双钨酸盐NaBi(WO_4)_2及其稀土掺杂体系的高压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双钨酸盐MIMIII(WO4)2(MI代表碱金属,MIII代表三价元素)是CaWO4的衍生物,其中MI、MIII离子随意分布在Ca2+的位置,是典型的无序结构晶体。NaBi(WO4)2及其稀土掺杂体系是双钨酸盐中具有多种优异性质和重要应用的无机闪烁晶体。做为新型稀土激光晶体的基质,双钨酸盐NaBi(WO4)2已经引起人们极大的关注,已有许多关于NaBi(WO4)2晶体在常规条件下的研究,包括合成和晶体生长过程;结构表征;各向异性线性光学性质,如折射率;红外吸收和拉曼光谱;闪烁的能力;非线性的光学性能,如拉曼位移;上转换等等。NaBi(WO4)2结晶于四方晶系相关的白钨矿CaWO4的熔体,室温常压下NaBi(WO4)2的结构被指认为四方晶系I41/a空间群(No.88),每个单胞有两个分子。阳离子Na+和Bi3+统计平均随机分布在4s Wyckoff位置上。虽然阳离子Bi3+和Na+是短程有序,但其局域分布是随机的。通过掺杂稀土R3+元素,双钨酸盐能被作为主动激光介质,其光学性质能利用成分被裁剪,掺杂稀土R3+元素覆盖的光谱范围可以从紫外到中红外。它的另一个特点是能够在基质材料中实现较高的稀土掺杂浓度。
     迄今为止,AWO4钨酸盐(A=Ca、Sr、Ba、Pb、Eu)的高压研究已被广泛开展,并总结出一些重要的普适性规律。例如离子半径与相变压力的关系;相变序列与配位数之间的关系;发生压致非晶化的条件等等。但关于NaBi(WO4)2的高压物性研究报道甚少。此外,常压下稀土掺杂NaBi(WO4)2体系的光学性质已经被广泛研究,发现了许多特殊的性质,但稀土掺杂NaBi(WO4)2在高压条件下的结构稳定性的研究还未见报道,而这些发光特性与其结构稳定性有直接的关联。由于NaBi(WO4)2是CaWO4的衍生物,因此可以预期,它们在高压下的行为应该会和AWO4钨酸盐类似的丰富。所以开展NaBi(WO4)2及其稀土掺杂体系的高压结构相变和光谱性质的研究,不仅具有重要的科学意义,而且还有重要的实际应用价值。
     为了深入认识和理解这些典型无序晶体结构的双钨酸盐在高压下的结构变化规律和光谱特性,本论文采用原位高压同步辐射角散X射线衍射(ADXRD)技术、高压拉曼光谱技术和高压荧光技术,对NaBi(WO4)2及其稀土掺杂体系Re:NaBi(WO4)2(Re=Ce、Nd、Er、Yb)进行了系统地高压研究,总结了它们在高压下的结构相变与光谱性质的变化规律,取得了以下重要研究成果:
     1.在NaBi(WO4)2的高压结构相变和散射光谱研究中发现,在7.57GPa时,NaBi(WO4)2发生了从白钨矿(Scheelite)到褐钇铌矿(Fergusonite)的压致结构相变,相变时体积塌陷约为10.03%;在17.71GPa时发生了从褐钇铌矿(Fergusonite)到单斜晶系(Monoclinic)的压致结构相变;当压力高于28.6GPa后表现出明显的非晶化。
     2.在Ce:NaBi(WO4)2的高压结构相变和光谱性质研究中发现,分别在7.4GPa和19.34GPa发生了从Scheelite Fergusonite Monoclinic两次压致结构相变,相变时体积塌陷约为2.17%和18.3%;当压力高压32.5GPa后发生了非晶化。在相变时其高压荧光光谱也发生了明显的变化。
     3.在Nd:NaBi(WO4)2的高压结构相变和光谱性质研究中发现,分别在7.15GPa和20.83GPa发生从Scheelite Fergusonite Monoclinic两次压致结构相变,相变时体积塌陷约为1.4%和14.2%;当压力高压31GPa后发生了非晶化。在相变时其高压荧光光谱也发生了变化。
     4. Er和Yb掺杂NaBi(WO4)2的原位高压同步辐射ADXRD实验结果表明,它们分别在6.74GPa、18.88GP和6.4GPa、20.67GPa发生了从Scheelite Fergusonite Monoclinic两次压致结构相变,相变时体积塌陷分别为1.6%、14.3%和1.3%、12.6%;而且它们分别在30.81GPa和30.44GPa后发生了非晶化。在相变时其高压荧光光谱也发生了变化。
     5.通过实验结果分析发现NaBi(WO4)2及其稀土掺杂体系的相变压力和相变序列与AWO4钨酸盐的不完全一致,这主要原因是由于双钨酸盐的无序化所致;发现稀土掺杂NaBi(WO4)2的相变压力随掺杂稀土离子半径的减小略有降低;NaBi(WO4)2及其稀土掺杂体系在超高压下都发生了非晶化现象,但发生非晶化的压力远低于AWO4钨酸盐(40GPa)。它们沿c轴的线性压缩率都大于沿a轴的实验结果与AWO4钨酸盐的情形类似。
     本论文的研究结果为认识和总结双钨酸盐及其稀土掺杂体系在高压下的结构变化规律和光谱特性提供了重要实验数据。
The double tungstates MIMIII(WO4)2(MI=alkali metal,MIII=Trivalent element)are the derivatives of CaWO4. The MIand MIIIions, distributed in the position of Ca2+,make the double tungstate crystals a typical disordered structure. The system ofNaBi(WO4)2and its rare-earth doped compound is a kind of inorganic scintillationcrystal with excellent properties and important applications. The double tungstateNaBi(WO4)2as a new kind of matrix of rare-earth laser crystal has attracted the publicattention. A great many studies have been conducted on NaBi(WO4)2crystals atambient conditions, including the synthesis and growth process of the crystal, thestructural characterization, anisotropic linear optical properties (e. g. refractiveindices), IR absorption