声发射信号处理系统与源识别方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声发射信号处理系统是声发射检测的关键环节,也是声发射技术的重点研究内容。本文对声发射信号特性进行分析,采用小波分析和支持向量机等信号处理技术,针对声发射处理系统软硬件设计、声发射信号信噪比提高、声发射源定位时延估计和声发射源分类识别等关键技术展开研究,主要工作如下:
     设计了基于波形分析的高速多通道声发射信号采集处理系统,构建了具有通用性、可扩展性的嵌入式硬件结构,以满足声发射信号处理快速性和大计算量的需求,提高了声发射信号采集的精度,并为后续研究工作的开展提供了完备的软硬件平台。
     研究了声发射信号信噪分离方法,针对传统小波变换算法复杂度高、运算速度慢不利于实时声发射信号去噪预处理的问题,提出了一种运算速度快、结构简单的基于提升小波的声发射信号去噪算法,有效地提高信噪比并易于硬件实现。
     系统分析了时延估计对声发射源定位精度的影响,利用小波分析良好的滤波特性,将小波分析与相关分析相结合,提出一种基于小波变换的相关时延估计方法,构建了基于Coif5小波的时延相关估计算法,解决传统时延相关估计方法易受噪声影响,导致时差定位精度低的问题。
     通过对复合材料声发射信号传播特性的分析,结合基于小波的相关时延估计算法,提出了基于声速修正的改进时差定位算法,解决了在复合材料声发射频度过高、传播衰减过大或检测通道数有限时无法采用声发射时差定位的问题,提高了复合材料声发射源定位精度。
     以提高小样本数据集下声发射源识别准确率为目的,构建了声发射信号小波包特征参量提取算法,将小波包特征能量分布系数作为分类器的输入特征向量,提出了一种基于二叉决策树分类策略的支持向量机多分类方法,提高了声发射源的识别准确率。
Acoustic emission (AE) is an important non-destructive testing technology and its major objective is to locate and identify AE source in order to detect the damage degree and the service life of testing objects. AE signal analyzing and processing is the only way to achieve this goal. Research about AE signal processing system with higher performance and more effective AE sources identification method which helps to improve the identification, assessment and positioning accuracy of AE source has important theoretical significance and practical value.
     At present, with the AE detection range expanding and test object more diversification, the traditional AE signal processing techniques and testing instruments based on the parameters analysis hardly improve the ability of resolution, filtering and classification. Thus waveform analysis technology became a new research direction and research emphases of the AE signal processing. However the signal processing techniques based on waveform analysis are the difficulty and bottleneck of AE testing because the AE signal is a kind of weak signal hidden in the strong background noise which has the characteristic such as nondeterminacy, unpredictability, transient and multiformity. Combined with the characteristics of AE signal, new information processing technologies such as the wavelet analysis and support vector machine (SVM) model identification are introduced into the AE signal processing field to solve the problem above. The research focus on such key technical problems as processing system hardware and software design, filtering processing, time delay estimation, source location and classification.
     1. High-speed multi-channel acoustic emission signal processing system design based on the waveform analysis
     Aiming at the shortcoming of existing AE signal processing system in improving AE testing performance, a high-speed multi-channel acoustic emission signal processing system and its software and hardware function module were designed with the general and expansibility.
     Based on PCI bus data communication mode between DSP and computer, the acoustic emission data acquisition and pretreatment system were designed by using DSP and FPGA embedded hardware structure. Various functions such as acoustic emission data analysis, display and output were realized by using powerful display function and rich software programming resources of the computer system. The system satisfies the requires of high speed and large amount of calculation for acoustic emission signal processing. It improved the acoustic emission signal acquisition and processing precision and provided a complete software and hardware platform for subsequent research work.
     2. The study of acoustic emission signal de-noising method based on wavelet analysis
     After studying denoising methods and steps based on wavelet analysis, three denoising methods including wavelet modulus maxima algorithm, wavelet scales related law algorithm and wavelet threshold method were compared for their quality and applicable conditions. Then the wavelet threshold denoising method was identified as the key research content for its simple structure and small amount of calculation.
