水合硼酸盐和碘酸盐非线性光学材料的水热合成、晶体生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的五十年,硼酸盐体系的研究工作取得了长足进展,发现并且合成了许多化合物,其中一些具有非中心对称结构的化合物经过筛选,成功应用于现代科技的方方面面,硼酸盐的非线性光学晶体就是其中一类。其中,水合硼酸盐,例如:五硼酸KB_5O_8·4H_2O是人们最早发现的真空紫外倍频晶体,通过相位匹配,可以获得波长为216.8nm的紫外光;正交相一水六硼酸二钙2CaO·3B_2O_3·H_2O是一种潜在的的非线性光学材料。
     [IO_3]-具有一孤对电子,当形成不具有中心对称结构的晶体时,常具有较强的热电、压电、非线性光学效应。以[IO_3]-基团为结构单元堆积而成的金属碘酸盐,部分碘酸盐的[IO_3]-基团在晶体结构中取向一致地排列,导致碘酸盐晶体材料具有较大的非线性光学系数。
     水热法和溶液法用于制备了许多新型的无机化合物。本论文工作正是采用这两种晶体生长方法具体研究了Sr_2B_(11)O_(16)(OH)_5 H_2O和NaIO_3·H_2O单晶的生长,以及Ga(IO_3)_3化合物的新的合成方法。粉末倍频测试证明这些化合物都具有倍频效应,因此它们都是潜在的非线性光学材料。
     差热和热重用于测试Sr_2B_(11)O_(16)(OH)_5 H_2O晶体的热稳定性。我们得到的晶体包含的结晶水数目与早前报道的天然的Sr_2B_(11)O_(16)(OH)_5 H_2O矿物的结晶水数目不一致。基于Sr_2B_(11)O_(16)(OH)_5 H_2O的晶体结构,在[B_5O_8(OH)]_2-基团堆积的聚阴离子层与层之间,推测还可以容纳其他水分子。我们提出Sr_2B_(11)O_(16)(OH)_5 nH_2O分子式,在本论文中得到的晶体的结晶水数目n值为2.26。
The last 50 years great advances have been seen in the field of borates. A large number of compounds have been discovered and synthesized. Some of these compounds have non-centrosymmetric structures, which have been applied successfully as nonlinear optical crystals. Among them, hydrated borates: i.e. Potassium Pentaborate (KB5O8·4H2O) is the pioneer vacuum ultraviolet frequency-doubling crystal which is possible to produce phase-matched second-harmonic generation (SHG) at wavelengths as short as 216.8nm. Orthorhombic Calcium Triborate Hydrate (2CaO·3B2O3·H2O) has been proposed as a potential nonlinear optical material.
     Metal iodates contain isolated [IO3]- groups which has a lone pair to form non-centrosymmetric structure. Metal iodates have been shown to exhibit pyroelectric, piezoelectric, and second-harmonic generation properties. The [IO3]- groups in some metal iodates orient perfectly parallel, which leads to large nonlinear optical coefficients.
     Hydrothermal synthetic methods and Solution evaporation methods are commonly adopted in producing hydrated inorganic compounds. In this paper Sr2B11O16(OH)5 H2O and NaIO3·H2O single crystals have been prepared by these two crystal growth methods. And Ga(IO3)3 has been synthesized by a precursor route. Powder SHG test confirmed the nonlinear optical property of the three compounds.
     Thermal stability of crystalline Sr2B11O16(OH)5 H2O has been determined by differential thermal analysis (DTA) and thermogravimetry (TG). It shows that our hydrated crystal contains 2.26 water molecules, which does not agree with the natural mineral reported previously. Based upon its crystal structure, which is built by [B5O8(OH)]2- polyanions forming two infinite sheets interlinked by Sr cations, we speculate that the structure can host another water molecule in the voids. So the best molecular formula to describe our crystal may be put forward as Sr2B11O16(OH)5 nH2O, with n = 2.26.
引文
[1]陶连印,等.硼化合物的生产与应用,成都:成都科技大学出版社, 1992.
    [2] A. H. Soloway. Chapter 4, in progress in Boron Chemistry Vol. 1, Oxford: Pregamon press, 1964.
    [3] J. G. Bower. Chapter 6, in progress in Boron Chemistry Vol. 2, Oxford: Pregamon press, 1970.
    [4] G. K. Eaton, etc. NMR Studies of Boron Hydrides and Related Compounds, New York: W. A. Beniamininc, 1969.
    [5]周建国,等.精细无机化工,开封:河南大学出版社, 1999.
    [6] R. W. Whatmore, etc. Lithium tetraborate: a new temperature-compensated SAW substrate material. Electronics Letters, 1981, Vol. 17, Issue 1: 11-12.