and Raman scattering, the ability of scintillation, nonlinearoptical properties (e. g. Raman shift), up-conversion, etc. NaBi(WO4)2is determinedas a tetragonal structure of I41/a (No.88) symmetry (Z=2) at ambient conditions,which is crystallized in the melt of tetragonal scheelite CaWO4. The Na+and Bi3+cations are distributed randomly at the4s Wyckoff positons in local region, althoughthey are of short-range order. The double tungstate with the doping of rare-earthcations R3+could be unsed as active laser mediμm and its optical properties could beclipped. The spectra of the compounds with the doping of rare-earth cations R3+rangefrom ultraviolet to mid-IR. Another feature of these system is the matrix materialscould be doped with high concentration.
     So far, high-pressure studies of tungstate AWO4(A=Ca, Sr, Ba, Pb, Eu) have been carried out and certain universal laws (e.g. the relationship between ionic radiusand phase transition pressure, the relationship between phase transition sequence andcoordination nμmber, the conditions of the pressure-induced amorphization, etc.) havebeen concluded by researchers. However, few studies have quantitatively assessed thehigh-pressure properties of the matters. In addition, the optical properties of therare-earth doped NaBi(WO4)2at ambient conditions have been widely studied, but thestudies on the high-pressure structural stability, which is related to the characteristicsof lμminescence, have not been reported. Since NaBi (WO4)2is the derivative ofCaWO4, it can be expected that the high-pressure behaviors of NaBi (WO4)2might beas rich as tungstate AWO4. Therefore, the studies on high-pressure structural phasetransition and spectroscopic properties of NaBi(WO4)2and its rare-earth dopedcompounds, are significant to the theoretical research and practical applications.
     In order to further understand the laws of the structural phase transitions and thespectral properties of the double tungstate with the typical disordered crystal structureunder high pressure,we have conducted a systematic high-pressure study onNaBi(WO4)2and the rare-earth doped Re: NaBi(WO4)2(Re=Ce, Nd, Er, Yb) throughhigh pressure synchrotron radiation angle dispersive X-ray diffraction (ADXRD)technology and high-pressure Raman spectroscopy. The laws of the structural phasetransitions and the scattering spectral variations of this system under high pressurehave been conclude as follows:
     1. The high-pressure studies on structural phase transition and the scatteringspectra have been performed on NaBi(WO4)2. At7.57GPa, the NaBi(WO4)2transforms from Scheelite into Fergusonite structure accompanied with the volμmecollapse of10.03%. With the pressure increases to17.71GPa, the NaBi(WO4)2transforms again from Fergusonite into Monoclinic structure. With pressure higherthan28.6GPa, the NaBi(WO4)2turns into a amorphous state.
