基于脉冲涡流连铸钢坯无损检测理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲涡流检测技术是近几十年来迅速发展起来的一种无损检测新技术,与视觉检测法相比,该方法不仅可以检测材料表面缺陷,而且还可以检测材料内部缺陷,具有非接触、宽频谱、高速度特点,特别适合于金属材料缺陷的自动检测,已在金属材料成型过程中的缺陷以及飞机结构件、压力容器、石油管道的服役阶段疲劳裂纹的无损检测中得到了广泛的应用。本文在国内外脉冲涡流无损检测技术研究现状的基础上,针对连铸过程的钢坯表面裂纹与内部缺陷开展基于脉冲涡流无损检测理论与实验研究,论文的主要研究内容如下:
     1.基于脉冲涡流平板导体无损检测解析模型及理论
     论文首先从Dodd-Deeds涡流响应经典解析模型出发,推导了位于平板导体上方的激励线圈的磁矢势、磁场,检测线圈的感应电磁力(Induced Electromotive Force, IEMF)以及平板导体内的电场;在第一类圆柱形边界约束条件下,推导出检测线圈的IEMF公式,计算了阶跃电流激励下的检测线圈的IEMF;针对有缺陷的平板导体,采用电流偶极子模型,推导了由缺陷场产生的磁矢势,利用格林函数法,导出了缺陷产生的电场及磁场分布,计算结果对脉冲涡流检测系统的设计提供理论依据。
     2.脉冲涡流缺陷自动检测系统
     脉冲涡流缺陷自动检测系统包括基于Labwindows/CVI(CVI)的脉冲涡流激励源设计、涡流探头设计及基于嵌入式OMAP3530的连铸钢坯缺陷自动检测系统的设计。在脉冲涡流检测中,为满足在不同条件下获得高精度的涡流响应信号,需要一个电压、频率及占空比均连续可调的高稳激励源,而目前大多采用专用信号发生器加功率驱动器的方式,该方式调试和便携不便、重复性差,因此在实验研究中研制了基于C8051F340脉冲信号发生器、功率放大器等硬件装置及基于CVI的软件测试平台。为了满足工业现场流水线的需求,在激励源的基础上,研制了基于OMAP3530的嵌入式涡流检测系统,其中包括DAQ数据采集(DAB)板、电机驱动板、OMAP3530主板、缺陷铸坯分离装置等硬件设备,并编写了采集板的数据采集与通信程序;开发了Linux操作系统下的涡流分析程序、基于DSPLINK快速双核数据通信程序以及C64+DSP内核的小波去噪程序等软件。
     3.基于小波理论的脉冲涡流响应信号快速预处理算法
     涡流检测系统工作在温度高(1000℃以上)、湿度大的恶劣环境中,缺陷响应信号受到氧化铁皮、测量噪声、提离效应等各种干扰,信噪比低,缺陷特征难提取,论文以小波理论为基础,针对OMAP3530的C64+DSP内核进行了包括数据采集、通信、算法等各方面的最优化设计,并提出了一种实用滤波算法:“Fixed Sliding Window(FSW)”—固定滑动窗口滤波去噪方法,数据更新频率可达51kHz。
     4.基于频谱分析与小波变换的金属材料脉冲涡流缺陷识别与定量检测
     (1)不同金属材料的脉冲涡流响应。制做了钢Q235、铜T2、铝板6061的三种试件,研究了不同电导率和磁导率的金属材料脉冲涡流缺陷响应。
     (2)基于频谱分析的涡流缺陷识别与定量检测。由于激励方波频谱宽、缺陷响应信号频谱丰富,基频以及各阶谐波频中都含有缺陷信息,因此根据嵌入式DSP的特点开展了金属材料缺陷响应信号的FFT频谱分析,提取了基波和奇次谐波的频谱幅度,通过对样本的分类及定量训练,实现了对盲试件的分类与定量试验。
     (3)基于小波变换和频谱分析的脉冲涡流缺陷识别与定量检测。提出了一种新的涡流缺陷特征提取和分类算法—基于小波变换和频谱分析的算法。利用小波的多分辨力特性,将涡流响应信号进行小波分解,然后在小波域对近似(低频分量)和细节(高频分量)部分进行频谱分析,得到低频分量和高频分量的两种频谱特征,与直接频谱分析相比,缺陷的分类更加准确和可靠。研究发现,缺陷在低频分量的基波100Hz到较低谐波(1.3kHz)之间的幅度值和高频分量在1.3kHz到6.1kHz之间的奇次谐波的幅度值都能实现缺陷的分类和识别,然而在定量检测试验中,低频分量的幅度频谱则更准确、线性度更高。
The Pulsed Eddy Current Test (PECT) technique, which receivedrecognition and application in aviation industry, is an entirely newNondestructive Test (NDT) technique rising in recent decades. It not only can beused to detect the material surface flaws but also to check the sub-surface flawscompared with the visual detecting method. It enables the technicians to reducethe touches of the material and absolutely improve the detecting accuracy.Furthermore it provides electronic engineers a wider spectrum and a higherdetecting speed. Thus it is extremely suitable for the automatic detection of themetallic material (MM). Additionally, it has been broadly applied to detect theflaws during the process of metal forming, and the fatigue crack of aircraftstructure, pressure vessel, and petroleum tube in the midst of their service stages.The whole treatise, which based on the latest achievements of PECT both fromdomestic institutes and overseas ones, dedicates to study the surface cracks andsub-surface deficiencies of the continuous casting slabs. The main content of theresearch is as follows:
     1. Analytic modeling and theory of the NDT of the conductive platebased on PEC
     The magnetic vector potential (MVP), magnetic filed of the exciting coil, theinduced electromotive force (IEMF) due to the conductive plate and the electricflied in the conductive plate are derived in view of the Dodd-Deeds eddy currentresponse analytic module. Under the first class cylindrical boundary condition,the IEMF of the pick-up coil is inferred, the same as under the step currentexcitation. For the seeking the transient PEC response due to a flaw in aconductor plate, the MVP of the flaw field is got by the dipole current module.The electric field and magnetic field distribution due to a flaw can be calculatedwith the help of the dyadic Green’s function. The results of the calculationsprovide the theoretic foundation for the design of the PEC detecting system.
