling rate,the rotation rate, and cooling rate) was discussed.
     (3) Investigation on the crystal quality, and thermal and optical properties of Nd:ABC3O7crystals
     1、X-ray powder diffraction was used for structure measurements. The space group is p421m.According to the peak2θ values in the XRPD pattern, the tetragonal unit cell parameters were calculated.
     2、The high-resolution X-ray diffraction method was used to check the quality of the as-grown single crystal. The full-width at half-maximum value of Nd:SrLaGa3O7was measured to be16.92". The symmetry of the diffraction peak indicates that the as-grown crystal is of high quality.
     3、The concentrations of elements in Nd:ABC3O7crystals were measured using x-ray fluorescence analysis. The segregation coefficients of Nd ions in Nd:SrLaGa3O7, Nd:SrGdGa3O7, and Nd:BaLaGa3O7crystals were calculated to be0.99,1.36and1.12, respectively.
     4、The melting pint of Nd:SrLaGa3O7was determined to be1588oC using a TG/DTA thermal analyzer (SETSYS-2400CS Evolution, France). The variation of thermal expansion, specific heat, thermal diffusion, and thermal conductivity with temperature were determined. The expansion coefficients were measured to be on the order of10-6/K by the thermal-mechanical analyzer. The specific heat of Nd:SrLaGa3O7, Nd:SrGdGa3O7, and Nd:BaLaGa3O7crystals were determined to be0.401J/gK,0.419J/gK and0.365J/gK, respectively, using a differential scanning calorimeter (Diamond model DSC-ZC). The thermal diffusivity components of the crystal were measured by the laser pulse method using a Netzsch Nanoflash model LFA447apparatus along the crystallographic axes. For Nd:SrLaGa3O7, λ11=0.93mm2/s, λ33=0.81mm2/s. For Nd:SrGdGa3O7, λ11=0.67mm2/s, λ33=0.59mm2/s. For Nd:BaLaGa3O7, λ11=0.97mm2/s, λ33=0.85mm2/s. Thermal conductivity was calculated with the measured data of specific heat, thermal diffusion coefficient and density. For Nd:SrLaGa3O7, κ11=1.95Wm-1K-1,κ33=1.70Wm-1K-1. For Nd:SrGdGa3O7, κ11=1.59Wm-1K-1, κ33=1.40Wm-1K-1. For Nd:BaLaGa3O7, κ11=1.96Wm-1K-1, κ33=1.72Wm-1K-1. All the values were higher than that of glass, making Nd: ABC3O7crystals suitable for such applications in medium and high laser system. In addtion, it was found that the thermal conductivity increases with increasing temperature, which is similar to the behavior of glass.
     5、The refractive indices of Nd:SrGdGa3O7were measured by the minimum-deviation method at13different wavelengths ranging from253to2325nm. Sellmeier's equations fitted by the least-squares method. The results showed that The crystal is positive uniaxial with a relatively small birefringence. We measured the polarized absorption and emission spectra of Nd3+, and calculated the spectral parameters based on the J-O theory. Thee σ-polarization absorption is stronger than π-polarization absorption. The absorption and emission spectra of Nd3+are inhomogeneously broadened, which can be associated with the disordered melilite structure. The smaller emission cross-section and longer fluorescence lifetime indicate that Nd:ABC3O7should have a higher energy storage capacity and excellent Q-switched laser properties.
     (4) Laser experiments
     1、The continuous-wave laser performance of Nd:SrLaGa3O7, Nd:SrGdGa3O7, and Nd:BaLaGa3O7crystals have been demonstrated, and the maximum output power was obtained to be3.88W、1.71W and0.57W at1.06μm. For the first time, a tunable laser with a disordered Nd:SrLaGa3O7crystal by temperatures was demonstrated. The central wavelength of the laser emission was observed to shift to longer with increasing the output couplings, which was resulted from heat-induced redistribution of the Nd-ion population on the energy levels. And the varation of the laser wavelength with the pump power was investigated for the first time.
     2、With Cr4+:YAG as saturable absorber, the passive Q-switching performance of Nd:SrLaGa3O7and Nd:SrGdGa3O7was demonstrated fo rthe first time. With Nd:SrLaGa3O7, the maximum pulse energy, shortest pulse width, and highest peak power were measured to be60.3μJ,10.6ns,and5.3kW, respectively. With Nd:SrGdGa3O7, the maximum pulse energy, shortest pulse width, and highest peak power were measured to be89.1μJ,15.8ns,and5.6kW, respectively,
     3、We explore the operation of spontaneous mode locking in a diode-pumped Nd:SrGdGa3O7disordered crystal laser. The first-and second-order autocorrelations are simultaneously performed to evaluate the temporal characteristics. An80GHz pulse train with a pulse duration as short as616fs is observed. The maximumoutput power is415mWat a pump power of6.1W.