     After analyzing the key technical issues about the threshold function selection and wavelet threshold optimization, comparative characteristics between the soft and hard thresholding function was studied and a half soft thresholding function was adopted for denoising. The signal-to-noise ratio and minimum mean square error were used as denoising effect evaluation index. The denoising effects of Wavelet functions including db6、sym8 and coif5 were analyzed through computer simulation experiment.
     Aiming at the shortcoming of traditional wavelet de-noising methods like poor flexibility, slow speed and hardware implementation difficulties, and a denoising method based lift wavelet was proposed. The denoising method was improved by using adaptive lifting schem and combined with the half soft thresholding function for AE signal denoising. And the results of the improved method are compared with that of the traditional wavelet transform and the lift wavelet transform. The simulated results showed that the adaptive lifting scheme had the best denoising results and has the advantages of simple structure, fast speed and easy hardware implementation.
     3. The study of cross correlated time delay estimation method based on wavelet analysis
     After studying the principle and characteristics of time difference location method for acoustic emission source, the influence of time delay estimation for positioning accuracy was analyzed. And a cross correlated time delay estimation method based on wavelet transform is proposed. The wavelet analysis is combined with the correlation analysis in the proposed method.
     From the wavelet transforming of acoustic emission signal, theory formula of the proposed method was deduced. Considering the nonstationary random characteristic of AE signal, the cross correlated time delay estimation algorithm based on the Coif5 wavelet is proposed after analyzing of the orthogonality, symmetry and smoothness and regularity of the wavelet function. The proposed algorithm was compared with the original correlated time delay estimation algorithm by computer simulation analysis under the condition of different noise. The results showed that. the proposed algorithm reduced the impact caused by the acoustic emission wave frequency dispersion and the noise, and improved the positioning accuracy without restriction of the signal noise correlation.
     4. Research and Improvement of AE time difference location method
     The propagation properties analysis of AE signal in composite materials showed that the sound velocity was very different at different direction of propagation because of the non-uniformity and anisotropic. But the sound velocity is set for a constant in the existing time difference location methods, which resulted in low positioning accuracy when the method was used for processing AE signal in composite materials. Even the method can not work under the condition with high frequency of AE event, serious transmission attenuation or limited inspection channels.
     Combining the time difference estimation method based on wavelet transform, an improved time difference location method was proposed to solve the problem. The influence caused by the sound velocity difference was eliminated by using a sound velocity- angle relationship equation. Comparative experiments of the time difference location method and its improved method were completed on the Carbon fiber composite material plate. The results showed that the proposed method improved the acoustic emission source location accuracy effectively, and the positioning error within 3%.
     5. Study of AE source classification method based on SVM
     After studying the existing AE signal classification method by analyzing the advantages and disadvantages, a classification method for AE source based on SVM is proposed. The limitations of the existing classification methods for AE signal include that researchers need to have rich background knowledge and data analysis experience for the method such as amplitude identification, frequency identification and statistical pattern recognition, and fuzzy diagnosis and artificial neural network method relies on statistical characteristics under the large sample data set. But in practical application, acoustic emission signal has irreversibility that result in the acoustic emission signal of pattern recognition usually does not have large amounts of sample data. The contradiction causes that the methods above have the problem such as getting in local minimization and poor generalization ability which restrict the acoustic emission sources identification accuracy improvement.
     After studying the application of wavelet packet analysis in signal processing, this paper proposed a wavelet packet-based characteristic parameter extraction method for AE signal. Combing the method with the multi-classification methods of SVM, the AE signals caused by the damage modes including fiber fracture, matrix cracking and interface separation were classified. The experiment result proved the feasibility of the AE source classification method based on SVM, and the identification accuracy effectively was effectively improved.
引文
[1]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测. 2002, 24(1): 23-28.
    [2] SCRUBY C B, COLLINGWOOD J C, WADLEY H. A new technique for the measurement of acoustic emission transient and their relationship to crack propagation [J]. J. Phys. D: Appl. Phys, 1978, (11): 2359-2369.
    [3]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术[J].无损检测. 2002, 24(6): 257-261.
    [4]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.
    [5]祝海龙.统计学习理论的工程应用[D].西安:西安交通大学机械工程学院,2002.
    [6]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.声发射检测[M].北京:机械工业出版社,2005.