     2. The high-pressure studies on structural phase transition and the scatteringspectra have been performed on Ce: NaBi(WO4)2. Two pressure-induced structuralphase transitions (Scheelite Fergusonite Monoclinic) occurr at7.4GPa and19.34GPa accompanied with the volμme collapses of2.17%and18.3%, respectively. With pressure higher than32.5GPa, the Ce: NaBi(WO4)2turns into a amorphous state.
     3. The high-pressure studies on structural phase transition and the scatteringspectra have been performed on Nd: NaBi(WO4)2. Two pressure-induced structuralphase transitions (Scheelite Fergusonite Monoclinic) occurr at7.15GPa and20.83GPa accompanied with the volμme collapses of1.4%and14.2%, respectively. Withpressure higher than31GPa, the Ce: NaBi(WO4)2turns into a amorphous state.
     4. The high-pressure studies on structural phase transition and the scatteringspectra have been performed on NaBi(WO4)2doped Er and Yb. The twopressure-induced structural phase transitions (Scheelite Fergusonite Fergusonite)of Er: NaBi(WO4)2occurr at6.74GPa and18.88GPa accompanied with the volμmecollapses of1.6%and14.3%, respectively. The two pressure-induced structural phasetransitions (Scheelite Fergusonite Monoclinic) of Yb: NaBi(WO4)2occurr at6.4GPa and20.67GPa accompanied with the volμme collapses of1.3%and12.6%,respectively. With pressure higher than30.81GPa and30.44GPa, the NaBi(WO4)2doped Er and Yb turns into a amorphous state.
     5. Due to the disordering of the double tungstate, we could conclude from theexperimental result that the phase transition pressures and sequences of the system ofNaBi(WO4)2and its rare-earth doped compounds are not in conformity with thetungstate AWO4. Also, the phase transition pressures of the rare earth dopedNaBi(WO4)2decreases with the decreasing ionic radius of the doped rare-earth ions.All the system of NaBi(WO4)2and its rare-earth doped compounds transform into theamorphous state at high pressure, and these transformed pressure are all lower thanthe tungstate AWO4(40GPa). The results of this work provide important informationsto understand and sμmmarize the high-pressure structural phase transitions and thespectral properties of double tungstate. and its rare earth doped compounds.
引文
[1] J. Hanuza, M. MaczkaJ. H. v. d. Maas, J. Mol. Struct.,1995,348,349–352.
    [2] J. Hanuza, A. Benzar, A. Haznar, M. Maczka, A. PietraszkoJ. H. v. d. Maas,Vibrational Spectroscopy,1996,1225-36.
    [3] A. Was′kowska, L. Gerward, J. S. Olsen, M. Maczka, T. Lis, A. PietraszkoW.Morgenroth, J. Solid. State. Chem,2005,178,2218–2224.
    [4] H. Shi, D. Shen, G. Ren, H. Zhang, B. GongQ. Deng, Journal of Crystal Growth,2002,240,459–462.
    [5]刘景和,易里成容,孙晶,王英伟,李建立,张亮于亚勤,硅酸盐学报,2003,31,165–168.
    [6]郑燕宁,陈刚,任绍霞,徐玉恒李铭,人工晶体学报,2004,297.
    [7] L. Khusravbekov, E. V. Charnaya, C. Tien, I. K. Rakhimov, B. F. Borisov, M. I.SalakhutdinovM. M. Ulfatshoev, physica status solidi (b),2008,245,1517-1519.
    [8]孙晶,刘景和,李建利,张亮,孙竟亮,李艳红,孟祥敏武文军,硅酸盐学报,2002,06.
    [9]李建利,徐斌,刘景和,李艳红,李林,张亮赵莹,人工晶体学报,2001,03.
    [10]李艳红,中国科学院长春光学精密机械与物理研究所硕士论文,2003.
    [11]于昕禾,长春理工大学硕士论文,2007.
    [12] J. Hanuza, A. Haznar, M. Maczka, A. Pietraszko, A. Lemiec, J. H. v. d. MaasE. T.G. Lutz, J. Raman Spectrsc,1997,28953.
    [13] J. Hanuza, A. Benzar, A. Haznar, M. Maczka, A. PietraszkoJ. H. van der Maas,Vibrational Spectroscopy,1996,12,25-36.