     (5) Piezoelectric properties
     All the piezoelectric, elastic, and dielectric constants were determined and analyzed, exhibiting excellent piezoelectric properties compared to SiO2, La3Ga5SiO14, and YCa4O(BO3)3. The piezoelectric constant d14and electromechanical coupling coefficient k'12(xyt)45°of the crystals were found to be on the order of12-15pC/N and16-19%, respectively. The piezoelectric parameters showed much better temperature-independent properties over the range of-50to120℃than the comparison materials. Together with a broad useful temperature range (theoretically up to the melting temperature at~1600℃), these properties make ABC3O7crystals promising candidates for sensor applications at ultra high temperatures.
引文
[1]T. H. Maiman, Stimulated optical radiation in ruby masers, Nature,1960, 187(4736),493-494.
    [2]H. G. Danielmeyer and F. W. Ostermayer, Diode-pump-modulated Nd:YAG laser, J. Appl. Phys.,1972,43(6),2911-2913.
    [3]P. F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Amer E,1986,3(1),125-133.
    [4]L. De Shazer, Vanadate crystals exploit diode—PumP technology, Laser Focus World,1994,30(2),88-90.
    [5]I. Akio, K. Toshiyuki, K. Kiichiro and Y. Kunio, Fabrication and optical properties of high-performence polyerystalline Nd:YAG ceramics for solid-state lasers, Am. Ceram. Soc.,1995,78(4),1033-1040.
    [6]Y. Jeong, J. K. Sahu, D. N. Payne and J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave outputpower, Opt. Exp.,2004,12(25), 6088-6092.
    [7]J. E. Geusic, H. M. Marcos and L.G. Van Uitert, Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnents, Appl. Phys. Lett. 1964,4(10),182-184.
    [8]A. Kruusing, Underwater and water-assisted laser processing:Part 2—Etching, cutting and rarely used methods, Optics and Lasers in Engineering,2004,41(2), 329-352.
    [9]姚建铨,徐德刚,全固态激光及非线性光学频率变换技术,北京科学出版社,2007.
    [10]R. C. Powell, G. J. Quarles, J. J. Martin, C. A. Hunt, and W. A. Sibley, Stimulated emission and tunable gain from Rh2+ ions in RbCaF3 crystals, Opt. Lett. 1985,10(5),212-214.
    [11]A. Hoffstadt, Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier, IEEE J. Quantum Electron. 1997,33(10),1850-1863.
    [12]P. Z. Zheng, Investigation on improvement of laser quality of tunable Al2O3: Ti3+ crystals, Proceedings of SPIE,1990,1338,207-215.
    [13]干福熹,邓佩珍.激光材料,上海科学技术出版社,1995.
    [14]李敢生,吴喜泉,位民等,大尺寸优质钒酸钇(YV04)双折射晶体生长.人工晶体学报,1999,28(1),29-32.
    [15]徐军,激光晶体材料的发展和思考,名家讲坛,2006,43(9),17-24。
    [16]张玉龙,唐磊,人工晶体生长技术、性能与应用,化学工业出版社,2005.
    [17]陈家璧,彭润玲,激光原理与应用,电子工业出版社,2008。
    [18]W.克希耐尔,固体激光工程,科学出版社,2002。
    [19]D. A. Bryan, Robert Gerson, H. E. Tomaschke, Increased optical damage resistance in lithium niobate, Appl. Phy. Lett.1984,44(9),847-849.
    [20]颜涛,高品质铌酸锂、碳酸锂晶体的生长、结构与性质研究,山东大学博士论文,2011。
    [21]J.Y.Wang, X. Yin, S. J. Zhang, H. J. Zhang,and M. H. Jiang, Gowth, property and electro-optical applicaiton of lagasite crystal, Progress in physics,2007,27(3), 344-360.
    [22]E. Villafana R., Alexandaer V. Kir'yanov, Comparative analysis of CW-pumped Nd:YVO4 lasers passively Q-switched with LiF:F2- and YAG:Cr4+ crystals, Opt. Commun.2004,242(1-3),241-252.
    [23]J. J. Degnan, Optimization of Passively Q-Switched Lasers, IEEE J. Quantum. Elect.,1995,31(11),1890-1901.
    [24]J. H. Liu, Z. P. Wang, X. L. Meng, Z. S. Shao B. Ozygus, A. Ding and H. Weber, Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal Nd:Gdo.64Y0.36VO4, Opt. Lett.,2003,28(23),2330-2332.