    [7] C. T. Chen, etc. New nonlinear-optical crystal: LiB3O5. Journal of the Optical Society of America B, 1989, Vol. 6, Issues 4: 616-621.
    [8] C. T. Chen, etc. Development of new NLO crystals for UV and IR applications. Journal of Crystal Growth, 2006, Vol. 292, Issue 2: 169-178.
    [9]郭凤瑜,等. ReBO3中Ce3+和Bi3+对Sm3+光致发光的影响.无机化学学报, 1993, 9(1): 83-87.
    [10]潘兆橹.结晶学及矿物学,北京:地质出版社, 1994.
    [11] W. H. Zachariasen, etc. Refinement of the structure of potassium pentaborate tetrahydrate. Acta Crystallographica B, 1963, 16: 376-379.
    [12] C. F. Dewey, Jr. ,etc. Frequency doubling in KB5O8·4H2O and NH4B5O8·4H2O to 217.3nm. Applied Physics Letters, Vol. 26, No. 12: 714-716, 1975.
    [13]郭范,等.正交相一水六硼酸二钙的水热合成、表征和非线性光学效应.科学通报, 2000, 45(10): 1042-1047.
    [14]张克从,等.非线性光学晶体材料科学,北京:科学出版社, 1996.
    [15]麦松威,等.高等无机结构化学,北京,北京大学出版社, 2001.
    [16]谢先德,等.硼酸盐矿物物理学,北京,地震出版社, 1993.
    [17] C. L. Christ. Crystal chemistry and systematic classification of hydrated borate minerals. The American Mineralogist, vol. 45, 334-340, 1960.
    [18] J. O. Edwards, etc. Structural principles of the hydrated polyborates. Journal of Inorganic and Nuclear Chemistry. 1960, Vol. 15, Issues 3-4: 329-337.
    [19] C. Tennyson. Eine Systematik der borate auf kristallchemischer Grundlage. Fortschr. Mineral. 1963, 41: 64-91.
    [20] G. Heller. Topics in Current Chemistry, 1970, 15(2): 206.
    [21] J. R. Clark, etc. Veatchite: crystal structure and correlations with p-veatchite. The American Mineralogist, vol. 56: 1934-1954, 1971.
    [22] C. L. Christ, etc. A crystal-chemical classification of borate structures with emphasis on hydrated borates. Physics and Chemistry of Minerals, 1977, 2: 59-87.
    [23] A.Л.克山(成思危译).硼酸盐在水溶液中的合成及其研究,北京,科学出版社, 1962.
    [24] H. Godo. Latv. Psr. Zinat. Akad. Vestis, Kim. Ser, 1978, 634.
    [25] H. Godo. Study of Synthetic Borates, Zinatne. Riga, 1981.
    [26] H. Godo. Alakaline Earth Metal Borates, Zinatne Riga, 1986
    [27] J. B. Famer, Metal Borates. Advances in Inorganic Chemistry and Radiochemistry, 1982, 25, 187-191.
    [28]施尔畏,等.水热结晶学,北京,科学出版社, 2004.
    [29] A. Rabenau. The Role of Hydrothermal Synthesis in Preparative Chemistry. Ang. Chem. (English Ed. ) 1985, 24, 1026-1040.
    [30] R. Roy. Acceleration the Kinetics of Low-Temperature Inorganic Syntheses, Journal of Solid State Chemistry, 1994, 111, 11-17.
    [31]施尔畏,等.水热法的应用与发展.无机材料学报, 1996, 11(2), 193-206.
    [32] H. Y. Chen, etc. Advances in properties and manufacturing of chromium dioxide. IEEE Trans. Magn. MAG-20, 1984, 24-26.
    [33] D. M. Roy, etc. The System MgO-Al2O3-H2O and Influence of Carbonate and Nitrate Ions on the Phase Equilibria. American Journal of Science, 1953, 251, 337-361.
    [34] R. D. Datta, etc. Equilibrium Order- Disorder in Spinels. Journal of the American Ceramic Society, 1967, 50, 578-583.
    [35]张克从,等.晶体生长科学与技术,北京,科学出版社, 1997.
    [36] Jia Shou-Quan, etc. Hydrothermal growth of KTP crystals in the medium range of temperature and pressure. Journal of Crystal Growth. 1990, Vol. 99, 900-904.
    [37] V. A. Kuznetsov. Crystallization Processes under Hydrothermal Conditions, ed. A. N. Lobachev , Consultants Bureau, New York/ London, 43(1973).
    [38]唐敖庆,等.量子化学,北京:科学出版社, 1982.
    [39] S. K. Kurtz, etc. Alpha-Iodic Acid: a Solution-Grown Crystal for Nonlinear Optical Studies and Applications. Applied Physics Letters, 1968, Vol. 12, 186-188.
