有机电致发光器件的界面效应对器件性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管有机电致发光器件(OLED)研究与开发工作有了突破性进展,但仍有许多重大基础问题尚不清楚,使得器件寿命短、效率低。要解决这一系列问题,必须深化对薄膜材料发光机理与性能、薄膜材料载流子输运特性、器件失效机制、器件界面特性和界面工程等的认识。本论文重点围绕金属/有机界面层、金属/无机/有机界面层及有机/有机界面层进行了数值模拟研究。
     绝缘缓冲层修饰金属/有机界面已成为改善OLED载流子注入的有效手段之一。文中考虑了LiF绝缘缓冲层对电子注入势垒的影响,给出了LiF/金属复合电极注入势垒的表达式,基于载流子的注入和复合过程,建立了双层有机电致发光器件发光效率的理论模型,讨论了器件效率随电压、注入势垒、内界面势垒、有机层厚度的变化关系,成功地模拟了插入不同厚度LiF缓冲层的电流—电压特性曲线,得出了LiF介于不同金属阴极和Alq3之间的最佳厚度值,通过与实验结果的比较,验证了模型的有效范围。这将有助于实验上对缓冲层材料的选择及最佳厚度的确定。
     有机/有机界面特性支配着界面处载流子的输运与复合区域,基于该实验事实,文中提出了双层有机电致发光器件中载流子在有机/有机界面复合的无序跳跃理论模型。计算发现了内界面处载流子的有效势垒高度决定OLED中的电子和空穴密度的分布,而电子与空穴密度又决定了电场强度的大小,并研究了电场、跳跃距离与势垒对内界面处复合效率的影响。该模型很好地解释相关的实验现象。
     响应延时是衡量器件性能的重要参数之一,根据载流子注入、输运及复合物理机制,文中进一步发展了双层有机电致发光器件的电致发光(EL)延时模型,得出了EL延时的解析表达式,重新评估了注入、输运及复合对EL延时的影响,并揭示了内界面势垒、内建势垒、空穴传输层厚度与复合延时及EL延时的关系,通过比较发现空穴传输层厚度对延时的影响要略弱于内界面势垒与内建势垒。这对快速响应EL器件的功能材料及结构选择有一定的参考意义。
Although the breakthrough of the research and development oforganic light-emitting diodes(OLED) has been gained in last 20 years,some major basic problems remain ambiguous, which lead to shortlifetime and low efficiency of devices. In order to solve a series ofproblems, it should intensify the understanding of luminescencemechanism and the performance of thin film organic materials, transportcharacteristics of carriers of thin film materials, degradation mechanismof devices, interfacial characteristics of devices and interfacesengineering. The numerical simulation was performed mainlysurrounding the metal/organic semiconductor interface, metal/inorganic/organic semiconductor interface and organic/organic semiconductorinterface in this paper.
     The insulating buffer layer modification of the metal/organicinterface has been one of the effective ways to improve the carrierinjection of OLED. An analytical model to calculate electroluminescence(EL) efficiency of bilayer organic light-emitting devices, considering theinfluence of introducing LiF insulating buffer layer at metal/organicinterface on the barrier height for electrons injection, was presented. Therelations of EL efficiency versus applied voltage, injection barrier,internal interfacial barrier and the thickness of organic layer werediscussed, the J-V characteristics of OLED inserting LiF buffer layers ofdifferent thickness were simulated successfully, the optimal thickness ofLiF buffer layer was achieved. By comparing with the experimentalresults, the validity of predictions from this model was tested. These willbe conducive to the selection and the optimal thickness design of bufferlayer material.
     The organic/organic semiconductor interracial characteristics ofOLED control the transport of carriers between layers and the region ofthe device where recombination takes place. In the light of thisbackground, a disordered hopping model of charge carriers at theorganic/organic interface in bilayer organic light-emitting diodes waspresented. The calculated results indicate that the distribution of electron and hole densities is determined by the effective barrier height at theorganic/organic interface, at the same time, the field strength isdetermined by the distribution of electron and hole densities. Then weanalyzed the influences of the variation of electric field, barrier heightand efficient hopping distance in OLED on recombination efficiency.This model might explain the relative experimental phenomena.