    [25]U. Keller, Ultrafast solid-state lasers, Edited by G. Herziger, H. Weber, and R. Proprawe, Springer-Verlag, Berlin,2007.
    [26]F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics,2010,4,611-622.
    [27]Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers, Adv. Funct. Mater.2009,19(19),3077-3083.
    [28]H. H. Hao, X. F. Cheng, X. B. Hu, S. D. Zhuang, Z. P. Wang, X. G. Xu, J. Y. Wang, H. J. Zhang, and M. H. Jiang, Graphene as a Q-Switcher for Neodymium-Doped Lutetium Vanadate Laser, Appl. Phys. Express,2011,4(2) 022704.
    [29]蓝信钜,激光技术,科学出版社,2005。
    [30]于浩海,新型系列钒酸盐晶体生长及其脉冲能量增强效应影响,山东大学博士毕业论文,2008.
    [31]周炳琨,激光原理,北京国防工业出版社,2009。
    [32]U. Keller, Ultrafast solid-state lasers, Edited by G. Herziger, H. Weber, and R. Proprawe, Springer-Verlag, Berlin,2007.
    [33]G. Q. Xie, D. Y. Tang, J. Kong, and L. J. Qian, Passive mode-locking of a Nd:YAG ceramic laser by optical interference modulation in a GaAs wafer, Opt. Express,2007,15(9),5360-5365.
    [34]K. Seibert, G. C. Cho, W. Kutt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, A. M. Malvezzi, Femtosecond carrier dynamics in graphite, Phys. Rev. B 1990,42(5),2842-2851.
    [35]J. S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Teetout, E. Rosencher, L. Goux-Capes, Optical transitions in single-wall boron nitride nanotubes, Phys. Rev. Lett.,2005,94(3),037405.
    [36]S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications, Adv. Mater.2003,15(6),534-537.
    [37]J. S. Lauret, C. Voisin, G. Cassabiois, Ph. Roussignol, O. Jost, and L. Capes, Ultrafast carrier dynamics in single-wall carbon nanotubes, Phys. Rev. Lett.2003, 90(5),057404.
    [38]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene, Opt. Express, 2009,17(20),17630-17635.
    [39]W.D.Tan,C.Y.Su,R.J.Knize,G.Q.Xie,L.J.Li,and D.Y.Tang,Modelocking of ceramic Nd:yttrium aluminum garnet with graphene as a satuarable absorber, Appl.Phys. Lett.2010,96(3) 031106.
    [40]王继扬,吴以成,光电功能晶体材料研究进展,中国材料进展,2010,29(10):1-15.
    [41]W. X. Li, Q. Hao, H. Zhai, H. P. Zeng, W. Lu, G. J. Zhao, L. H. Zheng, L. B. Su, J. Xu, Diode-pumped Yb:GSO femtosecond laser, Opt. Express,2007,15(5), 2354-2356.
    [42]M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebie, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluzal, Terawatt diode-pumped Yb:CaF2 laser, Opt. Lett.2008,33(23),2770-2772.
    [43]A. Pugzlys, G. Andriukaitis, A. Baltuska, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevicius, M. E. Fermann, L. Giniunas, R. Danielius, and S. Alisauskas, Multi-mJ,200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier, Opt. Lett.,2009,34(13),2075-2077.
    [44]S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. J. Zhang, J. W. Wang, and M. J. Jiang, Passively Mode-Locked Yb:LuVO4 Oscillator, Opt. Express,2006,14(24),11668-11671.
    [45]张国威,可调谐激光技术,北京国防工业出版社,2002.
    [46]G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, Dual-wavelength synchronously mode-Locked Nd:CNGG laser, Opt. Lett.,2008,33(16),1872-1874.
    [47]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser, Opt. Lett.,2009,34(1),103-105.
    [48]J. Petit, P. Goldner, and B. Viana, Laser emission with low quantum defect in Yb:CaGdAlO4, Opt. Lett.2005,30(11),1345-1347.
    [49]A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, and V. Petrov, Spectroscopy and lasing of Yb-doped NaY(WO4)2:tunable and femtosecond mode-locked laser operation, IEEE J. Quantum Electron.2007,43(9),758-764.
    [50]A. A. Kaminskii, Achievements in the field of physics and spectroscopy of activated laser crystals, Phys. Stat. Sol. (a),1985,87(1),11-57.
    [51]H. R. Verdun and L. M. Thomas, Nd:CaYAlO4-a new crystal for solid-state lasers emitting at 1.08μm, Appl. Phys. Lett.56 (7),608-610.