     2. The PEC defects automatic-detect system
     The PEC defects automatic-detect system (PECDADS) consists of the PECexcitation source based on Labwindows/CVI (CVI), the eddy current probes,and the embedded OMAP3530PECDADS of the continuous casting slabs. Inthe PECT, the stable and continuous adjustable excitation source of the voltage,frequency and duty will be dominant to acquire the PEC responses due todifferent conditions. In the most present designs, an arbitrary signal generatorplus the power driver, which suffers badly repeatability, hardly debugging andcarriage, is selected for the excitation source. The hardware components of thepulsed signal generator based on C8051F340, power driver and so on, and thesoftware testing platform of CVI are developed to satisfy the rigorous excitingparameters. To be suitable for the industrial product pipeline, the embeddedPECT detect system based on OPMAP3530is developed in this paper. Itconstitutes the hardware equipments of the DAQ data acquisition board (DAB),motor driver board, OMAP3530mainboard, the defect casting slabs separatingdevice, and so on. Accordingly, the programs of the data acquisition andcommunication of the DAB have been compiled. Moreover, the embeddedpulsed eddy application program, the fast dual-core data communication onesbased on the DSPLINK module and the data process algorithm of the waveletdenoising in the C64+DSP core are developed in the Linux platform.
     3. The study of fast pre-processing algorithm of PEC response basedwavelet theory (WT)
     In the casting product, the PEC response is influenced by the noise of themeasurement, the surface oxide of the slabs, the lift-off effect and theenvironment of the production line, when the PECDADS works under theenvironment at high temperature (above1000oC) and high humidity. Because ofthe poor SNR, it is challenging to extract the flaw features. So many strictoptimizations are applied for the C64+DSP core of the OMAP3530on the basisof WT, including data acquisition, communication, and algorithm, and so on.For achieving the pre-processing at full speed (51kHz), a practical denoisingalgorithm named “Fixed Sliding Window (FSW)” is proposed.
     4. MM defects classification and quantification based on spectrum analysis and wavelet transform
     (1) The responses due to different MM. Three specimens (Q235, T2, andAl(6061) are made to analyze the PEC response characteristic of MM with thediverse conductivity and permeability.
     (2) PEC defects classification and quantification based on spectrum analysis.A square exciting signal has the performances of the wide spectrum, abundantflaw response. Its basic and harmonic amplitude components include defectinformation. Hence the FFT spectrum of the MM defect response is launchedaccording to the embedded DSP advantage. After the basic and odd harmonicamplitude component features have been extracted and applied to train theclassification and quantification of the defect, the unknown specimens will beclassified and quantified.
     (3) PEC defects classification and quantification based on spectrum analysisand wavelet transform. A new PEC feature extracting and classifying algorithmentitled “the algorithm based on wavelet and spectrum analysis” is proposed.Using the multiresolution of the wavelet, the PEC response is decomposed intothe wavelet domain. Then the spectrum of the approximate (low-frequency) anddetail (high-frequency) components are analyzed and used to extract the low-and high-component features. So it is more precise and reliable for the defectclassification compared with the direct spectrum analysis. The research revealsthat the features of the low-frequency odd harmonic amplitudes from the basicfrequency (100Hz) to the lower frequency (1.3kHz) and the high-frequency oddharmonic amplitudes from the1.3kHz to6.1kHz can both be used to realize thedefects classification. But in the quantification experiment, it is more accurateand high linear using the low-frequency amplitude spectrum.
引文
[1].干勇,唐红伟,仇圣桃.连续铸钢在钢铁生产流程中的作用及现代连铸技术简介[J].中国科学: E辑,2009,38(9):1384-1390.