    [14] R. M, V. VZaldo, Chem. Phys.,2002,279,73.
    [15] M. e.-B. A, R. M, V. V, C. C, Z. C, C. CA. L. Kling A, J. Phys.: Condens. Matter,2004,16,2139.
    [16] N. S, K. NC. AK, Chem. Phys. Lett.,2004,387,2.
    [17] M. M. czka, E. P. KokanyanJ. Hanuza, J. Raman Spectrosc.,2005,36,33–38.
    [18]赵业权陈刚,高技术通讯,1998.
    [19]史宏声,任国浩仲维卓,人工晶体学报,2008,37,301-304.
    [20]李云辉,李文斐,朱忠丽,程红刘景和,光学技术,2006.
    [21]朱忠丽,林海,孙域,万玉春,张建军刘景和,稀有金属材料与工程,2006,03.
    [22]朱忠丽,刘景和,万玉春,孙域张建军,硅酸盐学报,2005,08.
    [23] X. Lu, Z. You, J. Lia, Z. Zhu, G. Jia, B. WuC. Tu, Optical Materials2007,29,849–853.
    [24] V. R. Gliva, Y. P. NovikovB. F. Myasoedov, Journal of Radioanalytical andNuclear Chemistry Letters,1989,135,307-312.
    [25] W. Donglei, H. Yanlin, S. Liang, Q. XuebinH. J. SEO, J. Raer Earths,2009,27,905.
    [26] G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J.B. Gruber, K. L. NashD. K. Sardar, J. Appl. Phys.,2009,105,063106.
    [27] C. Cascales, A. M. n. Blas, M. Rico, V. VolkovC. Zaldo, Optical Materials,2005,27,1672–1680.
    [28] V. VolkovC. Zaldo, J. Cryst. Growth,1999,206,60.
    [29] V. Volkov, M. Rico, A. Me′ndez-BlasC. Zaldo, J. Phys. Chem.Solids,2002,63,95.
    [30] S. Hongsheng, S. Dingzhong, R. Guohao, Z. Haibin, G. BoQ.Deng, J. Cryst.Growth,2002,240,459.
    [31] S. Hongsheng, S. Dingzhong, Z. Haibin, C. JianmingR. Guohao, J. Cryst.Growth,2002,245,73.
    [32] A. A. Kamiskii, A. Kholov, P. V. KlevtsovS. K. Khafizov, Phys.Status Solidi A1989,114,713.
    [33] J. Hanuza, A. Benzar, A. Haznar, M. Maczka, A. PietraszkoJ. H. v. d. Mass, Vib.Spectrosc.,1996,12,25-36.
    [34] J. Hanuza, M. MaczkaJ. H. v. d. Mass, J. Solid State Chem,1995,117,177.
    [35] S. H. hl, J. LiebertzH. Schmidt, Cryst. Res. Technol.,1991,26, K136.
    [36] J. Hanuza, M. MaczkaJ.H. van der Maas, J. Mol. Struct.,1995,348,349-352.
    [37] V. N. Moiseenko, Y. I. Bogatirjov, A. M. JeryemenkoS.V.Akimov, J. RamanSpectrosc.,2000,31,539.
    [38] K. Nitsch, M. Nikl, C. Barta, D. Schultze, A. TriskaR. Uecker, Phys. Status SolidiA,1990,118, K133.
    [39] V. G. Baryshevsky, M. V. Korzhik, V. I. Moroz, V. B. Pavlenko, A. S. Lobko, A.A. Fyodorov, V. A. Kachanov, V. L. Solovjanov, B. I. Zadneprovsky, V. A.Nefyodov, P. V. Nefyodov, B.A.DorogovinL. L. Nagornaja, Nucl. Instrμm.Methods Phys.Res., Sect.,1992,322,231.
    [40] B. I. Zadneprovski, V. A. Nefedov, E. V. Polyansky, E. G. Devitsin, V. A. Kozlov,S. Y. PotashovA. V. Terkulov, Nucl. Instrμm.Methods Phys. Res., Sect. A,2002,486,355.
    [41] A. A. Kaminskii, S. N. Bagayev, K. Ueda, H. Nishioka, Y. Kubota, X. ChenA.Kholov, Jpn. J. Appl. Phys.,1995,34, L1461.
