河南南阳独山玉的宝石学及其成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独山玉在我国乃至世界玉石家族中属独一无二的品种,质优罕见,具有很高的科研价值、巨大的经济价值和独特的工艺价值,其矿床地质特征、成因产状及宝石学特征在国内外具有代表性。本文系统地研究了独山玉的矿物岩石学特征、宝石学特征、成因机理等内容。
     根据野外地质调查发现独山玉围岩普遍发生了变质作用,具碎裂岩化、糜棱岩化及强烈蚀变现象,独山玉以规律的脉状和多期多阶段侵入状产出;显微观察发现独山玉及其围岩受到了比较强烈的应力作用,其中的矿物形成是多期次的。
     本文查明了独山玉的主要组成矿物有斜长石(主要为钙长石)、黝帘石、角闪石、另有云母类矿物、榍石、电气石、葡萄石、磷灰石、方解石、绿泥石和不透明的铁质矿物(主要为赤铁矿、铬铁矿、黄铁矿和磁黄铁矿)等次要矿物,它们在不同颜色的独山玉中的含量变化较大。
     详细阐述了独山玉矿物组合及其结构特征规律,并从成因矿物学的角度总结了独山玉中的矿物生成顺序,发现并总结了独山玉的结构并系统研究了独山玉的岩石化学特征。
     以广义和狭义的方式对独山玉进行定义,提出以矿物组合为依据的分类方案,厘定了独山玉的质量评价标准,系统测定独山玉的宝石学参数并对独山玉的色度学进行计算,解释了独山玉呈色的某些原因。
     不同颜色独山玉常量和微量元素的含量存在较大的差别,微量元素Ti、V、Cr、Mn、Fe和它们的寄主矿物组合对独山玉的呈色起着重要的作用,独山玉都富集了高含量的Ba和Sr,经历了复杂的演化过程,与其围岩(超基性岩)有成因关系。
     从独山玉形成的地质条件、成矿物源、热液作用、玉化过程及成矿阶段等方面入手,对独山玉的成矿机理进行了深入探讨,即独山玉矿的形成是多种地质作用特别是韧性剪切作用综合的结果,成玉的总体过程表现为含科长石成分的岩浆后热液沿辉长岩中构造裂隙贯入,成矿表现为多阶段性,各阶段的物化条件和应力作用不同,从而形成不同结构、不同矿物组合的各色独山玉脉体,独山玉的形成温度大约在2300C-3300C,为中(高)温热液矿床。
As one of the most widely used jade enjoying a long application history Dushan jade plays an important role in Chinese jade culture, and holds a unique position in Chinese colorful and magnificent jade culture. Dushan Jade is indispensable in Chinese gem industry because of its good quality and infrequence. Dushan jade is in a class by oneself in the world with high research and economic value as well as art level. What’s more, the deposits, genesis, occurrence and geological characteristics are representational home and abroad. This paper research the mineral combination, petrology characteristic, geological characters, genesis&mechanism and others related to Dushan Jade in details.
     On the foundation of detailed field investigation, Occurrence of Dushan jade’s wall rock of is veins and muti-phases form with prevalent metamorphism process. The cataclasm lithification, mylonite lithification and strong alteration phenomena is observed. At the same time, Dushan jade and its wall rock undertook strong stress, and the minerals were mutil-periodic.
     The main minerals are plagioclase(indianite), zoisite, hornblende, and the minor minerals were mica, sphene, prehnite,tourmaline, tremolite, calcite, diopside,apatite, opaque iron mineral ( hematite , chromite, pyrites, pyrrhotite ) and so on. But the content of these minerals in the Dushan jade varied with the colors of Dushan jade. Mineralogy analysis cleared about the minerals combination laws in different color Dushan jades. This paper summarized the crystallization order of the minerals in Dushan jade by the view of genetic mineralogy.
     This dissertation defined the Dushan jade according to broad and narrow sense, put forward the class method integrated with business and local vulgarisms based on the combination of mineral. Those provided scientific basis to restrict and promote the market development of Dushan jade. At the same time, the paper measured the gemological parameters of Dushan jade systemically.