    [2]. POPA, E. M.,KISS, I. assessment of surface defects in the continuously cast steel[J].ACTA TECHNICA CORVINIENSIS–BULLETIN of ENGINEERING,2011,4(4):109-115.
    [3].蔡开科.连铸坯裂纹控制[C].板坯连铸技术研讨会,中国济南,2003;12.
    [4].蔡开科.连铸坯表面裂纹的控制[J].鞍钢技术,2004,(03):1-8.
    [5].蔡开科,韩传基,孙彦辉.连铸坯裂纹控制[C].板坯连铸技术交流会,中国江苏南京,2006;15.
    [6].王彦锋,陈贵江. CSP工艺生产的薄板坯连铸表面纵裂纹缺陷研究[J].钢铁,2002,37(12):21-23.
    [7].张爱民,张英才,李建民,楚志宝.连铸板坯内部裂纹的研究分析[J].包头钢铁学院学报,2001,(04):309-311.
    [8].王金凤,何力.连铸钢坯加工过程中缺陷及性能变化的研究[J].贵州科学,2007,25(4):26-31.
    [9].蔡开科.连铸坯裂纹[J].钢铁,1982,(09):45-55.
    [10].欧阳奇,张敏,赵立明,张立志.基于脉冲涡流技术的连铸坯表面缺陷检测[J].中国机械工程,2010,(10):1235-1239.
    [11].欧阳奇,赵立明,张立志,张敏.高温连铸坯表面缺陷脉冲电涡流检测方法研究[J].连铸,2010,(001):42-46.
    [12].蔡开科,程士富.连续铸钢原理与工艺[M].冶金工业出版社,1994.
    [13].汪兴富.国内外全连铸发展概况[J].重型机械,1994,(03):14-19.
    [14].朱立民.薄带钢坯连铸技术的进展与现状[C].第六届连续铸钢全国学术会议,中国乌鲁木齐,1999;6.
    [15].贺道中.连续铸钢[M].冶金工业出版社,2007.
    [16].杨晓明,常伟.连铸钢坯表面裂纹检测分析[J].实用测试技术,2002,28(4):23-24.
    [17].李家伟,陈积懋.无损检测手册[M].机械工业出版社,2002.
    [18].徐可北,周俊华,国防科技工业无损检测人员资格鉴定与认证培训教材编委会.涡流检测[M].机械工业出版社,2004.
    [19].任吉林,林俊明,电磁,高春法.电磁检测[M].机械工业出版社,2000.
    [20]. Soleimani, M.,Lionheart, W. R.,Peyton, A. J.,Ma, X.,Higson, S. R. Athree-dimensional inverse finite-element method applied to experimental eddy-currentimaging data[J]. Magnetics, IEEE Transactions on,2006,42(5):1560-1567.
    [21]. Meilland, P. Novel multiplexed eddy-current array for surface crack detection onrough steel surface[J]. Proc.9th ECNDT, Berlin,2006.
    [22].贾慧明,范弘.1100℃以上高温连铸板坯表面缺陷的模拟在线无损检测[J].钢铁研究学报,1994,6(1):81-86.
    [23]. Lee, J. Y.,Lee, S. B.,Yi, J. K. Ultrasonic Transmission Characteristics of ContinuousCasting Slab for Medium Carbon Steel[J]. Key Engineering Materials,2005,297:2201-2206.
    [24].欧阳奇,张兴兰,陈登福,张涛,肖建平.高温连铸坯表面缺陷的机器视觉无损检测[J].重庆大学学报(自然科学版),2007,3(11):27-31.
    [25].张兴兰,欧阳奇,郭煜敬.电涡流传感器仿真开发与缺陷无损检测实验研究[J].现代科学仪器,2010,(3):14-16.
    [26]. Ouyang, Q.,Zhang, L.,Zhao, L.,Zhang, X.,Chen, D. Experimental study onquantitative surface defect depth detection based on laser scanning technology in continuouscasting[J]. Ironmaking&Steelmaking,2011,38(5):363-368.
    [27]. Zhao, L. M.,Qi, O. Y.,Chen, D. F.,Zhang, X. L. CCD Imaging Definition ControllingMethods in Continuous Casting Slab Surface Defects Acquisition[J]. Advanced MaterialsResearch,2011,233-235:2490-2494.
    [28]. Qi, O. Y.,Zhang, L. Z.,Zhao, L. M.,Li, W. H.,Peng, S. A Method Study ofRecognizing the Defect Type for the Continuous Casting Slab by Pulsed Eddy Current[J].Advanced Materials Research,2011,233:2424-2427.
    [29]. Kitagawa, H.,Fujii, A.,Miyake, S.,Kurita, K. An Automatic Surface Defect DetectionSystem for Hot Ingot Casting Slabs Using an Infrared Scanning Camera and ImageProcessors[J]. Trans. Iron Steel Inst. Jpn.,1981,21(3):201-210.
    [30]. Sgarbi, M.,Colla, V.,Cateni, S.,Higson, S. Pre-processing of data coming from alaser-EMAT system for non-destructive testing of steel slabs[J]. Isa Transactions, Jan,2012,51(1):181-188.
