马铃薯StTOM3基因的克隆与表达StTOM3-RNAi转基因马铃薯的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Genebank中搜索到与拟南芥中支持烟草花叶病毒复制的基因AtTOM3序列具有部分同源的马铃薯EST序列,利用5’RACE和3’RACE方法,从马铃薯中克隆到与拟南芥AtTOM3基因具同源性的StTOM3基因。StTOM3全长cDNA有1283个碱基对,编码297个氨基酸,含有六个跨膜区结构,与已证明为拟南芥TMV寄主因子基因AtTOM3在核苷酸水平有61.2%的同源性,在氨基酸水平上有72.9%的同源性。为了研究StTOM3基因在RNA病毒侵染马铃薯过程中的作用,构建了以下一系列的植物表达载体:(1)正义及反义表达StTOM3的植物双元表达载体;(2)分别表达StTOM3 cDNA不同区域的RNA干涉植物表达载体。用根癌农杆菌介导的方法将上述表达载体导入马铃薯茎段及叶片无菌外植体,获得转StTOM3-RNAi和转反义StTOM3的转基因马铃薯共40株。PCR检测表明外源基因已整合入马铃薯染色体上。同时,对马铃薯品种PB04的遗传转化系统进行了优化,建立了高效的马铃薯转化系统,转化率达65%以上,可在6-9周之内得到抗性植株。
The full-length cDNA of Solanum tuberosun L. StTOM3, a gene with high similarity to AtTOM3 of Arabidopsis thaliana, has been cloned by the methods of 5'RACE and 3'RACE, based on the partial cDNA sequence information of potato. The length of the cDNA was 1283 base pairs (bp) long, encoding a 297 amino acids putative protein with six predicted motifs of trans-membrane structure. StTOM3 was 61.2% and 72.9% identical to AtTOM3, an A. thaliana host factor gene supporting the replication of tabacco mosaic tobamovirus (TMV) at the level of the nucleotide acids and the deduced amino acids respectively.To identify the function of StTOM3 during the viral infection of the potato host, a series of plasmids were constructed: (1) sense and antisense StTOM3 gene fragments in pBI121 which derived from genomic potato DNA ; (2) StTOM3 cDNA-based RNAi fragments targeted against the coding,5'untranslated and 3'untraslated regions of the mRNA were construct in plant-transforming vector pBI121 respectively; These constructs were introduced into Agrobacterium tumefaciens via triparental conjugations and used to transform stem and leaf explants of potato varietis "PB04" . Twenty-eight transgcnic plants of "PB04"that were transformed with the RNAi construct were obtainted. Twelve plants of "PB04"were resistance to Kanamycin and derived from transformation by antisense StTOM3 construct were obtained.The results of PCR demonstrated that the target genes were integrated into the genome of potato plants. An efficient potato transformation system with transformation rate higher than 65%, and winthin a time frame of 6-9 weeks to obtain a transgenic potato plantlet was developped.
引文
[1] [1]Hooker.W.J.著,李济寰,唐玉华,谭宗九泽,马铃薯病害及其防治,河北科学技术出版社,1992,137-142.
    [2] 张鹤龄,苜蓿花叶病毒马铃薯杂斑株系的分离和初步鉴定,微生物学报,1979,23(3):238.
    [3] 李芝芳,张生,朱光新,利用主要鉴别寄主对马铃薯纺锤块茎类病毒的鉴别效果的研究初报,黑龙江省农业科学,1979.3:26-31.
    [4] 张鹤龄,郭素华,庞瑞杰,马铃薯Y病毒的研究,内蒙古大学学报,1983,14(2):231-238.
    [5] 张鹤龄,郭素华,庞瑞杰,马铃薯S病毒的分离和抗血清的制备,病毒与农业学术讨论会论文摘要,1984,130-133.
    [6] 崔荣昌,李芝芳,李晓龙,应用酶联免疫吸附试验法鉴定几种马铃薯病毒,植物保护学报,1989,16(3):193-197.
    [7] 王人元,侵染马铃薯的烟草坏死病毒的鉴定,全国马铃薯会议论文,1989,56-59.
    [8] Kaniewski W. et al. Field resistantce oftransgenic Russet Burbank potato to effects of infection by PVX and PVY.Bio/Technology,1990,8:750.754.
    [9] Lawson. et al. Plants transformed with a costron of a potato virus Y coat protein are resistant to virus infection. Proc Natl Acad Sci,USA, 1993,90:7513-7515.
    [10] 张鹤龄,李天然,哈斯阿古拉等。抗卷叶病毒(PLRV)转基因马铃薯栽培种及其抗病性研究,病毒学报,1995,11(4):342-350.
    [11] Leclerc D., Cbapdelaine Y., Holm T. et al. Nuclear targeting of the cauliflower mosaic virus coat protein. J. Virol. 1999,73(1):553-560.
    [12] Yasushi Okinaka, Mise K., Suzuki E., et al. The C-terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J. Virol, 2001,75(11): 5385-5390.
    [13] James N, et al. Tobacco mosaic virus assembly and disassembly: determitants in pathogenicity and resistance. Annu. Rev. Pbytopathol. 2002,40:287-308.