    [7]刘国华.声发射关键技术研究[D].浙江:浙江大学信息科学与工程学院,2008.
    [8]袁少波.重庆大学.焊接裂纹声发射监测技术的研究[D].重庆:重庆大学机械工程学院,2006.
    [9]袁振明.数字式声发射仪的发展[J].无损探伤. 1999, (2): 1-5.
    [10] PAC PolyMODAL Wave Toolbox for MISTRAS-2001. Physics Acoustic Corporation.Princeton, NJ.08543-3135, USA.
    [11]许凤旌. PAC公司近年声发射技术的新发展及代表性产品[EB/OL]. 2007-10-19. http://www.pacndt.com.cn/download.htm
    [12]戴光,沈功田,马羽宽.中国声发射专业委员会的活动概况[C].第十一届全国声发射学术会议论文集. 2006: 1-6.
    [13] GREEN A T, LOCKMAN C S, STEELE R K. Acoustic verification of structural integrity of Polaris chambers [J]. Mordern Plastics. 1964, 41(11): 137- 139,178,180.
    [14] EGLE D M, TARO C A. Analysis of acoustic-emission strain waves [J]. The Journal of the Acoustical Society of America. 1967, 41(2): 321-328.
    [15] PRINE D W. Inspection of nuclear reactor welding by acoustic emission [J]. Welding Design and Fabrication. 1977, 50(1): 74.
    [16] LANDIS E, OUYANG C, SHAH S P. Acoustic emission source locations in concrete. ASCE Engineering Mechanics Specialty Conference. 1991[C]: 1051-1055.
    [17] RICE A. Characteristics of acoustic emission sensors employed for tool condition monitoring. Proceedings of the Seventh Workshop on Supervising and Diagnostics of Machining Systems. 1996[C]: 241-252.
    [18] RAVINDRA H V. Some aspects of acoustic emission signal processing [J]. Journal of Materials Processing Technology. 2001,109:242~247.
    [19] PAULO R, AGUIAR P J A, SEMI E C, et al. In-process grinding moinitoring byacoustic emission. 2004[C], ICASSP04, (5): 405-408.
    [20] GB/T18182-2000.金属压力容器声发射检测及结果评价方法.北京:中国标准出版社出版, 2000.
    [21] SHIWA M. Analysis of acoustic emission waveforms [J]. J. Acoustic Emission. 1990, 10(2): 35-41.
    [22] LIM J, MICRO K T. Cracking in stainless steel pipe detection by using acoustic emission and crest factor technique. Instrumentation and MeasurementTechnology Conference. Warsaw, Poland, May 1-3, 2007[C], IEEE Xplore: 1-3.
    [23]沈功田.金属压力容器的声发射源特性及识别方法的研究[D].北京:清华大学机械系, 1998.
    [24] STEPHENS R, POLLOCK A A. Waveforms and frequency spectra of acoustic emission [J]. J Acoust Soc Am.1971, (50): 904-910.
    [25] GORMAN M R. Plate wave acoustic emission [J]. Journal of Acoustic Emisison. 1991, 90(1): 358-364.
    [26] PROSSER W H, JACKSON K B, KELLAS S, et al. Advanced waveform-based acoustic emission detection of matrix cracking in composites [J]. Materials Evaluation. 1995, 53(9): 1052-1058.
    [27] PROSSER W H. Applications of advanced, waveform based AE techniques for testing composite materials [C]. In Proceedings of the SPIE Conference on Nondestructive Evaluation Techniques for Aging Infrastructure and Manufacturing: Materials and Composites. SPIE, Scottsdale, 1996: 146-153.
    [28] SURGEON M, WEVERS M.Modal analysis of acoustic emission signals from CFRP laminates [J]. NDT&E International. 1999, 32(3): 311-322.
    [29] SURGEON M, BUELENS C, WEVERS M, et al. Waveform based analysis techniques for the reliable acoustic emission testing of composite structures. Journal of Acoustic Emission (USA). 2001, (18-19): 34-40.
    [30] JEONG H, JANG Y S. Wavelet analysis of plate wave propagation in composite laminates [J]. Composite Structures, 2000, 49: 443-450.
    [31] A Terchi,Y H J Au. Acoustic Emission Signal Processing. Measurement and Control. 2001, 4(8): 240-244.