     The paper firstly utilized the ICP-AES to test and analyse Dushan jade, the result showed that the quantities of main elements and trace elements contained in different colors of Dushan jade are different and the transition metal elements such as Ti, V, Cr,Mn and Fe had strong influence on cause of Dushan jade color. Dushan jade enriched high content of Ba and Sr. And the analysis indicated that Dushan jade was related with mantle original rock showed that Dushan jade came through complex evolvement.
     The paper discussed the genesis of Dushan jade based on the geological condition, hydrothermal effect, mineralization process and phases. The conclusions were that compositive operations of multi-geographical , especially ductility shear processes resulted in the Dushan jade.The staggered mineralization was because of staggered fractures and pulsant hydrothermal. Different physical-chemical condition and stress effect in every phase made for multicolored Dushan jade veins with different structure and different mineral combination. Research on inclusions indicated that the mineralization temperature of Dushan jade is between 2300C-3300C and belonged to middle-high hydatogenic deposits.
引文
[1] 曹国权,鲁西早前寒武纪地质. 北京:地质出版社,1996.
    [2] 曹颖春,李潇,邢玉屏. 矿物的红外光谱.北京:地质出版社,1982.
    [3] 陈丰,林传易,张惠芬等.矿物物理学概论.北京:科学出版社,1995.
    [4] 陈吉飞,独一无二的独山玉.中国宝玉石,2002(2):50 .
    [5] 陈天虎.浙江治岭头金矿石英热释光研究.安徽地质,2000,10(1):29~35.
    [6] 承焕生,陈刚,朱海信.用质子激发 X 荧光分析技术鉴别玉器种类.核技术,1999,22 (4):233~237.
    [7] 邓燕华,袁奎荣,袁雁.翡翠矿床的成矿作用及我国翡翠找矿前景.云南地质,1998,17(3):407~409.
    [8] 邓燕华,缪秉魁.独玉成因及成岩成玉模式.桂林冶金地质学院学报,1991(增刊): 8~16.
    [9] 邓燕华.宝(玉)石矿床.北京:北京工业大学出版社,1991.
    [10] 邓燕华,缪秉魁.河南南阳独山发现橄榄质科马提岩.桂林冶金地质学院学报,1989(4):8~16.
    [11] 狄敬如,陈美华,周晓蓉.关于独山玉的几个问题讨论.珠宝科技,1999,11(2):54~56.
    [12] 高亚峰.河北省宝玉石资源.珠宝科技,1997(4):52.
    [13] 古方.源远流长话古玉.艺术市场,2004(5).
    [14] 郭守国、廖宗廷等.宝玉石学教程.北京:科学出版社,1998.
    [15] 郭颖,潘兆橹,熊宁等.八三玉的色度学研究.西安科技学院学报,2000,20(2):188~192.
    [16] 胡玲.显微构造地质学概论.北京:地质出版社,1998.
    [17] 胡学年,应科英.几种常见玉石的中红外反射图谱特征.宝石和宝石学杂志,2005(1):16.
    [18] 黄凤鸣,古清慧,邹严寒.翡翠的成分和结构特征及其与种或地的关系.宝石和宝石学杂志,2000,2(1),7~15.
    [19] 贾秀琴,韩松,王昌燧.中子活化分析对河南南阳独山玉的研究.核技术,2002,25(3):201~206.
    [20] 贾松海.河南玉石亟待重放异彩.河南国土资源,2004(11):30~31.
    [21] 江富建.独山玉岩石学特征分析.信阳师范学院学报(自然科学版),2005,18(3):285~289.
    [22] 江富建,周世全,王建中. “渎山大玉海”玉质探析.南阳师范学院学报(社会科学版),2005,4(2):117~124.
    [23] 江富建.独玉矿床成矿期及成矿模式研究.南阳师范学院学报(自然科学版),2004,3(9):76~80.
    [24] 江富建,白景锋.独玉的成矿大地构造背景分析.南阳师范学院学报(自然科学版),2003,2(3):68~72.
    [25] 江富建.高档独山玉的贵玉美.中国宝玉石,2003(1):15 .
    [26] 江富建.独玉矿床成因机制研究.南都学坛, 1997,(3),49~53.