     The delay time is an important index of performance evaluation inOLED. Based on the physics mechanism of injection, transport andrecombination of the charge carriers, a model was developed to calculatethe delay time of electroluminescence (EL) from bilayer organic lightemitting diodes. The effect of injection, transport and recombinationprocess on the EL delay time was discussed, possible explanations weregiven. A ground of recombination or EL delay time versus appliedvoltage curves with different internal interface barrier, the built-inpotential and the thickness of hole transport layer are listed, we found thatthe effect of the internal interface barrier and the built-in potential holdthe upper hand over the thickness of hole transport layer. It has a certainreferenced meaning to respond rapidly to the functional materials andstructure options of EL devices.
引文
[1] 黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005:4~9
    [2] Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J Appl Phys, 1994, 75(3): 1656~1666
    [3] Sze S M. Physics of semiconductor devices[M]. NewYork: John Wiley and sons, 1981:245~311
    [4] Matsumura M, Akai T, Saito M, et al. Height of the energy barrier existing between cathodes and hydroxyquinoline-aluminum complex of organic electroluminescence devices[J]. J Appl Phys, 1996, 79 (1): 264~268
    [5] Kepler R G, Beeson P M, Jacobs S J, et al. Electron and hole mobility in tris(8-hydroxyquinolindato-N108)aluminum[J]. Appl Phys Lett, 1995, 66(26): 3618~3620
    [6] Brutting W, Berleb S, Muckl A G. Space-charge limited conduction with a field and temperature dependent mobility in Alq3 light-emitting devices[J]. Synth Met,. 2001, 1.22(1): 99~104
    [7] Burrows P E, Shen Z, Bulouic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting device[J]. J Appl Phys, 1996, 79(10): 7991~8006
    [8] Pope M, Swenberg C E. Electronic processes in organic crystals[M]. New York: Clarendon, 1982:48~53
    [9] 应根裕,胡文波,邱勇,等.平板显示技术[M].北京:人民邮电出版社,2002:353~355
    [10] Hill I G, Makinen A J, Kafafi Z H. Distinguishing between interface dipoles and band bending at metal/tris-(8-hydroxyquinoline) aluminum interfaces[J]. Appl Phys Lett, 2000, 77(12): 1825~1827
    [11] Seki K, Hayashi N, Oji H, et al. Electronic structure of organic/metal interfaces[J]. Thin Solid Films, 2001, 393(1-2): 298~303
    [12] Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces[J]. Adv Mater, 1999, 11(8): 605~625
    [13] Tung R T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces[J]. Phys Rev Lett, 2000, 84(11): 6078-6081
    [14]Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl Phys Lett, 1997, 70(2): 152-154
    [15] Li F, Tang H, Anderegg J, et al. Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al_2O_3 /Al cathode[J]. Appl Phys Lett, 1997, 70(10): 1233-1235
    [16]Kurosaka Y, Tada N, Ohmori Y, et al. Improvement of electrode/organic layer interfaces by insertion of monolayer-like aluminum oxide film[J]. Jpn J Appl Phys, 1998, Part 2, 37(7B): L872-L875
    [17] Zhang S T, Zhou Y C, Zhao J M, et al. Role of hole playing in improving performance of organic light-emitting devices with an Al_2O_3 layer inserted at the cathode-organic interface [J]. Appl Phys Lett, 2006, 89(4): 043502-1-3
    [18] Chan M Y, Lai S L, Fung M K, et al. Impact of the metal cathode and CsF buffer layer on the performance of organic light-emitting devices[J]. J Appl Phys, 2004, 95(10): 5397-5402
    [19] Lee J, Park Y, Lee S K, et al. Tris- (8-hydroxyquinoline) aluminum-based organic light-emitting devices with Al/CaF2 cathode: Performance enhancement and interface electronic structures [J]. Appl Phys Lett, 2002, 80(17): 3123-3125
    [20] Lee C H. Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface[J]. Synth Met, 1997, 91(1-3): 125-127
    [21]Kang S J, Park D S, Kim S Y, et al. Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer[J]. Appl Phys Lett, 2002, 81(14): 2581-2583