    [32] NI Q Q, IWAMOTO M. Wavelet transform of acoustic emission signals in failure of model composites [J]. Engineering Fracture Mechanics, 2002, 69: 717-728.
    [33] SCRRANO E P, FABIO M A. Application of the wavelet transform to acoustic emission signals processing [J]. IEEE Transaction on signal processing. 1996, 44(5): 1270-1275
    [34] JOSE J, ROSA G, LORET I L, et al. Wavelets and wavelet packets applied to detect and characterize transient alarm signals from termites [J]. Measurement. 2006, 39: 553-564.
    [35] Terchi A, Au Y H J. Acoustic emission signal processing [J]. Measurement and Control.2001, 4(8): 240-244
    [36]耿荣生.声发射信号的波形分析技术[C].中国机械工程学会无损检测分会第七届年会/国际无损检测技术研讨会论文集.中国汕头:汕头超声仪器研究所. 1999, 566-569.
    [37] HAMSTAD M A, DOWNS K S. On characterization and sources location of acoustic emission composite structures in real size-A waveform study [J]. Journal of Acoustic Emission. 1995, 13(1 /2): 31-41.
    [38] JIAO J P, HE C F, WU B, et al. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor [J]. International Journal of Pressure Vessels and Piping, 2004, 81:427-431.
    [39] GANESAN R, DAS T K, SIKDER A K , et al. Wavelet-based identification of delamination defect in CMP (Cu-Low k) using nonstationary acoustic emission signal [J]. IEEE transactions on semiconductor manufacturing, 2003, 16(4): 677-685.
    [40] BENTLY P G, BEESLEY M J. Acoustic emissionmeasurements on PWR weld material with inserted defects using advanced instrument [J]. J. Acoustic Emission.1988, 7(2): 59-79
    [41]刘时风.焊接缺陷声发射检测信号谱估计及人工神经网络模式识别研究[D].清华大学机电工程学院. 1996.
    [42]昊更石,梁德群,田原.基于遗传算法的分形图像压缩方法[J].西安交通大学学报.1999, 33 (4) : 34-37
    [43] ANTONINI M, BARLAUD M. Image coding using zerotrees of wavelet transform [J]. IEEE Trans. On Image Processing. 1992, 1(40): 205-220
    [44] MOHOLKAR V S, HUITEMA M, REJVEKD S. Characterization of an ultrasonic system using wavelet transforms [J]. Chemical Engineering Science. 2002, 57: 617-629
    [45] S.Kadambe, P.Srinivasan. Application of adaptive wavelet for speech [J]. Optical Engineering.1994, 33(7): 2204-2210
    [46]刘贵立,张国英.基于小波包的遗传神经网络故障诊断系统研究[J].机械工程学报. 2000, 36(9): 110-112
    [47] SUZUKI H, KINJO T, TAKEMOTO M, et al. Fracture-mode determination of glass-fiber composites by various AE processing [J]. Progress in Acoustic Emission VIII. The Japanese Society for NDI. 1996, 47-52.
    [48] GANG Q, ALAN B, JAVAD H, et al. Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites [J]. Composites Science and Technology, 1997, 57: 389-403.
    [49]崔岩,李小俚,彭华新等.基于声发射小波分析的非连续增强金属基复合材料界面表征[J].科学通报. 1998, 43(6):656-657.
    [50] JEONG H. Analysis of plate wave propagation in anisotropic laminates using awavelet transform [J]. NDT&E International, 2001, 34: 185-190.
    [51] CHEN H G, YAN Y J, JIANG J S. Vibration-based damage detection in composite wingbox structures by HHT [J]. Mechanical Systems and Signal Processing. 2006,1-15.
    [52] JIANG C H, YOU W, WANG L S. Analysis and study of noise elimination through wavelet in detection of acoustic emission. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an,2-5 November 2003[C]. 310-313.
    [53] TOMASZ B, DARIUSZ Z. Application of wavelet analysis to acoustic emission pulses generated by partial discharges [J]. IEEE Transactions on dielectrics and electrical insulation. 2004,11(3): 433-449
    [54]李晓梅,朱援祥,孙秦明.基于小波包分析的声发射源定位方法[J].武汉理工大学学报. 2003, 25(2): 91-94.