    [31]. Baillie, I.,Griffith, P.,Jian, X.,Dixon, S. Implementing an ultrasonic inspectionsystem to find surface and internal defects in hot, moving steel using EMATs[J].Insight-Non-Destructive Testing and Condition Monitoring,2007,49(2):87-92.
    [32]. Shin, B.-C.,Kwon, J.-R. Ultrasonic transducers for continuous-cast billets[J]. Sensorsand Actuators A: Physical,1996,51(2-3):173-177.
    [33]. Lavender, J. Ultrasonic Testing of Steel Castings[M]. Steel Founders' Society ofAmerica,1976.
    [34]. Dodd, C.,Deeds, W. Analytical Solutions to Eddy‐C urrent Probe‐CoilProblems[J]. Journal of Applied Physics,1968,39(6):2829-2838.
    [35]. Luquire, J.,Deeds, W.,Dodd, C. Alternating current distribution between planarconductors[J]. Journal of Applied Physics,1970,41(10):3983-3991.
    [36]. Cheng, C. General analysis of probe coils near stratified conductors[J]. Int. J.Nondestr. Test.,1971,3:109-130.
    [37]. Theodoulidis, T. P.,Kriezis, E. E. Coil impedance due to a sphere of arbitrary radialconductivity and permeability profiles[J]. Magnetics, IEEE Transactions on,2002,38(3):1452-1460.
    [38]. Theodoulidis, T. P. Model of ferrite-cored probes for eddy current nondestructiveevaluation[J]. Journal of Applied Physics,2003,93(5):3071-3078.
    [39]. Theodoulidis, T. P.,Bowler, J. R. The truncated region eigenfunction expansionmethod for the solution of boundary value problems in eddy current nondestructiveevaluation[C]. AIP Conference Proceedings,2005;403.
    [40]. Theodoulidis, T.,Kriezis, E. Series expansions in eddy current nondestructiveevaluation models[J]. Journal of materials processing technology,2005,161(1):343-347.
    [41]. Theodoulidis, T.,Wang, H.,Tian, G. Y. Extension of a model for eddy currentinspection of cracks to pulsed excitations[J]. NDT and E International,2012,47.
    [42]. Bowler, J. Eddy‐current interaction with an ideal crack. I. The forward problem[J].Journal of Applied Physics,1994,75(12):8128-8137.
    [43]. Bowler, J. Time domain half-space dyadic Green’s functions for eddy-currentcalculations[J]. Journal of Applied Physics,1999,86(11):6494-6500.
    [44]. Bowler, J.,Johnson, M. Pulsed eddy-current response to a conducting half-space[J].Magnetics, IEEE Transactions on,1997,33(3):2258-2264.
    [45]. Bowler, J. R.,Norton, S. J.,Harrison, D. J. Eddy‐current interaction with an idealcrack. II. The inverse problem[J]. Journal of Applied Physics,1994,75(12):8138-8144.
    [46]. Harfield, N.,Bowler, J. Theory of thin-skin eddy-current interaction with surfacecracks[J]. Journal of Applied Physics,1997,82(9):4590-4603.
    [47]. Harfield, N.,Bowler, J. Solution of the two-dimensional problem of a crack in auniform field in eddy-current non-destructive evaluation[J]. Journal of Physics D: AppliedPhysics,1999,28(10):2197.
    [48]. Fan, M.,Huang, P.,Ye, B.,Hou, D.,Zhang, G.,Zhou, Z. Analytical modeling fortransient probe response in pulsed eddy current testing[J]. NDT and E International,2009,42(5):376-383.
    [49].范孟豹.多层导电结构电涡流检测的解析建模研究[D].博士,浙江大学2009.
    [50].范孟豹,曹丙花,杨雪锋.脉冲涡流检测瞬态涡流场的时域解析模型[J].物理学报,2010,59(11):7570-7574.
    [51].范孟豹,黄平捷,叶波,侯迪波,张光新,周泽魁.多层导电结构电涡流检测探头阻抗解析模型及数值计算[J].机械工程学报,2009,45(06):50-54.
    [52].范孟豹,黄平捷,叶波,侯迪波,张光新,周泽魁.基于反射与折射理论的电涡流检测探头阻抗解析模型[J].物理学报,2009,58(9):5950-5954.
    [53].范孟豹,黄平捷,叶波,侯迪波,张光新,周泽魁.脉冲涡流解析模型研究[J].浙江大学学报(工学版),2009,43(9):1621-1624.
    [54]. Ludwig, R.,Dai, X.-W. Numerical and analytical modeling of pulsed eddy currents ina conducting half-space[J]. Magnetics, IEEE Transactions on,1990,26(1):299-307.
    [55]. Mohammed, O. A.,Uler, F. G. Comparison of two techniques for the solution of the3-D nonlinear transient eddy current problem[C]. Southeastcon'92, Proceedings., IEEE,1992;87-90.