    [14] Sit Tim L., Haikat Patrick R., Callaway Anton S., et al. A single amino acid mutation in the carnation ringspot virus capsid protein allows virion formation but prevents systemic infection. J. Virol. 2001,75(19): 9538-9542.
    [15] Yie Y., Zhao F., et al. High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgene commecial tobacco cultivar G-140. Mol. Plant Microbe Interact 1992,5(6):460-465.
    [16] Braun C J,Hemenway C L, et al.Expression of amino-terminal portions or full-length viral repliacase genes in transgenic plants confer resistance to potato virus X infection.Plant Ce11,1992,4:1223-1229.
    [17] 项瑜,杨兰英,彭学贤等.表达PVY和PLRV双价外壳蛋白基因马铃薯抗病性研究.植物学报,1997,9(3):236-240.
    [18] 鲁瑞芳,吕鹏飞,彭学贤等.马铃薯Y病毒Nib复制酶基因介导高度抗病性。生物工程学报,1996,12(3):258-265.
    [19] Hellwald K. H., Palukaitis P., et al. Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell 1995,86(6):937-946.
    [20] Bejarano E R, Lichtenstein C P., et al.Prospects for engineering virus resistance in plants with antisense RNA.Trends Biotechnol,1992,10:383-388.
    [21] Golemboski D B, et al.Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus.Proc Natl Acad Sci,USA,1990,87:6316315.
    [22] Lindbo J A,Dougherty W G., et al.Untranslatable transcripts of the tobacco etch virus coat protein gene sequece can interfere with tobacco etch virus replication in transgenic plants and protoplasts.Virology,1992,189:725-733.
    [23] Hull R.,Davies J W., et al.Approaches to nonconventional control of plants virus disease.Crit Rev Plant Sci,1992, 11:17-33.
    [24] Wilson T M A., Truve M., et al. Plant viruses:a tool-box for genetic engineering and crop protection.Bioesaays,1989,10:179-186.
    [25] Hasaloff J,Gerlach W L., et al.Simple RNA enzymes with new and highly specific endoribonuclease activities.Nature,1955,334:585-591.
    [26] Harrison B D,Mayo M A,Baulcombe D C., et al.Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA.Natrue,1987,328:799-802.
    [27] Wolf S,Deom C M,Deachy R N., et al.Movement protein of tobacco mosaic virus modifies prasmodesmatal size exclusion limit.Sci,1989,246:377-379.
    [28] Cooper B., Lapldot M., Heick J. A., et al.. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the function analog increases susceptibility. 1995 Virology 206:307-313.
    [29] Dawson W O,Hlif M E., et al.Host-range determinants of plant viruses.Annu Rev Physiol Plant Mol Biol,1992,43:527-555.
    [30] Matin G B,Brommomschenkel S H,Chunwongse J., et al.Map-based cloning of a protein kinase gene conferring disease resistance in tomoto. Science,1993,262:1432-1436.
    [31]. Pressey R., et al. Role of pectinesterase in pH-dependent interaction between pea cell wall polymers. Plant Physiology. 1984, 76: 547-549.
    [32] Micheli F., et al. Pectin methlesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 2001,6: 414-419.
    [33] Chen M.-H, Sheng J.S., Geoffrey H.. et al. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 2000,19:913-920.
    [34] Chen M H, Citovsky V., et al. Systemic movement of a tobamovirus requires host cell pectin methylesterase. The Plant Journal. 2003,35: 386-392.
    [35]Dunoyer P, Thomas C, Harrison S, et al. A Cysteine-Rich Plant Protein Potentiates Potyvirus Movement through an Interaction with the Virus Genome-Linked Protein VPg. Journal of Virology. 2004,78:2301-2309.
    [36] Lodge J K,Kaniewski W K,Tumer N E., et al.Broad-spectrum virus resistance plants expressing pokeweed antiviral protein. Proc Natl Acad Sci,USA,1993,90:7089-7093.
    [37] Truve M..et al. Delay of disease development in transgenic plant that expresses the 2, 5-adinepolymerase gene. Annu Rev Plant Physil Plant Mol Biol, 1990,47: 23-48.
    