    [55] SUNG D U, KIM C G, HONG C S. Monitoring of impact damages in composite laminates using wavelet transform [J]. Composites: Part B, 2002, 33: 35-43.
    [56]何建平,王宁.基于小波变换的岩体AE波形特征研究.工矿自动化. 2007(4):14-18.
    [57]金解放,赵奎,王晓军等.岩石声发射信号处理小波基选择的研究.矿业研究与开发. 2007, 27(2):1216.
    [58] SWELDENS W. The lifting scheme: a construction of second generation wavelets [J]. SIAMJ. MATH. ANAL. 1998, 29 (2) : 511-546
    [59] MELTON R B. Classification of NDE waveforms with autoregressive models [J]. J. Acoustic Emission. 1982, 1(4): 266-272.
    [60] GRAHAM L J, ELSLEY R K. AE source identification by frequency spectral analysis for an aircraft monitoring application [J]. J. Acoustic Emission. 1983, 2(1): 47-56.
    [61] OHSTU M, ONO K. Pattern recognition analysis of magneto mechanical acoustic emission signals [J]. J. Acoustic Emission. 1984, 3(2): 69-80.
    [62] ONO K, OHSTU M. Discrimination of fracture mechanisms via pattern recongniton analysis of AE signals during fracture testing [J]. J. Acoustic Emission. 1984, 4(2/3): S316- S320.
    [63] KWON O Y, ONO K. Acoustic emission characterization of the deformation and fracture of an SiC-Reinforced aluminum matrix composite [J]. J. Acoustic Emission. 1990, 9(2): 123-130.
    [64] ONO K, HUANG Q X. Pattern recognition analysis of acoustic emission signals [J]. Progress in Acoustic EmissionⅦ, The Japanese Society for NDI, Japan, 1994, 69-78.
    [65] CHAN R W. Improving acoustic emission crack/leak detection in pressuriaed piping by pattern recognition techniques. [J]. J. Acoustic Emission. 1989, 8(2/3): S12-S15.
    [66]刘时风.焊接缺陷声发射检测信号谱估计及人工神经网络模式识别研究[D].清华大学机电工程学院. 1996.
    [67]沈功田,段庆儒,周裕峰,等.压力容器声发射信号人工神经网络模式识别方法的研究[J] .无损检测. 2001, 23(4): 144-146.
    [68]刘国光,程青蟾,李燮里,等.声发射神经网络模式识别[J].仪器仪表学报. 2003, S2: 406-407, 410.
    [69] BELCHAMBER R M. Evaluation of pattern recognition analysis of emission from stressed polymers and composites [J]. J. Acoustic Emission. 1985, 4(4): 71-84.
    [70] MURTHY C R L. Application of pattern recognition concepts to acoustic emission signals analysis [J]. J. Acoustic Emission. 1987, 6(1): 19-28.
    [71] CHICHIBU A. Principal components analysis of AE waveform parameters for investigating an instability of geotechnical structures [J]. J. Acoustic Emission. 1993, 11(4): S47-S56.
    [72]高隽.人工神经网络原理及仿真实例分析[M].机械工业出版社. 2003.
    [73] VAPNIK V N. Support vector networks [J]. Machine Learning. 1995, 20(2).
    [74] GANAPATHIRAJU A, HAMAKER J E, PICONE J. Applications of support vector machines to speech recognition [J]. IEEE Transactions on Signal Processing. 2004, 52(8): 2348-2355.
    [75] Fagerlund S. Bird species recognition using support vector machines [J]. EURASIP Journal on Advances in Signal Processing. 2007: 1-8.
    [76] JONSSON K, Kittler J, LI Y P, et al. Support vector machines for face authentication [J]. Image and Vision Computing. 2002, 20(5-6).
    [77] WIDODO A, KIM E Y E, SON J D, et al. Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Systems with Applications. 2009, 36: 7252-7261
    [78]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测. 2002, 24(4): 72-77.
    [79]叶琳,张艾萍.声发射技术在设备故障诊断中的应用[J].新技术新工艺. 2000, (8): 16-17.
    [80]万振凯.声发射技术在三维编织复合材料测试中的应用研究[J].无损检测. 2003, (2): 7-10.