    [56]. Dai, X.-W.,Ludwig, R.,Palanisamy, R. Numerical simulation of pulsed eddy-currentnondestructive testing phenomena[J]. Magnetics, IEEE Transactions on,1990,26(6):3089-3096.
    [57]. Allen, B.,Ida, N.,Lord, W. Finite element modeling of pulse eddy current NDTphenomena[J]. Magnetics, IEEE Transactions on,1985,21(6):2250-2253.
    [58]. Patel, U.,Rodger, D. Finite element modelling of pulsed eddy currents fornondestructive testing[J]. Magnetics, IEEE Transactions on,1996,32(3):1593-1596.
    [59]. Tsuboi, H.,Seshima, N.,Sebestyen, I.,Pavo, J.,Gyimothy, S.,Gasparics, A. Transienteddy current analysis of pulsed eddy current testing by finite element method[J]. Magnetics,IEEE Transactions on,2004,40(2):1330-1333.
    [60]. Tsuboi, H.,Tanaka, M.,Misaki, T.,Naito, T. Computation accuracies of boundaryelement method and finite element method in transient eddy current analysis[J]. Magnetics,IEEE Transactions on,1988,24(6):3174-3176.
    [61]. Pávó, J. Numerical calculation method for pulsed eddy-current testing[J]. Magnetics,IEEE Transactions on,2002,38(2):1169-1172.
    [62]. Li, Y.,Tian, G. Y.,Simm, A. Fast analytical modelling for pulsed eddy currentevaluation[J]. NDT&E International,2008,41(6):477-483.
    [63].张维思,王晓锋,杨宾峰,周义健.基于新特征量的脉冲涡流裂纹缺陷定量检测仿真分析与试验研究[J].机械工程学报,2010,46(12):25-30.
    [64].张玉华,孙慧贤,罗飞路,杨宾峰.脉冲涡流检测中三维磁场量的特征分析与缺陷定量评估[J].传感技术学报,2008,21(5):801-805.
    [65].张玉华,孙慧贤,罗飞路,杨宾峰.基于三维磁场测量的脉冲涡流检测探头的设计[J].机械工程学报,2009,45(8):249-254.
    [66].何赟泽,罗飞路,胡祥超,刘波,高军哲.矩形脉冲涡流传感器的三维磁场量与缺陷定量评估[J].仪器仪表学报,2010,(2):347-351.
    [67].周德强,田贵云,王海涛,尤丽华.脉冲涡流无损检测技术的研究进展[J].无损检测,2011,33(10):25-29+35.
    [68]. Buckley, J. M.,Smith, R. A.,Skramstad, J. A. Transient eddy currents for aircraftstructure inspection-an introduction[C]. Proceedings of the42nd Annual British Conferenceon NDT [C/OL]. http://joe. buckley. net/papers/JMB,2003;2003-09.
    [69]. Smith, R.,Hugo, G. Transient eddy current NDE for ageing aircraft-capabilities andlimitations[J]. Insight-Northampton-Including European Issues,2001,43(1):14-25.
    [70]. ZHANG, Y.-h.,SUN, H.-x.,LUO, F.-l.3D magnetic field responses to a defect usinga tangential driver-coil for pulsed eddy current testing[C].17th World ConferenceNondestructive Testing, Shanghai, China,2008.
    [71]. Pan, M.,He, Y.,Chen, D.,Luo, F. PEC defect automated classification in aircraftmulti-ply structures with interlayer gaps and lift-offs[J]. NDT&E International,2012.
    [72]. He, Y.,Luo, F.,Pan, M.,Hu, X.,Liu, B.,Gao, J. Defect edge identification withrectangular pulsed eddy current sensor based on transient response signals[J]. NDT&EInternational,2010,43(5):409-415.
    [73]. He, Y.,Luo, F.,Pan, M. Defect characterisation based on pulsed eddy current imagingtechnique[J]. Sensors and Actuators A: Physical,2010,164(1):1-7.
    [74]. He, Y.,Luo, F.,Pan, M.,Weng, F.,Hu, X.,Gao, J.,Liu, B. Pulsed eddy currenttechnique for defect detection in aircraft riveted structures[J]. NDT&E International,2010,43(2):176-181.
    [75]. He, Y.,Pan, M.,Luo, F.,Tian, G. Pulsed eddy current imaging and frequencyspectrum analysis for hidden defect nondestructive testing and evaluation[J]. NDT&EInternational,2011,44(4):344-352.
    [76]. He, Y.,Luo, F.,Pan, M.,Hu, X.,Gao, J.,Liu, B. Defect classification based onrectangular pulsed eddy current sensor in different directions[J]. Sensors and Actuators A:Physical,2010,157(1):26-31.
    [77]. Krejcar, O.,Frischer, R. Non Destructive Defect Detection by Spectral DensityAnalysis[J]. Sensors,2011,11(3):2334-2346.
    [78].张世雄,宋文爱,陈以方,程婷婷.基于LabVIEW的脉冲涡流检测系统[J].无损检测,2009,31(1):12-14.