    [27] 江富建,王军,杜兴堂.南阳独玉矿物学特征及工艺要求.南都学坛,1996,(6):54~57.
    [28] 江富建.南阳地区宝玉石资源开发现状与对策.南都学坛,1990,(3):15~16.
    [29] 江富建.试论中原古玉业的产生和发展.南都学坛,1988,(1):7~12.
    [30] 蒋楠.河南南阳独山玉成因矿物学研究及玉石评价:[硕士学位论文] .北京:北京大学,1993.
    [31] 李德惠.晶体光学(第二版).北京:地质出版社,1993.
    [32] 李虎侯.热释光断代. 香港:科学家出版社,1999.
    [33] 李光谟.《李济考古学论文集》,北京:文物出版社,1990.
    [34] 李劲松.独山玉及矿床地质.河南地质,1994(1):23~29.
    [35] 李劲松,赵松林.宝石大典(下册).北京:北京出版社,1991,1625~1638.
    [36] 李学清.河南南阳独山玉石.地质论评,1936(1):55~59.
    [37] 黎彤,倪守斌.地球和地壳的化学元素丰度.地质出版社,1990.
    [38] 刘剑丽.看南阳的玉雕艺术——浓缩的地方传统文化精华.东方艺术,2002(5).
    [39] 刘庆祥.宝石的透明度.矿物岩石地球化学通报,1999,18(4):383~384.
    [40] 李旭平,李一良,舒桂明.大别山黄镇榴辉岩和蓝晶石-石英脉中硬柱石分解的岩石学研究及其流体活动意义.科学通报,2005(10).
    [41] 林莜菁,杨昌明.河南省珠宝首饰业的现状分析及对策.宝石和宝石学杂志,2002,4 (4):46~48.
    [42] 柳志青.长春真人邱处机与独山玉.浙江国土资源,2004(3):56~57.
    [43] 鲁力,边秋娟.不同颜色品种独山玉的宝石矿物学特征.宝石和宝石学杂志,2004(2):4~7.
    [44] 栾秉璈.中国宝石和玉石.乌鲁木齐:新疆人民出版社,1989.
    [45] 栾秉璈.史前古玉玉质及玉料来源问题研究.南阳师范学院学报,2005,4(2):112~116.
    [46] 廖宗廷,周祖翼,马婷婷等.宝石学概论.上海:同济大学出版社,2005.
    [47] 廖宗廷.珠宝鉴赏.武汉:中国地质大学出版社,2003.
    [48] 廖宗廷,周祖翼,丁倩.中国玉石学.上海:同济大学出版社,1998.
    [49] 廖宗廷,赵娟,马婷婷.试论独山玉矿床的成因.上海地质,1998(2):38~42.
    [50] 廖宗廷.东秦岭造山带形成过程新探索.同济大学学报,1997(1):67~69.
    [51] 廖宗廷,周祖翼.东秦岭造山带形成过程新探索.同济大学学报,1997,25(1): 77-81.
    [52] 刘锋.玉器鉴别.商场现代化,1994(1):36~38.
    [53] 孟宪松,吴元全.中国独山玉.河南:河南人民出版社,2004.
    [54] 牟保磊.元素地球化学.北京:北京大学出版社,1999.
    [55] 彭文世,刘高魁.矿物红外光谱图集,科学出版社,1982.
    [56] 亓利剑,袁心强,曹妹芠.宝石的红外反射光谱表征及其应用.宝石和宝石学杂志,2005,7(4):21~25.
    [57] 丘家骧,林景仟.岩石化学.北京:地质出版社,1991.
    [58] 申晓景.河南宝玉石.档案管理,2005(3):18~19.
    [59] 申英,秦天健,高凤水等.方解石的热释光及测年方法研究.西南石油学院学报,2002,24(5):15-17.
    [60] 施光海,崔文元,于海侠.缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究.岩石学报,2001,17(3):483~491.
    [61] 宋志敏.阴极发光地质学基础.武汉:中国地质大学出版社,1993.
    [62] 孙云生.浅谈独玉矿床地质特征及成因类型.有色矿冶,2002,2(18),1~7.
    [63] 汤顺青.色度学.北京:北京理工大学出版社,1990.