    [52]S. A. Pollack, D. B. Chang, and N. L. Moise, Continuous wave and Q-switched infrared erbium laser, Appl. Phys. Lett.1986,49(23),1578-1580.
    [53]S. A. Pollack, D. B. Chang, and N. L. Moise, Upconversion-pumped infrared erbium laser, J. Appl. Phys.1986,60 (12),4077-4086.
    [54]V. N. Baksheeva, B. I. Maksakov, M. N. Tolstoi, P. P. Feofilov, and V. N. Shapovalov, Spectral and luminescence properties of neodymium and ytterbium in the crystals of triple mixed fluorides, in Spektroskopiya Kristallov, ed. By P. P.Feofilov, (Nauka, Moscow 1970) pp.156-159.
    [55]A. A. Kaminskii, Crystalline lasers:physical processes and operating schemes, Boca Ration, Fla.:CRC Press, c1996.
    [56]V. B. Aleksandrov and L. S. Garashina, New data on the stucture of CaF2-TRF3 solid solutions. Dok. Akad. Nauk SSSR,1969,189,307-310.
    [57]G. B. Bpkii and V. B. Kravchenko, Crystallochemical problems of activations, in Spektroskopiya Kristallov, ed. By P. P.Feofilov, (Nauka, Leningrad 1973) 7-15.
    [58]A. A. Kaminskii, Laser crystals:their physics and properties, Berlin, New York, Springer-Verlag,1981.
    [59]Shun-ichi Kubota, M. Izumi, H. Yamane, and M. Shimada, Luminescence of Eu, Tb and Tm in SrLaGa3O7, J. Alloy. Compd.,1999,283(1-2),95-101.
    [60]W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, W.A. Pisarski, M. Berkowski, and J. Fink-Finowicki, Growth and spectroscopy of chromium doped SrXGa3O7(X=La, Gd) crystals, Spectrochimica Acta Part A,1998,54(13), 2071-2075.
    [61]W. Ryba-Romanowski, S.Golab, I. Sokolska, G. Dominiak-Dzik, J. Zawadzka, M. Berkowski, J. Fink-Finowicki, and M. Baba, Spectroscopic characterization of aTm3+:SrGdGa307 crystal, Appl. Phys. B,1999,68(2),199-205.
    [62]M. A. Scott, D. L. Russell, B. Henderson, T. P. J. Han, H. G. Gallagher, Crystal growth and optical characterisationof novel 3d2 ion laser hosts, J. Cryst. Growth, 1998,183(3),366-376.
    [63]A. A. Kaminskii, L. Bohaty, P. Becker, J. Liebertz, P. Held, H.J. Eichler, H. Rhee, and J. Hanuza, Tetragonal Ba2MgGe2O7-a novel multifunctional optical crystal with numerous manifestations of nonlinear-laser effects:almost sesqui-octave Stokes and anti-Stokes combs and cascaded χ(3)(?)χ(2) lasing with involved second and third harmonic generation, Laser Phys. Lett.2008,5(12), 845-868.
    [64]W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, and M. Berkowski, Effect of substitution of barium by strontium on opticalproperties of neodymium-doped XLaGa3O7 (X= Ba,Sr),Mat. Sci. Eng b-Solid.,1992, B15(3),217-221.
    [65]S.-i. Kubota, M. Izumi, H. Yamane, and M. Shimada, Luminescence of Eu, Tb and Tm in SrLaGa3O7, J. Alloy Compd,1999,283(1-2),95-101.
    [66]M. Kaczkan, M. Malinowski, Inhomogeneity of Ho3+ activated SrLaGa3O7 and SrLaGaO4 crystals studied by fluorescence line narrowing technique, Opt. Mater., 2006,28(1-2),119-122.
    [67]S. M. Kaczmarek, M. Berkowski, and R. Jablonski, Recharging processes of chromium ions in Cr:SrGdGa3O7 and Cr:SrLaGa3O7 single crystals, Cryst. Res. Technol.1999,34(8),1023-1029.
    [68]X. M. Zhang, J. H. Zhang, L. F. Liang, and Q. Su, Luminescence of SrGdGa3O7:RE3+(RE-Eu, Tb) phosphors and energy transfer from Gd3+ to RE3+, Mater. Res. Bull.,2005,40(2),281-288.
    [69]A. Maurizi, B. Teisserre, B. Viana, D. Saber, A. M. Lejus and D. Viven, Crystal growth and optical properties of Er:CAS (Ca2Al2SiO7) and Er.SLG (SrLaGa3O7), Journal de physique Ⅳ,1994, Colloque C4, supplement au Journal de Physique 111,4, C4-415-418.