    [40] D. A. Pinnow, etc. Alpha-Iodic Acid: A Solution-Grown Crystal with A High Figure of Merit for Acousto-Optic Device Applications. Applied Physics Letters, 1968, Vol. 13, 156-158.
    [41] H. Naito, etc. Measurement of the Refractive Indices ofα-iodic acid, HIO3 crystal. Optical and Quantum Electronics, 1972, Vol. 4, 335-337.
    [42] A. I. Kovrigin, etc. Resonatorless Parametric Light Generator Using an alpha-HIO3 Crystal. JETP Letters, 1971, Vol. 13, 313-315.
    [43]陈万春,等.α-碘酸锂晶体在低pH值溶液中的生长速率和生长形态.人工晶体, 1987, Vol. 16(2), 126-133.
    [44] A. Rosenzweig, etc. A reinvestigation of the crystal structure of LiIO3. Acta Crystallographica, 1966, Vol. 20, Part 6: 758-761.
    [45] G. G. Muradyan , etc. Dislocation loops in lithium iodate single crystals. Journal of Crystal Growth, 1981, Vol. 52, Part 2, 936-938.
    [46] W. R. Donaldson, etc. Urea optical parametric oscillator. Applied Physics Letters, 1984, Vol. 44: 25-27.
    [47]徐济安,等. LiIO3的高压状态方程和相变.物理学报, 1980, Vol. 12(8): 1063-1067.
    [48] R. Andrews. IR image parametric up-conversion. IEEE Journal of Quantum Electronics, 1970, Vol. 6, Issue 1: 68-80.
    [49] G. R. Crane. The relation of physical properties to the symmetry of potassium iodate. Journal of Applied Crystallography, 1972, Vol. 5, Part 5: 360-365.
    [50] B. W. Lucas. Structure (neutron) of room-temperature phaseⅢpotassium iodate, KIO3. Acta Crystallographica Section C, Crystal Structure Communications, 1984, Vol. 40, Part 12: 1989-1992.
    [51] S. K. Kurtz, etc. A Powder Technique for the Evaluation of Nonlinear Optical Materials. Journal of Applied Physics, 1968, Vol. 39, Issue 8: 3798-3813.
    [52] P. G. Byrom, etc. Structure (neutron) of high-temperature phaseⅠpotassium iodate at 523K. Acta Crystallographica Section C, Crystal Structure Communications, 1987, Vol. 43, Part 9: 1649-1651.
    [53] LüMengkai, etc. Growth and Optical Properties of Li2NH4(IO3)3 Single Crystal. Chinese Physics Letters, 1986, Vol. 3, No. 4: 169-172.
    [54] M. M. Choy, etc. Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Physical Review B, 1976, Vol. 14, Issue 4:1693-1706.
    [55] K. Nassau, etc. Transition metal iodates.Ⅰ. Preparation and characterization of the 3d iodates. Journal of Solid State Chemistry, 1973, Vol. 7, Issue 2: 186-204.
    [56] S. C. Abrahams, etc. Transition metal iodates.Ⅱ. Crystallographic, magnetic, and nonlinear optic survey of the 3d iodates. Journal of Solid State Chemistry, 1973, Vol. 7, Issue 2: 205-212.
    [57] K. Nassau. Transition metal iodates.Ⅲ. Gel growth and characterization of six cupric iodates. Journal of Solid State Chemistry, 1973, Vol. 8, Issue 3: 260-273.
    [58] S. C. Abrahams, etc. Transition metal iodates.Ⅳ. Crystallographic, magnetic, and nonlinear optic survey of the copper iodates. Journal of Solid State Chemistry, 1973, Vol. 8, Issue 3: 274-279.
    [59] K. Nassau, etc. Transition metal iodates.Ⅴ. Preparation and characterization of the smaller lanthanide iodates. Journal of Solid State Chemistry, 1974, Vol. 11, Issue 4: 314-318.
    [60] K. Nassau, etc. Transition metal iodates.Ⅵ. Preparation and characterization of the larger lanthanide iodates. Journal of Solid State Chemistry, 1975, Vol. 14, Issue 2: 122-132.
    [61] S. C. Abrahams, etc. Transition metal iodates.Ⅶ. Crystallographic and nonlinear optic surveyof the 4f-iodates. Journal of Solid State Chemistry, 1976, Vol. 16, Issue 1-2: 173-184.
    [62] B. Morosin, etc. Crystal structure, linear and nonlinear optical properties of Ca(IO3)2·6H2O. Acta Crystallographica Section B, Structural Crystallography and Crystal Chemistry, 1973, Vol. 29, Part 5:1067-1072.