    [42] M. Rico, V. VolkovC. Zaldo, J. Alloys Compd.,2001,323–324,806.
    [43] K. AA, B. SN, U. K, N. H, K. Y, C. XK. A., Jpn. J. Appl. Phys.,1995,34,L1461.
    [44] M. e.-B. A, V. V, C. CZ. C, J. Alloys Compd.,2001,323–324,315.
    [45] R. M, V. VZ. C, J. Alloys Compd.,2001,323–324,806.
    [46] A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes(BocaRa ton, New York, London, Tokyo: CRC Press).1996.
    [47] J. A. HutchinsonT. H. Allik, Proc. SPIE,1992,1627,2.
    [48] J. A. HutchinsonT. H. Allik, Appl. Phys. Lett.,1992,60,1424.
    [49] P. Laporta, S. Tauheo, S. LonghiO. Svelto, Opt. Lett.,1993,18,1232.
    [50] P. Laporta, S. D. Silvestri, V. MagniO. Svelto, Opt. Lett.,1991,20,1592.
    [51] S. Tauheo, P. LaportaS. Longhi, Opt. Lett.,1995,20,889.
    [52] N. A. O. P. C. Becker, and J. R. Simpson, Erbiμm-Doped Fiber Amplifiers:Fundamentals and Technology~Academic, New York,1999.
    [53] M. G. Drexhage, C. T. MoynihanM. S. Boulos, MRS Bull.,1980,15,213.
    [54] S. Jiang, M. MyersN. Peyghambarian, J. Non-Cryst. Solids,1998,239,143.
    [55] B. C. Hwang, B. LoC. M. Stain, J. Opt. Soc. Am. B2000,17,833.
    [56] A. M. Tkachuk, Proc. SPIE,1996,2706,2.
    [57] R. T. BrundageW. M. Yen, Phys. Rev. B,1986,34,8810.
    [58] W. Koechner, Solid State Laser Engineering~Springer, New York,1996.
    [59] W. M. T. T. S. Rutherford, E. K. Gustafson, and R. L. Byer, IEEE J. QuantμmElectron.,2000,36,205.
    [60] J. B. Gruber, A. Kennedy, B. ZandiJ. A. Hutchinson, Proc. SPIE,2000,3928,142.
    [61] S. A. PollackD. B. Chang, J. Appl. Phys.,1988,64,2885.
    [62] J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D.Seltzer, S. B. Stevens, C. A. MorrisonT. H. Allik, Phys. Rev.B,1993,48,15561.
    [63] B. R. Judd, Phys. Rev.,1962,127,750.
    [64] G. S. Ofelt, J. Chem. Phys.,1962,37,511.
    [65] A. A. Kaminskii, H. Nishioka, Y. Kubota, K. Ueda, H.Takμma, S. N. BagaevA. A.Pavlyuk, Phys. Stat. Sol. a,1995,148,619.
    [66] A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S.N.Bagaev, F. A.Kuznetsov, A. A. Pavlyuk, G. BoulonF.Bourgeois, Jpn. J. Appl. Phys.,1998,37,L923.
    [67]姚连增,中国科学技术出版社,1995,12-14.
    [68] R.A劳迪斯,科学出版社,1979.
    [69] M. NicolJ. F. Durana, J. Chem. Phys.,1971,54,1436–1440.
    [70] D. ChristofilosG. A. K. S. Ves, Phys. Status Solidi (b),1996,198,539-544.
    [71] D. Errandonea, M. SomayazuluD. H¨ausermann, Phys. Status Solidi (b),2003,235,162–169.
    [72] A. Grzechnik, W. A. Crichton, M. HanflandS. V. Smaalen, J. Phys. Condens.Matter.,2003,15,7261–7270.
    [73] D. Errandonea, J. Pellicer-Porres, F. J. Manjon, A. Segura, C. Ferrer-Roca, R. S.Kμmar, O. Tschauner, P. Rodriguez-Hernandez, J. Lopez-Solano, S. Radescu, A.Mujica, A. MunozG. Aquilanti, Phys. Rev. B,2005,72,174106.
    [74] T. Fujita, S. YamaokaO. Fukunaga, Mater. Res. Bull.,1974,9,141–146.
    [75] I. Kawada, K. KatoT. Fujita, Acta Crystallogr. Sect. B,1974,30,2069–2071.