    [38] Young M ,Gerlach W., et al. Using plant virus and related RNA sequence to control gene expression. In Gene Manipulation in Plant Improvement I1,J P Gustafson,ed.Plenum Press,New York,1990,313-329.
    
    [39] Chen Z C,Cockburn B,Hendy S., et al.Engineering plant virus resistance using antibody technology.ln Plant Pathology and Biotechnology,Ed.by Li D B,Shanghai Sci Technical Pubulisher,1994,79.
    [40] 徐耀先,周晓峰,刘立德. 分子病毒学. 2000, 湖北科学技术出版社.
    [41] Buck, K. W,et al. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv.Virus Res.1997,47:159-251.
    [42] Kariainen, L., and T. Ahola., et al. Function of alphavirus nonstructural proteins in RNA replication. Prog. Nucleic Acid. Res. Mol. Biol. 2002,71:187-222.
    [43] Manfred Heinlein, Hal S. Padgett, J. Scott Gens, et al. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endeplasmic reticulum and microtubeles during infection. The Plant Cell 1998,10:1107-1120.
    [44] Ishikawa M., Naito S., Ohno T., et al. Effects of the TOM1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. Journal of Virology, 67: 5328-5338.
    [45] Yamanaka T., Ohta T., Takahashi M, et al. TOM1, an Arabidopsis gene required for effiicient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci,USA, 2000,97: 10107-10112.
    
    [46] Bates H.J., Farjah M. and Osman T.A.M. et al.Isolation and characterization of an RNA-dependent RNA polymerase from Nicotiana cleveandii plant infected with red clover necrotic mosaic deanthovirus. J.Gen.Virol, 1995,76: 1483-1491.
    
    [47] Hagiwara Y., Komoda K., Yamanaka T., et al. Ishikawa M. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO, 2003,22(2): 344-53.
    [48] Ohshima, K., Taniyana, T., Yamanaka, T., et al. Isolation of a mutant of Arabidopsis thliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology, 1998,243:472-481.
    
    [49] Tsujimoto, Y, Numaga, T., Ohshima, K., et al. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 2003,22(2): 335-43.
    [50] Yamanaka T., Imai T., Satoh, R., et al. Complete inhibition of tabamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 2002,76:2491-2497.
    [51] Lartey R.T., Ghoshroy S., and Citovsky V, et al. Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. Mol Plant Microbe Interact 1998,11(7):706-709.
    
    [52] Matsushita Y, Miyakawa O., Deguchi M., et al. Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tobacco mosaic virus movement protein. Journal of Experimental Botany 2002,53(373): 1531-1532.
    
    [53] Yoshii M., Yoshioka N., Ishikawa M, et al. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J. Virol. 1998a,729(11):8731-8737.
    
    [54] Stephen T. Chisholm, Sunita K. Mahajan, Steven A. Whitham, et al. Cloning of the Arabidopsis RTM1 Gene, which controls restriction of long-distance movement of tobacco etch virus. PNAS,2000, 97(1):489-494.
    
    [55] Stephen T. Chisholm, Michael A. Parra, Robert J. Anderberg, et al. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol. 2001,127: 1667-1675.
    
    [56] Steven A. Whitham, Miki L. Yamamoto, and James C. Carrington., et al. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc Natl Acad Sci,USA,1999,96:772-777.
    [57] Osman, T. A. M. and Buck. K. W., et al. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. Journal of Virology 1997,71, 6075-6082..
    
    [58] Wahanabe, T., Honda, A.,Ueda,S.,Hibi,T.,and Ishawa, et al. A. Isolation from tobacco mosaic virus-infected tobacco of a solubilized template-specific RNA-dependent RNA polymerase containing a 126k/183k protein heterodimer. Journal of Virology , 1999,73, 2633-2640.
    