    [22]Zhan Y Q, Xiong Z H, Shi H Z, et al. Sodium stearate, an effective amphiphilic molecule buffer material between organic and metal layers in organic light-emitting devices[J]. Appl Phys Lett, 2003, 83(8): 1656-1658
    [23]Zhao J M, Zhan Y Q, Zhang S T, et al. Mechanisms of injection enhancement in organic light-emitting diodes through insulating buffer [J]. Appl Phys Lett, 2004, 84(26): 5377-5379
    
    [24]Lmimouni K, Legrand C, Dufour C, et al. Diamond-like carbon films as electron-injection layer in organic light emitting diodes[J]. Appl Phys Lett, 2001, 78(11): 2437-2439
    [25] Li H J, Yan L L, Huang B Y, et al. Electron Injection Enhancement by Diamond-Like Carbon Film in Polymer Electroluminescence Devices[J]. Chin J Semicond, 2006, 27(1): 30~34
    [26] Schlaf R, Parkinson B A, Lee P A, et al. Photoemission spectroscopy of LiF coated Al and Pt electrodes[J]. J Appl Phys, 1998, 84(12): 6729~6736
    [27] Rieβ W, Riel H, Seidler P F, et al. Organic-inorganic multilayer structures: a novel route to highly efficient organic light-emitting diodes[J]. Synth Met, 1999, 99(3): 213~218
    [28] Yoon J, Kim J J, Lee T W, et al. Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/A1 cathode[J]. Appl Phys Lett, 2000, 76(16): 2152~2154
    [29] Kim Y E, Park H, Kim J J. Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir-Blodgett films[J]. Appl Phys Lett, 1996, 69(5): 599~601
    [30] 张松涛.有机发光二极管中载流子注入和传输机制的研究:[博士学位论文].上海:复旦大学,2004:35~54
    [31] Heil H, Steiger J, Karg S, et al Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode[J]. J Appl Phys, 2001, 89(1): 420~424
    [32] Kido J, Matsurnoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer[J]. Appl Phys Lett, 1998, 73(2): 2866~2868
    [33] Mason M G, Tang C W, Hung L S, et al. Interracial chemistry of Alq3 and LiF with reactive metals[J]. J Appl Phys, 2001, 89(5): 2756~2765
    [34] Yokoyama T, Yoshimura D, Ito E, et al. Energy level alignment at Alq3/LiF/Al interfaces studied by electron spectroscopies: island growth of LiF and size-dependence of the electronic structures[J]. Jpn J Appl Phys, 2003, Part 1, 42(6A): 3666~3675
    [35] Moil T, Fujikawa H, Tokito S, et al. Electronic structure of Alq3/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy[J]. Appl Phys Lett, 1998, 73(19): 2763~2765
    [36] Nuesch F, Rotherg L J, Forsythe E W, et al. A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases[J]. Appl Phys Lett, 1999, 74(6): 880~882
    [37] Choi B, Yoon H, Lee H H. Surface treatment of indium tin oxide by SF_6 plasma for organic light-emitting diodes[J]. Appl Phys Lett, 2000, 76(4): 412-414
    [38] Wu C C, Wu C I, Sturm J C, et al. Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices[J]. Appl Phys Lett, 1997, 70 (11): 1348-1450
    [39]Cui J, Huang Q L, Veinot J C G, et al. Anode interfacial engineering approaches to enhancing anode/hole transport layer interfacial stability and charge injection efficiency in organic light-emitting diodes[J]. Langmuir, 2002, 18(25): 9958-9970
    [40]Yan H, Lee P, Armstrong N R, et al. High-performance hole-transport layers for polymer light-emitting diodes Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices[J]. J Am Chem Soc, 2005, 127(9): 3172-3183
    [41] Huang X B, Liu Y Q, Wang S, et al. Synthesis and self-assembly of 2,9,16-tri(tert-butyl)-23 -(10-mercaptodecyloxy)phthalocyanine and the application of its self-assembled monolayers in organic light-emitting diodes[J]. Chem Eur J, 2002, 8(18): 4179-4184
    [42]Besbes S, Ltaief A, Reybier K, et al. Injection modifications by ITO functionalization with a self-assembled monolayer in OLED[J]. Synth Met, 2003, 138(1-2): 197-200
    [43]Chong L W, Lee Y L, Wen T C. Surface modification of indium tin oxide anodes by self-assembly monolayers: Effects on interfacial morphology and charge injection in organic light-emitting diodes[J]. Thin Solid Films, 2007, 515(5): 2833-2841