    [70]W. Piekarzyk, M. Berkowski and G. Jasiolek, The czochalski growth of BaLaGa3O7 single crystals, J. Cryst. Growth,1985,71(2),395-398.
    [71]W. Ryba-Romanowski, B. Jezowska-Trzebiatowska, W. Piekarczyk and M. Berkowski, Optical properties and lasing of BaLaGa3O7 single crystals doped with neodymium, J. Phys. Chem. Solids,1988,49(2),199-203.
    [72]W. Ryba-Romanowski, Growth and characterization of new disordered crystals for the design of all-solid-state lasers, Int. J. Electronics,1996,81(4),457-465.
    [73]Horacio R. Verdum, Linda R. Black, German F. de la Fuenre, and Donan M. Andrauskas, Growth and characterization of Nd-doped aluminates and gallates with the melilite structure, OSA/ASSL,1989,405-407.
    [74]V. Kushawaha, and Y. Chen, CW and quasi-CW diode-laser-pumped Nd:SSGM, Appl. Phys. B,1995,60(1),67-69.
    [75]A. V. Terentiev, P. V. Prokoshin, K. V. Yumashev, V. P. Mikhailov W. Ryba-Romanowski, S. Golab, and W. Pisarski, Passive mode locking of a Nd3+:SrLaGa307 laser, Appl. Phys. Lett.1995,67(17),2442-2444.
    [76]W. Solunch, R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A.Goodberlet, and J. F. Vetelino, Elastic, piezoelectric, and dielectric properties of the BaLaGa3O7 crystal, J. Appl. Phys.1985,58(6),2285-2287.
    [77]S. J. Zhang, E. Frantz, R. Xia, W. Everson, J. Randi, D. W. Snyder, and T. R. Shrout, Gadolinium calcium oxyborate piezoelectric single crystals for ultrahigh temperature (>1000℃) applications,J. Appl. Phys.2008,104(8),084103.7pp.
    [78]H. Fritze, and H. L. Tuller, Langasite for high-temperature bulk acoustic wave applications,Appl. Phys. Lett.2001,78(7),976-977.
    [79]J. Bohm, E. Chilla, C. Flannery, H.-J. Frohlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, Czochralski growth and characterization of piezoelectric single crystals with langasite structure:La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) Ⅱ. Piezoelectric and elastic properties, J. Crys. Growth,2000,216(1-4),293-298.
    [80]J. Haines, O. Cambon, N. Prudhomme, G. Fraysse, D. A. Keen, L. C. Chapon, and M. G. Tucker, High-temperature, structural disorder, phase transitions, and piezoelectric properties of GaPO4, Phys. Rev. B,2006,73(1),014103,10pp.
    [81]K. Jacobs, P. Hofmann, D. Klimm, J. Reichow, and M. Schneider, Structural Phase Transformations in Crystalline Gallium Orthophosphate, J. Solid State Chem.2000,149(1),180-188.
    [82]S. J. Zhang, Y. T. Fei, B. H. T. Chai, E. Frantz, D.W. Snyder, X. N. Jiang, and T. R.Shrout, Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications, Appl. Phys. Lett.2008,92(20),202905,3pp.
    [83]F. P. Yu; S. J. Zhang, X. Zhao, D. R. Yuan, C. M. Wang, and T. R. Shrout, Characterization of Neodymium Calcium Oxyborate Piezoelectric Crystal with Monoclinic Phase, Cryst. Growth Des.2010,10(4),1871-1877.
    [1]张克从,张乐潓,晶体生长,北京科学出版社,1981.
    [2]I. Pracka, W. Giersz, M. Swirkowicz and A. Pajaczkowska, S. M. Kaczmarek, Z. Mierczyk and K. Kopczynski, The Czochralski growth of SrLaGa3O7 single crystals and their optical andlasing properties, Mate. Sci. Eng. B-Solid,1994, B26, 201-206.
    [3]W. Piekarzyk, M. Berkowski and G. Jasiolek, The czochalski growth of BaLaGa3O7 single crystals, J. Cryst. Growth,1985,71(2),395-398.
    [4]闵乃本,晶体生长的物理基础,上海科学技术出版社,1982.
    [5]姚连增,晶体生长基础,中国科学技术出版社,1985.
    [1]Joint Committee for Power Diffraction Standards, JCPDS Standard 45-0637, 1999.
    [2]Joint Committee for Power Diffraction Standards, JCPDS Standard 50-1835, 1999.
    [3]Joint Committee for Power Diffraction Standards, JCPDS Standard 50-1800, 1999.
    [4]闵乃本,晶体生长的物理基础,上海科学技术出版社,1982.