    [64] 童银洪,袁奎荣.翡翠质地的综合评价.桂林工学院学报,1997,17(1):55~63.
    [65] 涂怀奎.河南宝玉石分布及其地质特征.河南地质,2000,18(2):92~96.
    [66] 涂怀奎.秦岭地区主要玉石矿床特征研究.地质找矿论丛,2000,15(3):85~91.
    [67] 涂怀奎.中国宝玉石分布特征的研究.中国宝玉石,1987(2):16~18.
    [68] 史群,赵树林.独山玉资源开发与保护.宝玉石周刊,2005 年 11 月 14 日.
    [69] 尹作为,赵雁.南阳玉雕市场前景乐观——运用宏、微观经济学有关理论分析南阳玉雕市场.珠宝科技, 99(1):54~55.
    [70] 王保湘.得天独厚的玉石资源——南阳独山玉的特点、勘查与开发.宝玉石周刊,2005年 11 月 7 日.
    [71] 王濮,潘兆橹,翁玲宝.系统矿物学(中册).北京:地质出版社,1984,26~36.
    [72] 王时麒,尤楠,王凤兰.二色宝——刚玉黝帘石的研究.珠宝科技,1999(3).
    [73] 吴淑琪,郭立鹤.傅立叶红外光谱技术在翡翠研究中的应用.岩矿测设,1997,16(4):250~255.
    [74] 吴元全.独山玉与南阳玉雕业.宝玉石周刊,2005 年 11 月 21 日.
    [75] 王瑛,戴玉龙编译.斜长石的晕彩效应(R.A.Howie,据 Gemmology,No.1,Vol.26,1998).珠宝科技,98(2):27~28.
    [76] 卫管一,张长俊.岩石学简明教程.北京:地质出版社,1985.
    [77] 吴开华,陈昌荣.包裹体特征在宝石鉴别中的应用研究.矿产与地质,1996(1).
    [78] 解广轰.大庙斜长岩和密云环斑花岗岩地岩石学和地球化学.科学出版社,2005.
    [79] 谢先德.中国宝玉石矿物物理学.广东:广东科技出版社,1999.
    [80] 徐安武,杨小勇,孙在泾等.河南南阳独山玉的 PIXE 研究.核技术,1999,22(9):533~538.
    [81] 徐树桐, 刘贻灿, 陈冠宝等.中国中东部大别山的几何结构和运动学.地质学报,2005,79(3).:330~336.
    [82] 俞宁,王时麒,杨东.独山玉透明度的控制因素及成因探讨.珠宝科技,2004(1):47~51.
    [83] 杨伯达. “玉石之路”的布局及其网络.南都学坛(人文社会科学学报),2004,24(3):113~118
    [84] 杨晶.河南省南阳市玉器市场现状及其应对“WTO”的改革建议.珠宝科技,2001(4):55~57.
    [85] 杨全喜.山东蒙阴苏家沟科马提岩岩石学特征.岩矿测试,2000,(19)1:58~63.
    [86] 杨绍卓.浅谈玉.珠宝科技,1994(1):23~24.
    [87] 杨永盛.踏玉和望玉.珠宝科技,1994(1):18~20.
    [88] 袁心强,亓利剑,郑南.镜外反射红外光谱的原理和测试技术.宝石和宝石学杂志,2005,7(4):18~20.
    [89] 张蓓莉.系统宝石学.北京:地质出版社,1997.
    [90] 张海萍,林杰.南阳玉器市场几种常见白玉及仿冒品的鉴别.珠宝科技,2002,14(2):32~33.
    [91] 张建洪,李朝晖,汪雪芳.南阳独山玉的矿物学研究.岩石矿物学杂志,1989(1):53~64 .
    [92] 张庆麟.宝石颜色的命名与判定方法评述.上海地质,67:24~31.
    [93] 张荣隋,唐好生,孔令广等.山东蒙阴苏家沟科马提岩的特征及其意.中国区域地质,2000,(20)3:236~245.
    [94] 赵令湖,马宏伟.南阳白独玉透明度的研究.地质科技情报,1998,17(1):33~35.
    [95] 郑公望,任秀生,田昭舆.油气藏地表热释光异常的研究.核电子学与探测技术,1999,19(2):81-83.