    [44] Jiang H J, Zhou Y, Ooi B S, et al. Improvement of organic light-emitting diodes performance by the insertion of a Si_3N_4 layer[J]. Thin Solid Films, 2000, 363(1-2): 25-28
    [45]Xie X F, Zhang L T, Liu S Y. Modification of the electrodes of organic light-emitting devices using the SnO_2 ultrathin layer [J]. Semicond Sci Technol, 2004,19(3): 380-383
    [46]Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole-injection buffer in organic light-emitting diodes[J]. Appl Phys Lett, 2004, 84(8): 2913-2915
    [47] Zhao Y, Liu S Y, Hou J Y. Effect of LiF buffer layer on the performance of organic electroluminescent devices[J]. Thin Solid Films, 2001, 397(1-2): 208~210
    [48] Zhu F R, Low B L, Zhang K R, et al. Lithium-fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices[J]. Appl Phys Lett, 2001, 79(8): 1205~1207
    [49] VanSlyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1996, 69(15): 2160~2162
    [50] Chen B J, Sun X W, Divayana Y, et al. Improving organic light-emitting devices by modifying indium tin oxide anode with an ultrathin tetrahedral amorphous carbon film[J]. J Appl Phys, 2005, 98(4): 046107-1~3
    [51] Chen B J, Sun X W, Tay B K, et al. Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathintetrahedral amorphous carbon film[J]. Appl Phys Lett, 2005, 86(6): 063506-1~3
    [52] Hong I H, Lee M W, Koo Y M, et al. Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode[J]. Appl Phys Lett, 2005, 87(6): 063502-1~3
    [53] Tang J X, Li Y Q, Zheng L R, et al. Anode/organic interface modification by plasma polymerized fluorocarbon films[J]. J Appl Phys, 2004, 95(8): 4397~4402
    [54] Hsiao C C, Chang C H, Jen T H, et al. High-efficiency polymer light-emitting diodes based on MEH-PPV with plasma-polymerized CHF_3-modified indium tinoxide as an anode[J]. Appl Phys Lett, 2006, 88(3): 033512-1~3
    [55] Lee J Y. Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes[J]. Appl Phys Lett, 2006, 88(7): 073512-1~3
    [56] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51(12): 913~915
    [57] Adachi C, Tokito S, Tsutsui T, et al. Organic electroluminescent device with a three-layer structure[J]. Jpn J Appl Phys, 1988, 27(4): L713~L715
    [58] Khalifa M B, Vaufrey D, Tardy J. Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLED[J]. Org Electron, 2004, 5(4): 187~198
    [59] Divayana Y, Chen B J, Sun X W, et al. Organic light-emitting devices with a hole-blocking layer inserted between the hole-injection layer and hole-transporting layer[J]. Appl Phys Lett, 2006, 88(8): 083508-1~3
    [60] D'Andrade B W, Forrest S R. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices[J]. J Appl Phys, 2003, 94(5): 3101~3109
    [61] Adamovich V I, Cordero S R, Djurovich P I, et al. New charge-carrier blocking materials for high efficiency OLED[J]. Org Electron, 2003, 4 (2-3): 77~87
    [62] Hagen J A, Li W, Steckl A J, et al. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer[J]. Appl Phys Lett, 2006, 88(17): 171109-1~3
    [63] Shen C, Kahn A, Hill I G. Organic Molecular Interfaces: Investigations of Electronic Structure, Chemistry and Carrier Injection Properties[M]. New York: Marcel Dekker, 2001: 351~400
    [64] Vazquez H, Flores F, Kahn A. Induced density of states model for weakly-interacting organic semiconductor interfaces[J]. Org Electron, 2007, 8 (2-3): 241~248
    [65] Choong V E, Shi S, Curless J, et al. Organic light-emitting diodes with a bipolar transport layer[J]. Appl Phys Lett, 1999, 75(2): 172~174
    [66] Yang J, Shen J. Doping effects in organic electroluminescent devices[J]. J Appl Phys, 1998, 84(4): 2105~2111
    [67] Ma D G, Lee C S, Lee S T, et al. Improved efficiency by a graded emissive region in organic light-emitting diodes [J]. Appl Phys Lett, 2002, 80(19): 3641~3643
    [68] Gao W B, Yang K X, Liu H Y, et al. Doping in mixed layer can improve the performances of organic light-emitting devices[J]. Synth Met, 2003, 137(1-3): 1529~1530