    [81]刘怀喜.复合材料飞轮的损伤与断裂的声发射研究[D].武汉理工大学. 2005.
    [82]杨杰.声发射信号处理与分析技术的研究[D].吉林大学通信工程学院, 2005.
    [83]杨盛良,刘军,杨德明.复合材料损伤过程的声发射研究方法[J].无损检测. 2000, 22(7):303-306.
    [84]李善春.管道气体泄漏的声源与声发射信号特性研究[D].大庆石油学院. 2007.
    [85]耿荣生,沈功田,刘时风.声发射信号处理与分析技术[J].无损检测. 2002, 24(7): 23-28.
    [86]耿荣生,沈功田,刘时风.模态声发射——声发射信号处理的得力工具[J].无损检测. 2002, 24(8): 341-345.
    [87] MITRAKOVIC D, GRABEC I, SEDMAK S. Simulation of AE signals and signal analysis systems [J]. Ultrasonics. 1985, 23: 227-232.
    [88]李家林,马羽宽,董云朝.声发射检测中用人工神经网络剔噪的分析与研究[J].无损检测. 1999, 21(9): 399-401.
    [89]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社, 2006.
    [90] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence. 1989, 11(7).
    [91]周伟. MATLAB小波分析高级技术[M].西安:西安电子科技大学出版社, 2006.
    [92]白鹏,张喜斌,张斌,等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社, 2008.
    [93]杨明鉴,孙晓利,杨子谊. AE-04声发射检测系统的研制[J].无损检测. 1997, 9(7): 191-197.
    [94]梁家惠,尹作友.声发射仪器的发展[J].无损检测. 1998, 20(10):285-291.
    [95]龙飞飞.新型声发射检测系统与定位技术研究[D].大庆石油学院. 2002.
    [96]姚静毅.基于DSP的数据采集系统的研究和实验声发射信号的检测[D].广西大学. 2005.
    [97]伍蒋军.高速多通道声发射同步数据采集系统的研制[D].广西大学. 2007.
    [98] WEVERSA M, RIPPERTA L, PAPYB J M, et al. Processing of transient signals from damage in CFRP composite materials monitored with embedded intensity-modulated fiber optic sensors [J]. NDT&E International, 2006, 39: 229-235.
    [99]刘和平,邓力,江渝,等.数字信号处理器原理、结构及应用基础—TMS320F28x[M].北京:机械工业出版社, 2007.
    [100]刘强.基于PCI总线的光线声发射信号采集系统研究与实现[D].西北工业大学. 2006.
    [101]许春康,黄筱调,洪荣晶.基于DSP的PCI通用运动控制卡的硬件设计[J].微计算机信息. 2009, 25(5-2):150-152
    [102]袁振明,马羽宽,何泽云.声发射技术及其应用[M].机械工业出版社, 1985.
    [103]刘镇清,黄瑞菊.小波变换及其应用[J].无损检测. 2001, 23(4): 174-177.
    [104]张平,施克仁,耿荣生,等.小波变换在声发射检测中的应用[J].无损检测. 2002, 24(10): 436-439, 442.
    [105] TIAN Y, EWIN P L, SUTTON S, et al. PD characterization using wavelet decomposition of acoustic emission signal. International conference on solid dielectrics, Toulouse, July 5-9, 2004[C].
    [106] TOGNOLA G, RAVAZZANI, RUOHONEN J, et al. Time-frequency analysis of acoustic emissions: a wavelet approach [J]. IEEE-EMBC and CMBEC. 1995, Theme4:Signal processing. 1067-1068.
    [107] JITSUKAWA N, OGAWA T, KANADA H et al. Time-frequency analysis of impact sound of composite materials. Proceedings of the 41st SICE Annual Conference - SICE 2002[C]. 1076-1079.
    [108] GROSSE C U, FINCK F, KURZ J H, et al. Improvements of AE technique using wavelet algorithms, coherence functions and automatic data analysis [J]. Construction and Building Materials. 2004, 18: 203-213.
    [109] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika. 1994, 81(3): 425-455.
    [110]赵继印,李先涛,赵静荣,等.基于半软阈值法的图像小波去噪方法[J].大庆石油学院学报. 2004, 28(1): 63-66.