    [59] Quadt, R., Jaspars E.M.J., et al. Purification and Characterization of brome mosaic virus RNA-dependent RNA polymerase. Virology ,1990, 178, 189-194.
    
    [60] Quadt, R., Kao, C .C., Browning, K .S. , Hershberger, R. P. , Ahlquist, P., et al. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proceedings of the National Academy of science, USA , 1993. 90, 1498-1502.
    
    [61] Hayes, R.J., Buck, K. W., et al. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA -dependent RNA polymerase. 1990,Cell. 63, 363-368.
    
    [62] Dorsser, L., van der Krol, S. ,van der Meer, J., van Kammen, A. , Zabel, P., et al. Purificatio of cowpea mosaic virus RNA replication complex: identification of a virus-encoded 110,000-dalton polypeptide responsible for RNA chain elongation. Proceedings of the National Academy of Science, USA, 1984,81, 1951-1955.
    
    [63] Bates, H. J. , Farjah, M., Osman,T,A.M., and Buck, K.W., et al. Isolation and characterization of an RNA -dependent RNA polymerase from Nicotiana cleveandii plant infected with red clover necrotic mosaic deanthovirusjournal of General Virology, 1995,76, 1483-1491.
    
    [64] Mouches C.,Candresse T., Bove J.M, et al. Turnip yellow mosaic virus RNA-replicase contains host and virus-encoded subunits, Virology, 1984,134, 78-90.
    
    [65] Taylor, D.N .and Carr, P., et al. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 Kda replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. Journal of General Virology, 1995. 81, 1587-1591.
    
    [66] Kathleen E,Bethin.M, et al. Copper Binding to Mouse Liver S-Adenosylhomocysteine Hydrolase and the effects of copper on its levels.J.Biol.Chem.1995,9,270-275.
    [67] Chikara et al. Broad resistance to plant viruses in transgenic plant conferred by antisense inhibition of a host gene essential in S-Adenosylmethionine-dependent transmethylation reactions. Proceedings of the National Academy of science, USA ,1995,92:6117-6119.
    [68] Vladimir V. Zeenko, Lyubov A. Ryabova, Alexander S. Spirin, et al.. Eukaryotic elongation IA interacts with the upstream pseudoknot domain in the 3'-untranslated region of tobacco mosaic virus RNA. J. Virol 2002,76(11): 5678-5691.
    [69] Joseph M.Anderson, Peter P.Milton Z., et al. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. PNAS, 1992,89, 8759-8763.
    [70] Grierson D., GFray R., Hamilton A. J., et. al,. Does co—suppression of sense genes in transgenic plants involve anti—sense RNA? Trends Biotech,1991, 9: 122~123.
    [71] Nellen W. Lichtenstein C., et al. What makes an mRNA anti—senseitive? Trends Biochem Sci, 1993,18(11): 419~423.
    [72] Hamilton A. and Baulcombe D. C., et al. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 2001,286: 950~952.
    [73] 李祥,易自力,蔡能等,反义RNA及其在植物基因工程领域的应用,生物技术通讯,2003,14(2),162~164.
    [74] 石东乔,陈正华,反义RNA及其在植物学研究中的应用,遗传,2001,23(1),73~76.
    [75] Shi L, R. Kent and Bennce N., et. al,. Developmental expression ofa DNA repair gene in Arabidopsis. Mutation Research, 1998,384: 145~156.
    [76] 许本波,张学昆,李加纳,反义RNA技术在现代作物遗传改良中的应用,中国农学通报,2003,19(3),84~88.
    [77] Yang W. D., Wang S. Y., Liu W. P., et. al. Inhibition of replication of rice dwarf virus in transgenic rice plant expressing antisense ribozyme gene. Virologica Sinica,1996, 11: 277~283.
    [78] Plasterk R. H., et al. RNA Silencing: The Genome's Immune System. [J]. Science 2002,296, 1263.
    [79] Fire A, Xu S, Montgomery M.K, et al. Potent and specific genetic interference by double2stranded RNA in Caenorhabditis el2 egans[J]. Nature, 1998,391,806-811.
    [80] Bemstein E., et al.. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001,409, 363.
    [81] Hammond S M., et al.. Argonaute, a Link Between Genetic and Biochemical Analyses of RNAi. Science, 2001,293, 1146.
    