    [79].朱佳震.脉冲涡流缺陷分类识别技术研究[D].硕士,华南理工大学2010.
    [80].多布,Daubechies, I.,李建平,杨万年.小波十讲[M].国防工业出版社,2004.
    [81]. Chaplais, F.,Tsiotras, P.,Jung, D. On-line wavelet denoising with application to thecontrol of a reaction wheel system[C]. AIAA Guidance, Navigation, and Control Conference,AIAA Paper,2004;04-5345.
    [82]. Mallat, S. G. A theory for multiresolution signal decomposition: the waveletrepresentation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1989,11(7):674-693.
    [83]. Donoho, D. L. Smooth wavelet decompositions with blocky coefficient kernels[J].Recent advances in wavelet analysis,1993,308.
    [84].王俊英,朱目成.基于小波变换的脉冲涡流信号除噪[J].制造业自动化,2011,33(8):61-64.
    [85].王俊英,冯华勇.基于BP神经网络的脉冲涡流无损检测分析[J].制造业自动化,2011,33(10):25-28.
    [86].彭学文,付跃文.脉冲涡流检测信号的消噪处理[J].计算机工程与设计,2010,(16):3715-3719.
    [87].彭学文,王伟,单春蕾,傅恩敏.基于小波分析的脉冲涡流信号去噪方法研究[J].计算机与现代化,2011,(12):133-137.
    [88]. Ma, X.,Peyton, A. J. Feature detection and monitoring of eddy current imaging databy means of wavelet based singularity analysis[J]. NDT&E International,43(8):687-694.
    [89]. Smith, R. A.,Hugo, G. R. Deep corrosion and crack detection in aging aircraft usingtransient eddy-current NDE[C]. Proc5th Joint NASA/FAA/DoD Conf on Aging Aircraft,Orlando,2001.
    [90].潘孟春,何赟泽,罗飞路.基于谱分析的脉冲涡流缺陷3D分类识别技术[J].仪器仪表学报,2010,(9):2095-2100.
    [91].高军哲,潘孟春,罗飞路,何赟泽,陈棣湘.脉冲涡流检测的谱分析方法与缺陷分类识别[J].中国电机工程学报,2011,31(28):154-160.
    [92].周德强,田贵云,尤丽华,王海涛,王平.基于频谱分析的脉冲涡流缺陷检测研究[J].仪器仪表学报,2011,32(9):1948-1953.
    [93].周德强,张斌强,田贵云,王海涛.脉冲涡流检测中裂纹的深度定量及分类识别[J].仪器仪表学报,2009,30(6):1190-1194.
    [94]. Sophian, A.,Tian, G. Y.,Taylor, D.,Rudlin, J. A feature extraction technique based onprincipal component analysis for pulsed Eddy current NDT[J]. NDT&E International,2003,36(1):37-41.
    [95]. BinFeng, Y.,FeiLu, L.,Dan, H. Research on edge identification of a defect usingpulsed eddy current based on principal component analysis[J]. NDT&E International,2007,40(4):294-299.
    [96]. Chen, T.,Tian, G. Y.,Sophian, A.,Que, P. W. Feature extraction and selection fordefect classification of pulsed eddy current NDT[J]. NDT&E International,2008,41(6):467-476.
    [97]. Tian, G. Y.,Sophian, A. Defect classification using a new feature for pulsed eddycurrent sensors[J]. NDT&E International,2005,38(1):77-82.
    [98]. Theodoulidis, T. P.,Kriezis, E. E. Impedance evaluation of rectangular coils for eddycurrent testing of planar media[J]. NDT&E International,2002,35(6):407-414.
    [99]. Qiao, J. X.,Hansen, J. P.,Mayes, I. Automatic Differential Lift-Off Compensation(AD-LOC) Method In Pulsed Eddy Current Inspection[C]. Abstracts of17th WorldConference on Non-Destructive Testing,2008.
    [100].徐晨曦.脉冲涡流检测实验系统的研制[D].硕士,上海交通大学2009.
    [101].徐晨曦,阙沛文,毛义梅.脉冲涡流检测系统的设计[J].传感器与微系统,2009,28(6):95-97.
    [102].曹海霞,王畅,杨宾峰,张军潮,张辉.脉冲涡流无损检测提离效应研究[J].空军工程大学学报(自然科学版),2011,12(3):45-49.
    [103]. Tian, G. Y.,Sophian, A. Study of magnetic sensors for pulsed eddy currenttechniques[J]. Insight-Non-Destructive Testing and Condition Monitoring,2005,47(5):277-279.
    [104]. Obeid, S.,Dogaru, T.,Tranjan, F. M. Detecting small defects in conductive thinmetallic layers using injected AC current and GMR magnetic sensor[C]. Southeastcon,2008.IEEE,2008;368-371.
    [105]. Ko, R. T.,Sathish, S.,Knopp, J. S.,Blodgett, M. P. Hidden Crack Detection withGMR Sensing of Magnetic Fields from Eddy Currents[C]. AIP Conference Proceedings,2007;273.