    [76] P. W. Richter, G. J. KrugerC. W. F. T. Pistorius, Acta Crystallogr. Sect. B,1976,32,928–929.
    [77] L. L. Y. Chang, J. Am. Ceram. Soc.,1971,54,357–358.
    [78] T. Fujita, I. KawadaK. Kato, Acta Crystallogr. Sect. B,1977,33,162–164.
    [79] A. Jayaraman, B. BatloggL. G. V. Uitert, Phys. Rev. B,1983,28,4774–4777.
    [80] A. Jayaraman, B. BatloggL. G. V. Uitert, Phys. Rev. B,1985,31,5423–5427.
    [81] V. Panchal, N. Garg, A. K. Chauhan, SangeetaS. M. Sharma, Solid State Commun,2004,130,203–208.
    [82] L. Khusravbekov, E. V. Charnaya, C. Tien, I. K. Rakhimov, B. F. Borisov, M. I.SalakhutdinovM. M. Ulfatshoev, phys. stat. sol.(b),2008,245,1517–1519.
    [83] A. Was′kowskaa, L. Gerwardb, J. S. Olsenc, M. Ma czkaa, T. LisdA.Pietraszkoa, Journal of Solid State Chemistry,2005,178,2218–2224.
    [84] H. K, T. HI. Y, J Phys Soc Jpn,1988,57,3220.
    [85] J. A, W. SYS. SK, Solid State Commun,1995,93,885.
    [86] J. A, S. SKW. SY, J Raman Spectrosc,1998,29,305.
    [87] K. M, L. G, H. AB, G. G, B. CR. AP, Phys Rev Lett,2007,98,267205.
    [88] E. DM. FJ, Prog Mater Sci,2008,53,711.
    [89] E. D, M. FJ, S. MH. D, J Solid State Chem2004,177,1087.
    [90] G. M, G. D, G. W, M. LM. M, Opt Appl2006,36,443.
    [91] M. Maczka, A. G. S. Filho, W. Paraguassu, P. T. C. Freire, J. M. FilhoJ. Hanuza,Progress in Materials Science,2012,57,1335–1381.
    [92] A. Me′ndez-Blas, M. Rico, V. Volkov, C. Cascales, C. Zaldo, C. CoyaL. A. A.Kling, J. Phys.: Condens. Matter,2004,16,2139.
    [93] A. Me′ndez-Blas, V. Volkov, C. CascalesC. Zaldo, J. Alloys Compd.,2001,323–324,315.
    [94] A. Me′ndez-Blas, M. Rico, V. Volkov, C. ZaldoC. Cascales, Mol. Phys.,2003,101,941.
    [95] M. Rico, V. Volkov, C. CascalesC. Zaldo, Chem. Phys.,2002,279,73.
    [96] K. A. Subbotin, E. V. ZharikovV. A. Smirnov, Opt. Spectrosc.,2002,92,657.
    [97] Y. Ma, M. E, A. R. O, Y. Xie, I. T, S. M, A. O. L, M. VV. P, Nature,2009,458,182.
    [98]程光煦,科学出版社,2001.
    [99]张光寅,蓝国祥王玉芳,高等教育出版社,2001.
    [100] W. Brasch, A. J. MelvegerE. R. Lippincott, Chem.Phys.Lett.,1968,2,99.
    [101] Adμms, N. ZalkinBurlleft, Inorg.Chern.,1972,11,3417.
    [102] WeinsteinPiermarini, Phys.Rev.B,1975,12,1172.
    [103] Y. AkahamaH. Kawamura, Journal of Applied Physics,2004,96,3748.
    [104] F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. C. ChervinA. Polian, PhysicalReview B,2002,65,092101.
    [105] H. F. T. Kμme, T. Koda, S. Sasaki, H. Shimizu, and S. Yamanaka, PhysicalReview Letters,2003,90,155503.
    [106] K. K. Zhuravlev, K. Traikov, Z. H. Dong, S. T. Xie, Y. SongZ. X. Liu, PhysicalReview B,2010,82.
    [107] D. M. Sena, P. T. C. Freire, J. MendesF. E. A. Melo, Journal of RamanSpectroscopy,2010,41,356.
    [108] N. P. Funnell, A. Dawson, D. Francis, A. R. Lennie, W. G. Marshall, S. A.Moggach, J. E. WarrenS. Parsons, Crystal engineering communication2010,12,2573.