    [5]W. Koechner, Solid-State Laser Engineerin Springer-Verlag, Berlin,2006.
    [6]J. Petit, P. Goldner, and B. Viana, Laser emission with low quantum defect in Yb:CaGdAlO4, Opt. Lett.2005,30(11),1345-1347.
    [7]H. J. Zhang, Y. G. Yu, Y. Cheng, J. Y. Wang, X. T. Tao, M. Jiang, and H. R. Xia, Thermal properties measurement and laser operation of a new Yb: Gd0.68Lu0.32VO4 crystal, Opt. Exp.,2008,16(15),11481-11486.
    [8]Y. G. Yu, J. Y. Wang, H. J. Zhang, Z. P. Wang, H. H. Yu, S. Q. Sun, H. R. Xia, and M. H. Jiang, Thermal characterization of lowly Nd3+ doped disordered Nd:CNGG crystal, Opt. Exp.,2009,17(11),9270-9275.
    [9]W. L. Gao, H. J. Zhang, D. Liu, M. Xu, J. Y. Wang, Y. G. Yu, M. H. Jiang, S. Q. Sun, H. R. Xia, and R. I. Boughton, Growth and characterization of Nd-doped Ca0.28Ba0.72Nb2O6 crystal,J. Appl. Phys.2009,105(2),023507,7pp.
    [10]G. G. Xu, J. Li, J. Y. Wang, H. Y. Zhao, X. F. Cheng, and W. L. Gao, Growth and thermal properties of Ga3PO7 bulk single crystal, Appl. Phys. Lett.2008, 92(10),3pp.
    [11]黄昆,韩汝琦,固体物理,北京高等教育出版社,1988.
    [12]M. Born and K. Huang, Dynamical Theory of Crystal Lattices. London, U.K.:Oxford Univ. Press,1954, pp.38-40.
    [13]Z. D. Guan, Z. T. Zhang, and J. S. Jiao, Physical Properties of Inorganic Materials. Beijing, China:Tsinghua Univ. Press,1992.
    [14]Y. G. Yu, Y. Cheng, H. J. Zhang, J. Y. Wang, X. F. Cheng, and H. R. Xia, Growth and thermal properties of YbVO4 single crystal, Mater. Lett.2006,60(8), 1014-1018.
    [15]W. Ryba-romanowski, I. Sokolska, S. Golab, M. Berkowski, S, Kuck and J. P. Meyn, Laser diode end-pumped cw BaLaGa3O7:Nd laer, J. De Physique Ⅳ,1994, 4, C4301-304.
    [16]A. Jetowskit, J. Muchat, and G. Pompe, Thermal conductivity of the amorphous alloy Fe4oNi4oP14B6 between 80 and 300 K, J. Phys. D:Appl. Phys.,1987,20(11), 1500-1506.
    [17]C. Kittel, Interpretation of the thermal conductivity of glasses, Phys. Rev.,1949, 75(6),972-974.
    [18]C. L. Choy, W. P. Leung, T. G. Xi, Y. Fei, and C. F. Shao, Specific heat and thermal diffusivity of strontium barium niobate (Sr1-xBaxNb2O6) single crystals, J. Appl. Phys.,1992,71(1),170-173.
    [19]W. Soluch, R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A. Goodberlet, and J. F. Vetelino, Elastic, piezoelectric, and dielectric properties of the BaLaGa3O7 crystal, J. Appl. Phys.,1985,58(6),2285-2287.
    [20]H. Lotem and Z. Burshtein, Method for complete determination of a refractive-index tensor by bireflectance:application to CdWO4, Opt. Lett.1987, 12(8),561-563.
    [21]陈春荣,赵新乐,晶体物理性质与检测,北京理工大学出版社,1995.
    [22]J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, Growth and optical priperties of a new nonlinear Na3La9O3(BO3)8 crystal, Opt. Express,2010,18(1),237-243.
    [23]M. Berkoeski, M. T. Borowiec, K. Pataj, W. Piekarczyk and W. Wardzyiqski, Absorption and birefrigence of BaLaGa3O7 single crystals, Physica,1984,123B, 215-219.
    [24]W. Ryba-Romanowski, S. GolAb, J. Hanuza and M. Berkowski, Relaxation of the 4F3/2 Level og Nd3+ in BaLa1-XNdXGa3O7, Phys. Chem. Solids,1989,50(7), 685-692.
    [25]M. H. Randles, J. E. Creamer, R. F. Belt, G. J. Quarles and L. Esterowitz, Disordered oxide crystals as hosts for diode-pumped lasers, OSA Proceedings on Advanced Solid-State Lasers,1992,13,318-321.