    [82] Elbashir S. M., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001,411, 494.
    
    [83] Savenkov Eugene 1. Valkonen Jari P.T., et al. Silencing of a viral RNAsilencing suppressor in transgenic plants. J. Gen. Virol, 2002,83, 2325-2335.
    
    [84] Llave C, Kasschau K. D., Carrington J. C, et al. Virus-encoded suppressor of posttranscriptional gene silencing target a maintenance step in the silencing pathway. PNAS , 2000,97(24), 13401-13406.
    
    [85] 曹新,黄赞等,RNAi-基因功能研究新途径,生命科学, 1999, 11 (6): 278-281.
    
    [86] Timmons L, Court D.L, Fire A., et al. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans.Gene. 2001,263(1-2): 103-12.
    
    [87] Tavernarakis N, Wang SL, Dorovkov. M, Ryazanov A, Driscoll M., et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet. 2000,24(2): 180-3.
    
    [88] Tuschl T., et al. RNA interference and small interfering RNAs. Chem Bio Chem, 2001,239-145.
    
    [89] Brummelkamp T.R., Bernards R., Agami R., et al. A. system for stable expression of short interfering RNAs in mammalian cells [J ]. Science , 2002,296, 550 - 553.
    
    [90] Mette M.F., van der Winden J., Matzke M.A., Matzke A.J.M., et al. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 1999,18:241-248.
    
    [91] Mette M.F., Aufsatz W., J. van der Winden, M.A. Matzke A.J.M., et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2002,19: 5194 - 5201.
    
    [92] Ratcliff F., Harrison B. D., Baulcombe D. C.A, et al. similarity between viral defense and gene silencing in plants. Science, 1997,276 (6): 1558—1561.
    
    [93] Thomas C. L, Jones L., Baulcombe D. C, Maule A. J., et al.Size constraints for targeting post transcriptional gene silencing and RNA directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J, 2001,259 (4) : 417-425.
    
    [94] Scorza R., Callahan A., Levy L., et. al, Post transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plumpox potyvirus coat protein gene. Transgenic Res, 2001,10(3): 201-209.
    
    [95] Fagard M., Vaucheret H., et al. (Trans) gene silencing in plants: How many mechanisms? Annu Rev Plant Physiol Plant Mol Biol, 2000,51: 167-194.
    [96]Meins F., et al.RNA degradation and models for post—transcriptional gene silencing. Plant Mol Biol, 2000,43(3): 261—273.
    
    [97] Matzke M., Matzke A J. M., Kooter J. M., et al.RNAi: Guiding gene silencing. Science, 2001, 293(10): 1080—1083.
    
    [98] Silhavy D., Molnar A., Lucioli A., et. al .A viral protein suppresses RNA silencing and binds silencing generated, 21 - to 25-nucleotide double2stranded RNAs. EMBO J,2002,21 (12): 3070-3080.
    
    [99]Beclin .C., Boutet S., Waterhouse P., et. al. A branched pathway for transgene induced RNA silencing in plants, Curr Biol, 2002,12(8): 684—688.
    
    [100]Voinnet O., et al. RNA silencing as a plant immune system against viruses. Trends Genet, 2001,17 (8): 449—459.
    
    [101] Cheng M, Fry J, Wan Y., et al. Methods for the production of stably-transformed fertile wheat employing Agrobacterium-mediated transformation and compositions derived therefrom. Patent Application PCT/US97/10621.1997b.International Filing Date 20 June 1997.
    
    [102] Raineri DM, Bottino P, Gordon MP, Nester EW., et al. Agrobacterium-mediated transformation of rice (Oryza sativa L.), Biotechnology 1990,8, 33-38.
    
    [103] Bundock P., Den D. R., Beijersbergen A., et al. Trans-kindom T-DNA transfer from Agrobacterium to S. cerevisiae. EMBO J. 1995,14(3), 3206-3214.
    
    [104] Barcelo P, Lazzeri PA., et al. Transformation of cereals by microprojectile bombardment of immature inflorescence and scutellum tissues. In: Jones H, ed. Methods in molecular biology: plant gene transfer and expression protocols, 1995,Vol. 49. Totowa, NJ: Humana Press Inc., 113-123.
    