    [96] 钟华邦.独山玉研究.岩石学报,1986 (3):96 .
    [97] 钟华邦.河南省的宝玉石资源.珠宝科技,1994,9(3):46.
    [98] 周国庆.赣东北高压变质带中硬玉质岩石及其形成条件和保存条件.中国科学 D 辑,1997(1).
    [99] 周世全. 砚文化及其在中国文明史中的地位.南阳师范学院学报,2005(2).
    [100] 周世全.河南西峡—淅川一带的墨绿玉矿床及开发利用.矿产与地质,2004(2).
    [101] 周世全, 赵梅红.南阳玉雕史略.珠宝科技, 2003,15(5), 54~55.
    [102] 周世全.南阳独玉的质量评估.珠宝科技,2001(3).
    [103] 周世全.重阳玉——玉石家族中的新成员.珠宝科技,2001(1).
    [105] 周世全.南阳独玉及其工艺品.珠宝科技,1997(4).
    [106] 周世全,徐百顺,周敏.河南虎睛石及其开发利用.珠宝科技,1995(4):22.
    [107] 周征宇,廖宗廷,马婷婷.缅甸翡翠原生矿床成因机制新探.上海地质, 2005(1):58~61 .
    [108] 中国南阳独山玉质量评价标准研究报告,南阳师范学院独山玉文化研究会内部资料,2005.
    [109] 河南省区域地质志(河南地矿局编). 北京:地质出版社,1989.
    [110] 河南省地质矿产局第四地质调查队,河南省南阳市独山玉矿区普查地质报告,1984(9)
    [111] 河南省地质矿产局第四地质调查队,河南省南阳市独山玉矿区详细普查地质报告(补充部分),1986(3).
    [112] 中国社科院考古研究所安阳工作队,《安阳殷墟五号墓的发掘》,考古学报,1977(2):23~30.
    [113] 中国科学院矿床地球化学开放研究实验室,矿床地球化学,地质出版社,1995.
    [114] 中华人民共和国国家标准,GB/T 16553―2003 《珠宝玉石 名称》,中华人们共和国国家质量监督检验检疫总局.
    [115] 中华人民共和国国家标准,GB/T 16553―2003 《珠宝玉石 鉴定》,中华人们共和国国家质量监督检验检疫总局面.
    [116] P.H.Ribbe.长石矿物学.北京:地质出版社,1988.
    [117] [英] V.C.法默,矿物的红外光谱,科学出版社,1982.
    [118] A. Brunsmann, G. Franz, W. Heinrich. Experimental investigation of zoisite-clinozoisite phase equilibria in the system CaO-Fe2O3-Al2O3-SiO2-H2O, Contributions to Mineralogy and Petrology, 2005,143(1): 115 ~130.
    [119] A. Cahil, M. Najdoski and V. Stefov .Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. IV. FTIR spectra of protiated and partially deuterated nickel ammonium phosphate hexahydrate and nickel potassium phosphate hexahydrate. Journal of Molecular Structure, 2007,834(3).408-413.
    [120] Axel Brunsmann, Gerhard Franz and J?rg Erzinger. REE mobilization during small-scale high-pressure fluid–rock interaction and zoisite/fluid partitioning of La to Eu. Geochimica et Cosmochimica Acta, 2001,65 (2). 559-570.
    [121] B. E. Kalinowski, L. J. Liermann, S. L. Brantley, et al..X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochimica et Cosmochimica Acta, 2000,64 (4) 1331-1343.
    [122] Brandon L. Browne and James E. Gardner .The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth and Planetary Science Letters,2006,246(1):161-176.
    [123] Carswell, D.A. Wilson, R.N.Zhai. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos , 2000,52(4):121~155.
    [124] Cheng, H.S, Zhang, Z.Q. Zhang, B.Yang, F.J.. Non-destructive analysis and identification of jade by PIXE, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 219(7): 30~34.
    [125] Chul-Min Chon, Jae Gon Kim and Hi-Soo Moon . Kinetics of chromate reduction by pyrite and biotite under acidic conditions. Applied Geochemistry, 2006, 21(9): 1469-1481.