    [26]W. F. Krupke, Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals, Phys. Rev.,1966,145(1), 325-337.
    [27]B. R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev.,1962, 127(3),750-761.
    [28]G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys.,1962, 37(3),511-520.
    [29]H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, Spectral parameters of Nd-doped yttrium orthovanadate crystals, J. Appl. Phys.2000,88(9), 5134-5137.
    [30]W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, Spectroscopic, optical, and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnet,"J. Opt. Soc. Amer. B, 1986,3(1),102-114.
    [31]T. S. Lomheim and L. G. DeShazer, Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate, J Appl. Phys.,1978, 49(11),5517-5522.
    [32]F. Hanson, D. D. Horacio, R. Verdun, and M. Kokta, Optical properties and lasing of Nd:SrGdGa3O7, J. Opt. Soc. Am. B,1991,8(8),1668-1673.
    [33]G. J. Quarles, L. Esterowitz, G. H. Rosenblatt, M. H. Randles, J. E. Creamer, and R. F. Belt, Spectrosopic chatacterization of Nd-doped SrGdGa3O7 as a diode pumped laser host, SPIE, Solid State Lasers Ⅲ,1992,1627,168-174.
    [34]W. Ryba-Romanowski, M. U. Gutowska, W. Piekarczky, M. Berkowski, Z.Mazurak and B. Jeaowska-Trzebiatowska, Spectroscopic investigations of neodymiun-doped BalLaGa3O7 single crystals, J. Luminescense,1987,36(6), 369-272.
    [35]A. A. Kaminskii, Laser Crystals, Springer-Verlag, Berlin,1981_
    [36]T. S. Lomheim and L. G. DeShazer, Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate, J. Appl. Phys.,1978, 49(11),5517-5522.
    [37]X. W. F. Krupke, Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,IEEE J. Quantum Electron.,1971,7(4),153-159.
    [38]A. A. Kaminskigi, A. Boqomolovda, N. Vyleczhanin, KH. S. Baqdasaroav, M. Kevorkoavnd, and M. M. Gritsenko, Spectroscopic properties of Nd3+ions in garnet compounds forming in the Y2O3-Ga2O3 system, Phys. stat. sol. (a) 1976,38, 409-422.
    [39]Frank Hanson and Mark Roser, Gain Saturation in Nd:SrGdGa3O7, OSA/ASSL 1992,206-208.
    [1]W. Ryba-Romanowski, Growth and characterization of new disordered crystals for the design of all-solid-state lasers, Int. J. Electronics,1996,81(4),457-465.
    [2]V. Kushawaha, and Y. Chen, CW and quasi-CW diode-laser-pumped Nd:SSGM, Appl. Phys. B,1995,60(1),67-69.
    [3]V. Kushawaha, and L. Major, Pulsed Laser Performance at 1.06μm from Nd:SGGM, Appl. Phys. B,1993,57(6),447-449.
    [4]V. KUSHAWAHA, and A. MICHAEL, Q-switched operation of a Nd:SGGM laser, Optics& Laser Technology,1995,27(2),137-138.
    [5]W.Ryba-Romanowski, B. Jezowska-Trzebiatowska, W. Piekarczyk and M.Berkowski, Optical properties and lasing of BaLaGa3O7 single crystals doped with neodymium, J. Phys. Chem. Solids,1988,49(2),199-203.
    [6]A. V. Terentiev, P. V. Prokoshin, K. V. Yumashev, V. P. Mikhailov W. Ryba-Romanowski, S. Golab, and W. Pisarski, Passive mode locking of a Nd3+:SrLaGa3O7 laser, Appl. Phys. Lett.1995,67(17),2442-2444.
    [7]杜晨林,LD端面泵浦高功率Nd:VO4、Nd:YVO4固体激光器及其频率变换的研究,山东大学博士学位论文,2003.
    [8]W. Ryba-Romanowski, Growth and characterization of new disordered crystals for the design of all-solid-state lasers, Int. J. Electronics,1996,81(4),457-465.
    [9]A. A. Kaminskii, Laser crystals:their physics and properties, Berlin, New York, Springer-Verlag,1981.
    [10]W.克希耐尔,固体激光工程,科学出版社,2002.
    [11]M. H. Crowell, Characteristics of Mode-Coupled Lasers, IEEE J. Quantum Electron.1965,1(1),12-20.
    [12]H. Statz and C. L. Tang, Phase Locking of Modes in Lasers, J. Appl. Phys.1965, 36(12),3923-3927.
    [13]H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, Compact efficient multi-GHz Kerr-lens modelocked diode-pumped Nd:YVO4 laser, Opt. Express,2008,16(25),21149-21154.