    [106]. Dogaru, T.,Smith, S. T. Giant magnetoresistance-based eddy-current sensor[J].Magnetics, IEEE Transactions on,2001,37(5):3831-3838.
    [107]. LAYCAK, J. F. Inspection and control system[P]. US:3020034,1959-11-23.
    [108]. Neiheisel, G. L.,Hoover, B. R. Automatic defect detecting inspection apparatus[P].US:4223346,1979-4-5.
    [109]. Kimura, N.,Nakai, Y.,Nishimoto, Y. Surface inspection system for hot radiantmaterial[P]. US:4319270,1982-02-21.
    [110]. Suresh, B. R.,Fundakowski, R. A.,Levitt, T. S.,Overland, J. E. A real-time automatedvisual inspection system for hot steel slabs[J]. Pattern Analysis and Machine Intelligence,IEEE Transactions on,1983,(6):563-572.
    [111]. Porter, T.,Sylvester, R.,Bouyoucas, T. Automatic strip surface defect detectionsystem[J]. Iron and Steel Engineer,1988,65(12):17-20.
    [112]. Piironen, T.,Silven, O.,Pietik inen, M.,Laitinen, T.,Str mmer, E. Automated visualinspection of rolled metal surfaces[J]. Machine Vision and Applications,1990,3(4):247-254.
    [113]. Canella, G.,Falessi, R. Surface inspection and classification plant for stainless steelstrip. In1992.
    [114]. Jouet, J. Defect Classification in Surface Inspection of Strip Steel[J]. Steel Times,1992,16(5):214-216.
    [115]. Badger, J. C.,Enright, S. T. Automated surface inspection system[J]. Iron and SteelEngineer(USA),1996,73(3):48-51.
    [116]. Carisetti, C. iLearn self-learning defect classifier[J]. Iron and Steel Engineer(USA),1998,75(8):50-53.
    [117]. O’Leary, P. Machine vision for feedback control in a steel rolling mill[J]. Computersin industry,2005,56(8):997-1004.
    [118]. Dworkin, S.,Nye, T. Image processing for machine vision measurement of hotformed parts[J]. Journal of materials processing technology,2006,174(1):1-6.
    [119]. Rafaj owicz, E.,Wnuk, M.,Rafaj owicz, W. Local detection of defects from imagesequences[J].2008.
    [120]. Alvarez, I.,Marina, J.,Enguita, J. M.,Fraga, C.,Garcia, R. Industrial online surfacedefects detection in continuous casting hot slabs[C]. SPIE Europe Optical Metrology,2009;73891X-73891X-9.
    [121]. wi o, S.,Perzyk, M. Automatic inspection of surface defects in die castings aftermachining[J]. Archives of Foundry Engineering,2011.
    [122]. Lai, K.,Zhang, H.,Dai, D. New approach to classification of surface defects in steelplate based on fuzzy neural networks[C]. Society of Photo-Optical Instrumentation Engineers(SPIE) Conference Series,2002;447-456.
    [123].翟家芸,张榆平.采用图像分析方法检测钢坯表面裂纹[J].山西冶金,2003,26(1):23-24.
    [124]. Zhao, L. M.,Ouyang, Q.,Chen, D. F.,Wen, L. Y. Surface defects inspection methodin hot slab continuous casting process[J]. Ironmaking&Steelmaking,38(6):464-470.
    [125]. Fu, F. Transient eddy current response due to a subsurface crack conductive plate[D].2006.
    [126]. Bowler, J. R. Transient Eddy Current Interaction with an Open Crack[J].2004,700:329-335.
    [127]. Fu, F. The Effect of Opening on Eddy Current Probe Response for an Idealizedthrough Crack[J].2006,820:330-336.
    [128]. Bowler, J. R.,Fu, F. Time-domain dyadic Green's function for an electric source in aconductive plate[J]. Magnetics, IEEE Transactions on,2006,42(11):3661-3668.
    [129]. Fu, F.,Bowler, J. Transient eddy-current driver pickup probe response due to aconductive plate[J]. Magnetics, IEEE Transactions on,2006,42(8):2029-2037.
    [130]. Bowler, J. R.,Theodoulidis, T. P. Eddy currents induced in a conducting rod of finitelength by a coaxial encircling coil[J]. Journal of Physics D: Applied Physics,2005,38(16):2861-2868.
    [131].康中尉.矩形缺陷的交变漏磁检测信号分析方法[J].无损检测,2007,28(11):565-568.
    [132].杨宾峰,罗飞路,潘孟春.脉冲涡流无损检测中腐蚀缺陷边缘的识别[J].机械工程学报,2008,44(12):75-79.
    [133].何赟泽,罗飞路,胡祥超,刘波,高军哲.脉冲涡流矩形传感器的多维信号特征分析与缺陷识别[J].传感技术学报,2009,22(5):680-683.