    [105] Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T, et al. High efficiciency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 1996,14, 745-750.
    
    [106] Hooykaas P. J., Sehalperoon R. A., et al. Agrobacterium and plant genetic engineering. Plant Mol. Biol,1992,19, 15-38.
    
    [107] Annette C. Vergunst, Barbarra Schrammeijer, Make deno Dulk-Ras, et al. VirB/D4-dependent protein translocation for Agrobacterium into plant cells. Science, 2000,290,979-982.
    
    [108] Sanford J C,Klein T M, Wolf E D,et al. Particulate Science and Technology, 1987,5:27-37.
    
    [109] Cooley J., Ford T. Christou P., et al. Molecular and genetic characterization of elite transgenic rice plants produced by electridischarge particle acceleration. Theor Appl Genet, 1995,90, 97-104.
    
    [110] 周光宇等,农业分子育种研究进展[m ], 北京,中国农业科技出版社, 1993.
    
    [111] Yoshii M., Yoshioka N., Ishikawa M., et al., Isolation of an Arabidopsis thaliana mutant in which the accumulation of cucumber mosaic virus coat protein is delayed. The Plant Journal, 1998,13: 211-219.
    [112] Yoshii M., Yoshioka N., lshikawa M., et al. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. Journal of Virology,1998, 72: 8731-8737.
    [113] Plant Tissue Culture Manual 1991. Kluwer Academic Publisher. Printed in the Netherland.
    [114] Sambrook J., Russell D., et al. Molecular cloning: a laboratory manual. The 2rd edition. Cold Spring Harbor Laboratory Press. 1991,P26, P27, P66, P87, P499
    [115] 顾红雅,瞿礼嘉,明小天,植物基因与分子操作,1995,第一版,第77页.
    [116] Clark M. S., et al. Plant molecular biology: a laboratory manual. The 1st edition. 1995,Spring Press.
    [117] Sheerman S, Bevan M. W., et al.A rapid transformation method for Solarium tuberosun L. using binary Agrobacterium tumefaciens vectors. Plant Cell Rep. 1998,7; 13-16.
    [118] Tavazza R.,Tavazza M.,Ordas R.J., Ancora G,.Benvenuto E, et al.Genetic transformation of potato(Solanum tuberosun L.):An efficient method toobtain transgenic plants,Plant Sci,1985,59:175-181.
    [119] Anjum M A., et al.Selection of hydroxyprotinge-resistant cell lines from Solanum tuberosun L. calls Ⅱ,Plant regeneration and frost tolerance of regenerated plants[J].Acta Biotechnol.1998,18(3):361-365.
    [120] Boucoiran C F, Kijine J W, Recont K, et al.Isolation and partial characterization of thermostable isoperooxidases from potato(Solarium tuberosum L.)tuber sprouts[J],J Agric Food Chem,2000,48(3):701-707.
    [121] Park Y.D.,et al.Plant regeneration from leaf tissues of four north Dakota genotypes of potato(Solanum tuberosun L.)American potato jornai,1995,72:329-338.
    [122] 蒙姣荣,番茄ToTOM3基因的克隆及基因沉默表达载体的构建,华南农业大学博士论文,2005,9.
    [123] Wesley S. V.. Helliwelt C. A., Smith N. A., et al, Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J, 2001,27:581-590.
    [124] Heiliwelt C. A., Rod W., et al, The Involvement of Gibberellin 20-Oxidase Genes in Phytochrome-Regulated Petiole Elongation of Arabidopsis,Plant Physiology,2005,138:1106-1116.
    [125] Elbnehir B., et al. High-Throughput Selection of Effective RNAi Probes for Gene Silencing Genome Res.2003,13:2333.
    [126] Ottaviani M, et aI.Genetic transformation of potato(Solanum tuberosum L.):Anefficient method to obtain transgenic plants.Plant Sci.1988,59:175-181.
    [127] Feher A, et al. Expression of PVX coat protein under the control of extension-gene promotor confers virus resistantance on transgenic potato plants. Plant Cell Reports,1992,11 (1):48-52.
    [128] Gerard G.,Dimalla H, et al.Effcet of enhylene on the endogenous Cytokinin and Gibberellin levels in Tuberizing potatoes, Plant Physiology,1977,60:218-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700