    [111] JANSEB M, MALFAIT M, BULTHEEL A. Generalized cross validation for wavelet thresholding [J]. Signal Processing, 1997, 56(1): 33-44.
    [112] CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Transactions on Image Processing. 2000, 9(9): 1532-1546.
    [113] KOICHI K, KOICHI N, SHIGERU T. FPGA-based lifting wavelet processor for real-time signal detection [J]. Signal Processing, 2004, 84: 1931-1940.
    [114] Daubechies I, Swenldens W. Factoring wavelet transform into lifting steps[J].Journal of J Math Anal Appl, 1998, 4( 3) : 247- 269.
    [115] CLALYPOOLE R, BARANIUK R. Adaptive wavelet transforms via lifting. IEEE Inf. Conf. Acoust. Speeeh and Signal Proeessing. 1998, 3: 1513-1516.
    [116] PIELLA G, HEIJMANS H J. Adaptive lifting schemes with perfect reconstruction [J]. IEEE Trans. On signal processing. 2002, 50(7): 1620-1630.
    [117] AMIRI M., RABIEE, H.R. A new adaptive lifting scheme transform for robust object detection. Acoust. Speeeh and Signal Proeessing. 2006, ICASSP 2006 Proceedings. 2006, 2: 352-355
    [118]沈功田,耿荣生,刘时风.声发射源定位技术[J].无损检测. 2002, 24(3): 114-125
    [119]徐彦廷,孙茂成,李伟,等.声源定位问题研究及误差分析[J].无损检测. 1999, 25(5): 199-202.
    [120] ZHAO J R, WANG K. Wireless locating method for point of impact based on acoustic technique[C]. International Conference on Communication Software and Networks 2009 (ICCSN 2009). IEEE Computer Society: 353-357.
    [121]沈功田,耿荣生,刘时风.连续声发射信号的源定位技术[J].无损检测. 2002, 24(4): 164-167
    [122] DING Y, REUBEN R L, STEEL J A. A new waveform method for analysis for estimating AE wave arrival times using wavelet decomposition [J]. NDT&E International, 2004, 37(4): 279-290.
    [123]龚斌,齐辉,马春华,等.一种声发射源的新型平面定位方法研究[J].声学技术.2006, 25(2): 107-109.
    [124]龚斌,金志浩,齐辉,等.无需测量声速的声发射源定位方法研究[J].仪器仪表学报. 2007, 28(1): 185-188.
    [125]陈玉华,刘时风,耿荣生.声发射信号的谱分析和相关分析[J].无损检测. 2002, 24(9): 395-399.
    [126]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].电子工业出版社, 2005.
    [127]雷涛,阳能军,龙宪海,等.一种针对复合材料的声发射源定位方法研究[J].振动与冲击. 2008, 7(S): 25-27.
    [128]杨璧玲,张慧萍,晏雄.模式识别在复合材料声发射信号分析中的应用[J].玻璃钢/复合材料, 2007, (2): 51-53.
    [129]李光海,刘时风,耿荣生,沈功田.声发射源特征识别的最新方法[J].无损检测. 2002, 24(12): 534-538.
    [130]方瑞明.支持向量机理论及其应用分析[M].中国电力出版社, 2007.
    [131] GONZALEZ J J, PUNTONET C G. An application of the independent component analysis to monitor acoustic emission signals generated by termite activity in wood [J]. Measurement. 2005, 37: 63-76.
    [132]徐勇,张重阳,杨静宇.基于主分量特征与独立分量特征的人脸识别实验[J].计算机工程与设计. 2005, 26(5): 1155-1157,1184.
    [133]付元杰.基于时频能量分析的声发射特征信号的提取方法研究[D].广西大学, 2006.
    [134]陈白.基于小波包变换和小波阈值消噪的语音特征提取[J].机电工程. 2008, 25(9): 28-30.
    [135]李世玲,李治,李合生.基于小波包能量特征的滚动轴承故障监测方法[J].系统仿真学报. 2003, 15(1): 76-81.
    [136]褚福磊,王庆禹,卢文秀.用声发射技术与小波包分解确定转子系统的碰摩位置[J].机械工程学报. 2002, 38(3): 139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700