    [134].高军哲.多频涡流无损检测的干扰抑制和缺陷检测方法研究[D].博士,国防科学技术大学2011.
    [135].夏萍.基于虚拟仪器和图像处理技术的树木年轮微密度研究及其应用[D].安徽农业大学2007.
    [136]. Silicon, L. C8051F34x Data Sheet[EO/L]. http://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F34x.pdf.(2012-10-17)
    [137]. Sophian, A.,Tian, G. Y.,Taylor, D.,Rudlin, J. Design of a pulsed eddy current sensorfor detection of defects in aircraft lap-joints[J]. Sensors and Actuators A: Physical,2002,101(1):92-98.
    [138]. Vishay. IRF840datasheet[EO/L]. www.vishay.com/docs/91070/91070.pdf.(2010-3-05)
    [139]. Silicon, L. AN169-USBXpress Programmers Guide[EO/L]. www. silabs. com/Support%20Documents/TechnicalDocs/an169.pdf.(2012-10-17)
    [140]. Analog, D. AD7656data sheet[EO/L]. http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7656/products/product.html.(2012-10-17)
    [141].贺柳,何维,田增山.基于Windows CE6.0双模终端的摄像头驱动开发[J].电视技术,2011,35(1):26-29.
    [142]. STMicroelectronics. STM32F103xC data sheet[EO/L]. http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1031/LN1565/PF164485.(2012-10-17)
    [143]. TI. OMAP3530data sheet[EO/L]. http://www.ti.com.cn/product/cn/omap3530.(2010-08-17)
    [144]. wikipedia. Qt[EO/L]. http://zh.wikipedia.org/zh-cn/Qt.(2012-12-06)
    [145].周德强,田贵云,王海涛,姚恩涛.小波变换在脉冲涡流检测信号中的应用[J].传感器与微系统,2008,27(10):115-117+120.
    [146].魏东旭.基于提升小波的脉冲涡流检测信号去噪的研究[J].淮阴师范学院学报(自然科学版),2009,8(3):207-210.
    [147].赵君,刘卫国,谭博.永磁同步交流牵引系统准实时小波降噪研究[J].电机与控制学报,2009,13(6):926-932.
    [148].蒋东方,陈明.一种实时小波降噪算法[J].仪器仪表学报,2004,25(6):781-783.
    [149]. XIA, R.,Meng, K.,QIAN, F.,WANG, Z.-L. Online wavelet denoising via a movingwindow[J]. Acta Automatica Sinica,2007,33(9):897-901.
    [150]. Sweldens, W.,Schr der, P. Building your own wavelets at home[J]. Wavelets in theGeosciences,2000:72-107.
    [151]. Donoho, D. L. De-noising by soft-thresholding[J]. Information Theory, IEEETransactions on,1995,41(3):613-627.
    [152]. Tian, G.,Sophian, A.,Taylor, D.,Rudlin, J. Wavelet-based PCA defect classificationand quantification for pulsed eddy current NDT[C]. Science, Measurement and Technology,IEE Proceedings-,2005;141-148.
    [153]. James, C. J.,Lowe, D. Extracting multisource brain activity from a singleelectromagnetic channel[J]. Artificial Intelligence in Medicine,2003,28(1):89-104.
    [154]. Vigário, R.,Sarela, J.,Jousmiki, V.,Hamalainen, M.,Oja, E. Independent componentapproach to the analysis of EEG and MEG recordings[J]. Biomedical Engineering, IEEETransactions on,2000,47(5):589-593.
    [155]. He, Y.,Pan, M.,Luo, F.,Tian, G. Reduction of lift-off effects in pulsed eddy currentfor defect classification[J]. Magnetics, IEEE Transactions on,2011,47(12):4753-4760.
    [156]. Yang, G.,Zhang, Q.,Yang, Y.,Tian, G. Y. Novel statistical technique of defectiveinformation extraction in Pulsed eddy current NDE[C]. Information and Automation (ICIA),2011IEEE International Conference on,2011;813-816.
    [157]. Kim, J.,Yang, G.,Udpa, L.,Udpa, S. Classification of pulsed eddy current GMR dataon aircraft structures[J]. NDT&E International,43(2):141-144.
    [158].高军哲,潘孟春,罗飞路,陈棣湘.谱分析型多频涡流检测的信号处理方法研究[J].电子测量与仪器学报,2011,25(1):16-22.
    [159]. Vasic, D.,Bilas, V.,Ambrus, D. Pulsed eddy-current nondestructive testing offerromagnetic tubes[J]. Instrumentation and Measurement, IEEE Transactions on,2004,53(4):1289-1294.
    [160]. de Haan, V. O.,de Jong, P. A. Analytical expressions for transient induction voltagein a receiving coil due to a coaxial transmitting coil over a conducting plate[J]. Magnetics,IEEE Transactions on,2004,40(2):371-378.
    [161].徐志远,武新军,黄琛,康宜华.有限厚铁磁性试件脉冲涡流响应研究[J].华中科技大学学报:自然科学版,2011,39(6):91-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700