    [126] Chun-Ming Wu and Ben-He Cheng .Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocks. Lithos,2006, 89(1):1-23.
    [127] Chun-Ming Wu and Guochun Zhao. The metapelitic garnet–biotite–muscovite– aluminosilicate–quartz (GBMAQ) geobarometer. Lithos, In Press, Corrected Proof, Available online 9 January 2006.
    [128] David Buriánek and Milan Novák. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the BohemianMassif, Czech Republic. Lithos, 2007,94 (4). 148-164
    [129] Dirk Frei, Axel Liebscher, Antje Wittenberg, et al. Crystal chemical controls on rare earth element partitioning between epidote-group minerals and melts: an experimental and theoretical study. Contributions to Mineralogy and Petrology, 2003,146(2): 192 ~ 204.
    [130] Ernesto Palomba, Alessandra Rotundi and Luigi Colangeli. Infrared micro-spectroscopy of the martian meteorite Zagami. Extraction of individual mineral phase spectra. Icarus, 2006,182(3): 68-79.
    [131] Frisch,E.et al., Idendification of Bleached and Polymer Impregnated Jadeite. Gems & Gemology, 1992,28(3): 176~187.
    [132] F. Vanhaecke, G. De Wannemacker, L. Moens, et al. The use of sector field ICP-mass spectrometry for Rb-Sr geochronological dating. Fresenius' Journal of Analytical Chemistry, 371(7): 915~920.
    [133] Gianfranco Di Vincenzo, Sergio Rocchi. Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova Intrusive Complex, Antarctica, Contributions to Mineralogy and Petrology, 2004,137(1):15~35.
    [134] Gill.J.B. Orogenic andesites and plate tectonics, Heideberg: Springer-Verlog, 1981.
    [135] Gi Young Jeong, Chang-Sik Cheong and Jeongmin Kim. Rb–Sr and K–Ar systems of biotite in surface environments regulated by weathering processes with implications for isotopic dating and hydrological cycles of Sr isotopes. Geochimica et Cosmochimica Acta, 2006, 70(9) :4734-4749
    [136] G. Van den Bleeken, C. Corteel and P. Van den haute. Epigenetic to low-grade tourmaline in the Gdoumont metaconglomerates (Belgium): A sensitive probe of its chemical environment of formation. Lithos, 2007, 95(3):165-176.
    [137] Holger Stünitz, Jan Tullis. Weakening and strain localization produced by syn-deformational reaction of plagioclase. International Journal of Earth Sciences, 2001, 90(1): 136 ~ 148.
    [138] H?kan Wallander, David Hagerberg and G?ran ?berg .Uptake of 87Sr from microcline and biotite by ectomycorrhizal fungi in a Norway spruce forest. Soil Biology and Biochemistry, 2006,38(8):2487-2490.
    [139] Jun-ping MENG, Jin-sheng LIANG, Guang-chuan LIANG,et al. .Effects of tourmaline on microstructures and photocatalytic activity of TiO2/SiO2 composite powders. Transactions of Nonferrous Metals Society of China, 2006,16(2): 547-550.
    [140] Kan JIANG, Tie-heng SUN, Li-na SUN and Hai-bo LI. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. Journal of Environmental Sciences,2006,18(6). 1221-1225.
    [141]Marivaldo dos Santos Nascimento, Ana Maria Góes, Moacir José Buenano Macambira ,et al. . Provenance of Albian sandstones in the S o Luís-Grajaú Basin (northern Brazil) from evidence of Pb-Pb zircon ages, mineral chemistry of tourmaline and palaeocurrent data. Sedimentary Geology, In Press, Accepted Manuscript, Available online 3 May 2007.
    [142]Mark E. Hodson . Does reactive surface area depend on grain size Results from pH 3, 25 °C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite. Geochimica et Cosmochimica Acta, 2006,70(7): 1655-1667.
    [143]Martin, F.et al., Reflectance infrared Spectroscopy in gems. Gemology, 1989, 25(4), 227~231.
    [144]McLaren, A.C.Pryer, L.L. Microstructural investigation of the interaction and interdependence of cataclastic and plastic mechanisms in Feldspar crystals deformed in the semi-brittle field. Tectonophysics, 2001,335(7):1~15.