    [69] Arkhipov V I, Emelianova E V, Bassler H. Charge carrier transport and recombination at the interface between disordered organic dielectrics[J]. J Appl Phys, 2001, 90(5): 2352~2357
    [70] 杨盛谊.界面效应与体效应在有机复合发光中的相互制约及其对复合发光的影响:[博士学位论文].北京:北京交通大学,2001:43~45
    [71] 翁瑞兴.有机发光二极体在金属与有机层界面的注入机制:[硕士学位论文].台湾:国立中山大学,2002:31~34
    [72] Tutis E, Berner D, Zuppiroli L. Internal electric field and charge distribution in multilayer organic light-emitting diodes[J]. J Appl Phys, 2003, 93(8): 4594~4602
    [73] Davids P S, Campbell I H, Smith D L. Device model for single carrier organic diodes[J]. J Appi Phys, 1997, 82(12): 6319~6325
    [74] 李宏建,彭景翠,许雪梅,等.有机电致发光器件中载流子的输运和复合发 光[J].物理学报,2002,51(2):430~433
    [75] Granpner W, Cerullo G, Lanzani G, et al. Direct observation of ultrafast field-induced charge generation in ladder-type poly (para-phenylene) [J]. Phys Rev Lett, 1998, 81(15): 3259~3262
    [76] Kersfing R, Lemmer V, Bakker H J, et al. Ultrafast field-induced dissociation of excitons in conjugated polymers[J]. Phys Rev Lett, 1994, 73(10): 1440~1443
    [77] Huang Y H, Li H J, Dai G Z, et al. Performance enhancement by modification of cathode with a thin LiF layer in OELDs [J]. Chin J Luminescence, 2005, 26(6): 737~742
    [78] Le Q T, Yan L, Gao Y L, et al. Photoemission study of aluminum/Alq3 and aluminum/LiF/Alq3 interfaces[J]. J Appl Phys, 2000, 87(1): 375~379
    [79] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells[J]. Appl Phys Lett, 2002, 80(7): 1288~1290
    [80] Wang X J, Zhao J M, Zhou Y C, et al. Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode[J]. J Appl Phys, 2004, 95(7): 3828~3830
    [81] Baldo M A, Forrest S R. Interface-limited injection in amorphous organic semiconductors[J], Phys Rev B, 2001, 64(8): 085201-1~17
    [82] Tutis E, Bussac M N, Masenelli B, et al. Numerical model for organic lightemitting diodes[J]. J Appl Phys, 2001, 89(1): 430~439
    [83] 杨盛谊,徐征,王振家,等.高场作用下有机单层器件的复合发光[J].中国科学,2002,32(2):191~197
    [84] Kalinowski J. Orangic light-emitting diodes: principles, characteristics and processes[M]. New York: Marcel Dekker, 2005:177~272
    [85] Arkhlpov V I, Bassler H. Concentration dependence of carrier mobility and diffusivity in diluted hopping systems [J]. Philos Mag, 1995, B72 (5): 505~512
    [86] Staudigel J, Stpβel M, Steuber F, et al. A quantitative numerical model of multiplayer vapor-deposited organic light emitting diodes[J]. J Appl Phys, 1999, 86(7): 3895~3910
    [87] Wang J, Sun R G; Yu G, et al. Fast pulsed electroluminescence from polymer light-emitting diodes[J]. J Appl Phys, 2002, 91 (4): 2417~2422
    [88] Wei B, Furukawa K, Amagai J, et al. A dynamic model for injection and transport of charge carriers in pulsed organic light-emitting diodes[J]. Semicond Sci Technol, 2004, 19(5): L56~L59
    [89] Ichikawa M, Amagai J, Horiba Y, et al. Dynamic turn-on behavior of organic light-emitting devices with different work function cathode metals under fast pulse excitation[J]. J Appl Phys, 2003, 94(12): 7796~7800
    [90] Nikitenko V R, Yak Y H, Bassler H. Rise time of electroluminescence from bilayer light emitting diodes[J]. J Appl Phys, 1998, 84(4): 2334~2340
    [91] Brutting W, Riel H, Beierlein T, et al. Influence of trapped and interracial charges in organic multilayer light-emitting devices[J]. J Appl Phys, 2001, 89(3): 1704~1712
    [92] Kajii H, Yakahashi K, Kim J S, et al. Study of transient electroluminescence process using organic light-emitting diode with partial doping layer[J]. Jpn J Appl Phys, 2006, Part 1, 45(4B): 3721~3724
    [93] Book K, Nikitenko V R, Bassler H, et al. Optical detection of charge carriers in multilayer organic light-emitting diodes: Experiment and theory[J]. J Appl Phys, 2001, 89(5): 2690~2698
    [94] Kalinowski J, Marco P D, Camaioni N, et al. Injection-controlled and volume-controlled electroluminescence in organic light-emitting diodes[J]. Synth Met, 1996, 76 (1-3): 77~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700