    [14]O. L. Gaddy and E. M. Schaefer, Selflocking of modes in the argon ion laser, Appl. Phys. Lett 1966,9(2),281-282.
    [15]P. Glas, M. Naumann, A. Schirrmacher, L. Daweritz, and R. Hey, Self pulsing versus self locking in a cw pumped neodymium doped double clad fiber laser, Opt. Commun.1999,161(4-6),345-358.
    [16]R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Self-Mode-Locking of Quantum Cascade Lasers with Giant Ultrafast optical nonlinearities, Science 2000,290,1739-1742.
    [17]J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G. H. Duan,45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5μm, Electron. Lett.2005,41(18), 1007-1008.
    [18]C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56μm, Appl. Phys. Lett.2006,88(24),241105,3pp.
    [19]H. P. Weber and R. Dandliker, How short are ultra short light pulses? J. Eur. Opt. Soc. Rapid Pub.2010,5,10050s.
    [20]Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser, Opt. Lett.2012,37(4),461-463.
    [1]H. X. Fu, amd R. E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature (London) 2000,403(6767),281-283.
    [2]P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals, Phys. Rev. Lett. 2007,99(16),167601,4pp.
    [3]Y. P. Guo, K. I. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)Nb03-LiNb03 ceramics, Appl. Phys. Lett. 2004,85(18),4121-4123.
    [4]D. Damjanovic, Materials for high temperature piezoelectric transducers, Curr. Opin. Solid State Mater. Sci.1998,3(5),469-473.
    [5]N. Ye, C. Y. Tu, X. F. Long, and M. C. Hong, Recent Advances in Crystal Growth in China:Laser, Nonlinear Optical, and Ferroelectric Crystals, Cryst. Growth Des.2010,10(11),4672-4681.
    [6]R. C. Turner, P. A. Fuierer, R. E. Newnham, and T. R. Shrout, Materials for high temperature acoustic and vibration sensors:A review, Appl. Acoust.1994,41(4), 299-324.
    [7]M. J. Schulz, M. J. Sundaresan, J. McMichael, D. Clayton, R. Sadler, and B. Nagel, Piezoelectric materials at elevated temperature, J. Intell. Mater. Syst. Struct. 2003,14(11),693-705.
    [8]M. A. Scott, D. L. Russell, B. Henderson, T. P. J. Han, and H. G. Gallagher, Crystal growth and optical characterisation of novel 3d2 ion laser hosts, J. Cryst. Growth 1998,183(3),366-376.
    [9]W. Piekarczyk, M. Berkowski, and G. Jasiolek, The czochralski growth of BaLaGa3O7 Single crystals,J. Cryst. Growth,1985,71(2),395-398.
    [10]W. Solunch and R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A.Goodberlet, and J. F.Vetelino, Elastic, piezoelectric, and dielectric properties of the BaLaGa3O7 crystal, J. Appl. Phys.1985.58(6),2285-2287.
    [11]肖定全,王民,晶体物理学,成都四川大学出版社,1989。
    [12]张沛霖,钟维烈,压电材料与器件物理,山东科学技术出版社,1996.
    [13]张沛霖,张仲渊,压电测量,国防工业出版社,1983。
    [14]张福学,孙慷,压电学,北京国防工业出版社,1984.
    [15]高泽亮,新型低对称BaTeMo2O9单晶电学、电光性能及压电器件的设计和表征,山东大学博士毕业论文,2010。
    [16]A. A. Kaminskii, I. M. Silvestrova, S. E. Sarkisov, and G. A. Denisenko, Investigation of trigonal (La1-xNdx)Ga3SiO14 crystals. II. Spectral laser and electromechanical properties, Phys. Stat. Sol. (a),1983,80(2),607-620.
    [17]IEEE Standard on Piezpelectricity. ANSI/IEEE Stands 176-1987,1-66.
    [18]X. Yin, J. Y. Wang, S. Q. Hu, and C. J. Jiang, Determination of the Electro-elastic Constants of La3Ga5SiO14 Single Crystal, Piezoelectrics & acoustoopics,2003, 25(1),75-77.
    [19]Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal, Appl. Phys. Lett,2008, 93(25),252906,3pp.
    [20]Y. Y. Zhang, X. Yin, H. H. Yu, H. J. Cong, H. J. Zhang, J. Y.Wang and R. I. Boughton, Growth and piezoelectric properties of melilite ABC3O7 crystals, Cryst. Growth & Design,2012,12(2),622-628.
    [21]于法鹏,高温压电晶体的生长、性能研究和应用研究,山东大学博士毕业论文,2011。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700