    [145]Medaris Jr, Gordon, Ducea, Mihai, Ghent, Ed,etal. Conditions and timing of high-pressure Variscan metamorphism in the South Carpathians, Romania. Lithos, 2003, 70(10): 141~161.
    [146]Maureen D. Feineman, Frederick J. Ryerson, Donald J. DePaolo,et al. .Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition Chemical Geology, 2007, 239 (4).:250-265.
    [147]M. Vrabec, J.C.M. de Hoog and M. Janak. Partial melting of zoisite eclogite and its significance for trace-element cycling in subduction zones. Geochimica et Cosmochimica Acta, 2006,70(18):676-679
    [148]N.C. Gangi Reddy, S.Md. Fayazyddin, R. Rama Subba Reddy, et al.. Characterisation of prehnite by EPMA, M ssbauer, optical absorption and EPR spectroscopic methods Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62 (3): 71-75.
    [149]Nozomi Kimura, Hideo Awaji, Masato Okamoto,et al..Fracture strength of tourmaline and epidote by three-point bending test: application to microboudin method for estimating absolute magnitude of palaeodifferential stress. Journal of Structural Geology,2006,28(6): 1093-1102.
    [150]Peter Marchev, Hillary Downes, Matthew F. Thirlwall, et al. Small-scale variations of 87Sr/86Sr isotope composition of barite in the Madjarovo low-sulphidation epithermal system, SE Bulgaria: implications for sources of Sr, fluid fluxes and pathways of the ore-forming fluids. Mineralium Deposita, 1999, 37(6~7):669~677.
    [151]Ramsay, J.G.. Shear geometry: a review, J..Struct Geol., 1980,3(2):8~15.
    [152]Rey Louis. Thermoluminescence of deuterated amorphous and crystalline ices. Radiation Physics and Chemistry,2005,72(5):587-594.
    [153]R.J. Duncan, A.R. Wilde, K. Bassano and R. Maas .Geochronological constraints on tourmaline formation in the Western Fold Belt of the Mount Isa Inlier, Australia: Evidence for large-scale metamorphism at 1.57 Ga?. Precambrian Research, Volume 146, Issues 3-4, 10 May 2006.120-137
    [154]Sax, Margaret; Meeks, Nigel D.; Michaelson, Carol. Middleton, Andrew P, The identification of carving techniques on Chinese jade, Journal of Archaeological Science, 2004, 31(10): 1413~1428.
    [155]Sarah C. Dunagan, Martha S. Gilmore and Johan C. Varekamp. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.).Environmental Pollution, 2007,148(1): 301-311.
    [156]S.I. Sukhoruchkin, Z.N. Soroko, V.V. Deriglazov, Landolt-B?rnstein-Group I Elementary Particles. Nuclei and Atoms, Springer-Verlag GmbH, 1998.
    [157]Sheng-Hua Li and Gong-Ming Yin .Luminescence properties of biotite relevant to dating anddosimetry. Journal of Luminescence,2006,121(1):51-56.
    [158]Stünitz, H.; Fitz Gerald, J.D.Tullis, J. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics,2003, 372 ( 11): 215~233.
    [159]Sudipta Chakraborty, Mariette Wolthers, Debashis Chatterjee and Laurent Charle.Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science,2007, 309(2):392-401.
    [160]Suwa, Kanenori, Suzuki, ,et al..Vanadium grossular from the Mozambique metamorphic rocks, south Kenya. Journal of Southeast Asian Earth Sciences, 1996, 14( 11): 299~308.
    [161]Tetsuo Kawakami and Tomoyuki Kobayashi.Trace element composition and degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan: Implications for the source region of tourmaline leucogranites. Gondwana Research, 2006,9(1): 176-188.
    [162]V.J. van Hinsberg and H.R. Marschall. Boron isotope and light element sector zoning in tourmaline: Implications for the formation of B-isotopic signatures. Chemical Geology, Volume 238, Issues 3-4, 30 March 2007 141-148.
    [163]Zhao T H, Yan X W, Cui S J, etal. The physical and chemical properties of synthetic and natural jadeite for jewelry. Journal of Material Science,1994,29(6):1514~1520

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700