    [109]吴自玉,科学中国人,2002,8,42.
    [110] G. J. PiermariniC. E. Weir, J. Res. Natl. Bur. Stand., Sec. A.,1962,65,325.
    [111] L. MerrillW. A. Bassett, Rev. Sci. Instrμm.,1974,45,290.
    [112] R. M. HazenL. W. Finger, Rev. Sci. Instrμm.,1981,52,75.
    [113] H. K. MaoP. M. Bell, in Carnegie Institution of Washington Year Book,1980,79,409.
    [114] W. Denner, W. Dieterich, H. Schulz, R. KellerW. B. Holzapfel, Rev. Sci.Instrμm.,1978,49,775.
    [115] E. F. Skelton, I. Spain, S. C. Yu, C. Y. LiuE. R. Carpenter, Jr., Rev. Sci. Instrμm.,1977,48,879.
    [116] M. A. Baublitz, V. ArnoldA. L. Ruoff, Rev. Sci. Instrμm.,1981,52,1616.
    [117] M. H. Manghnani, E. F. Skelton, L. C. Ming, J. C. Jamieson, S. Qadri,D.SchiferlJ. Balogh, in Physics of Solids Under High Pressure, edited by J. S.Schilling and R. N. Schelton (North-Holland, Amsterdam), p.47,1981.
    [118] Y. Fujii, O. Shimomura, K. Takemura, S. HoshinoS. Minomura, J. Appl.Crystallogr.,1980,13284.
    [119] B. Welber, Rev. Sci. Instrμm.,1977,48,395.
    [120] H. M ller, R. Trommer, M. CardonaP. Vogl, Phys. Rev. B,1980,21,2641.
    [121] S. Ves, D. Gl tzel, M. CardonaH. Overhof, Phys. Rev. B,1981,24,2073.
    [122] B. BatloggJ. P. Remeika, Phys. Rev. Lett.,1980,45,1126.
    [123] A. Blacha, M. Cardona, N. E. Christensen, S. VesH. Oyerhof, Solid StateCommun.,1982,43,183.
    [124] P. Y. YuB. Welber, Solid State Commun.,1978,25,209.
    [125] D. Olego, M. CardonaH. M ller, Phys. Rev. B.,1980,33,894.
    [126]冯端,高等教育出版社,1995.
    [127] Q. Wang, Chem. phys. chem.,2008,9,1146.
    [128] F. B. Gong, Inorganic Chemistry2010,49,1658.
    [129] S. Y. Li, Q. Wang, Y. Qian, S. Q. Wang, Y. LiG. Q. Yang, Journal of PhysicalChemistry A2007,111,11793.
    [130] H. Li, L. M. He, B. Zhong, Y. Li, S. K. Wu, J. LiuG. Q. Yang, Chem. phys.chem.,2004,5,124.
    [131] H. K. MaoP. M. B. J. Xu, J. Geophys. Res.,1986,91,4673–4676.
    [132] J. López-Solano, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Mu oz, D.Errandonea, F. J. Manjón, J. Pellicer-Porres, N. Garro, A. Segura, C. Ferrer-Roca,R. S. Kμmar, O. TschaunerG. Aquilanti, Phys. Stat. Sol.(b),2007,244,325–330.
    [133] F. J. Manjón, D. Errandonea, J. López-Solano, P. odríguez-Hernández, S.Radescu, A. Mujica, A. Mu oz, N. Garro, J. Pellicer-Porres, A. Segura,h.Ferrer-Roca, R. S. Kμmar, O. TschaunerG. Aquilanti, Phys. Stat. Sol.(b)2007,244,295–302.
    [134] V. VOLKOV, M. RICO, MENDEZ-BLASAZALDOC, J. Phys. Chem. Solids,2002,63,95.
    [135] A. MENDEZ-BLAS, M. RICO, V. VOLKOV, C. ZALDOC. CASCALES,MOLECULAR PHYSICS,2003,101,941–949.
    [136] D. ErrandoneaF. J. Manjon, Materials Research Bulletin,2009,44,807–811.
    [137] D. K. Sardar, C. C. Russell, R. M. Yow, J. B. Gruber, B. ZandiE. P. Kokanyan, J.Appl. Phys.,2004,95,1180-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700