    [63]梁敬魁,等.碘酸镁晶体的结构与相变.物理学报, 1978, 27(6):710-722.
    [64]梁敬魁,等.二价碘酸盐及其复盐的研究.物理学报, 1980, 29(2):252-256.
    [65] V. Petrícek, etc. Barium di-iodate. Acta Crystallographica Section B, Structural Crystallography and Crystal Chemistry, 1980, Vol. 36, Part 9: 2130-2132.
    [66] A. M. M. Lanfredi, etc. The crystal structure of strontium diiodates(Ⅴ) monohydrate. Acta Crystallographica Section B, Structural Crystallography and Crystal Chemistry, 1972, Vol. 28, Part 3: 679-682.
    [67]梁敬魁,等.碘酸锌的晶体结构.化学学报, 1982, 40(11): 985-992.
    [68] H. Bach, etc. Cadmium diiodate. Acta Crystallographica Section B, Structural Crystallography and Crystal Chemistry, 1978, Vol. 34, Part 1: 263-265.
    [69] A. L. Hector, etc. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: structures of Sc(IO3)3, Y(IO3)3·2H2O, La(IO3)3·?H2O and Lu(IO3)3·2H2O. Journal of Inorganic and General Chemistry, 2002, Vol. 628, Issue 1: 198-202.
    [70] B. Bentria, etc. Crystal structure of a cadmium iodate monohydrate: Cd(IO3)2·H2O. Journal of Inorganic and General Chemistry, 2004, Vol. 630, Issue 6: 781-782.
    [71] P. Douglas, etc. Hydrothermal synthesis of rare earth iodates from the corresponding periodates:Ⅱ. Synthesis and structures of Ln(IO3)3 (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3·2H2O (Ln=Eu, Gd, Dy, Er, Tm, Yb). Journal of Inorganic and General Chemistry, 2004, Vol. 630, Issue 3: 479-483.
    [72] Veatchite, Mineral Data Publishing, version 1.
    [73] G. Switzer. Veatchite, a new calcium borate from Lang, California. American Mineralogist, 1938, Vol. 23, No. 6: 409-411.
    [74] J. Murdoch. Crystallography of veatchite. American Mineralogist, 1939, Vol. 24, NO. 2: 130-135.
    [75] G. Switzer, etc. Composition of veatchite. American Mineralogist, 1950, Vol. 35, No. 1-2: 90-92.
    [76] C. Palache, etc. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 1951, 7th edition, revised and enlarged: 348-349.
    [77] H. Kramer, etc. A restudy of bakerite, priceite, and veatchite. American Mineralogist, 1956, Vol. 41, No. 9-10: 689-700.
    [78] J. R. Clark, etc. Studies of borate minerals (Ⅵ): investigation of veatchite. AmericanMineralogist, 1959, Vol. 44, No. 11-12: 1141-1149.
    [79] J. R. Clark, etc. Veatchite and p-veatchite. American Mineralogist, 1960, Vol. 45, No. 11-12: 1221-1229.
    [80] J. R. Clark,etc. Veatchite: crystal structure and coordinations with p-veatchite. American Mineralogist, 1971, Vol. 56, No. 11-12: 1934-1954.
    [81] J. D. Grice, etc. Borate minerals:Ⅱ, a hierarchy of structures based upon the borate fundamental building block. Canadian Mineralogist, 1999, Vol. 37, No. 3: 731-762.
    [82] E. S. Grew, etc. BORON: Mineralogy, Petrology and Geochemistry. 1996, second edition, as revised (2002).
    [83]李如康.博士学位论文.中国科学院福建物质结构研究所. 1988.
    [84] R. Shklovskaya. Russian Journal of Inorganic Chemistry (English Translation), 1980, Vol. 25, 618-622.
    [85] Xue-An Chen, etc. Gallium tris(iodate), Ga(IO3)3. Acta Crystallographica Section C, Crystal Structure Communications, 2005, Vol. 61: i109-i110.
    [86] D. Phanon, etc. New materials for infrared nonlinear optics. Syntheses, structural characterisations, second harmonic generation and optical transparency of M(IO3)3 metallic iodates. Journal of Materials Chemistry, 2007, Vol. 17: 1123-1130.
    [87] JCPDS Card 01-156.
    [88] JCPDS Card 32-1096.
    [89] Xuean Chen, etc. Hydrothermal synthesis and crystal structures of two NLO compounds, NaIO3·H2O and In(IO3)3. Journal of Alloys and Compounds, 2006, Vol. 415: 261–265.
    [90]左演生.材料现代分析方法.北京:北京工业大学出版社, 2000.
    [91] J. M. Halbout, etc. Evaluation of the phase-matching properties of nonlinear optical materials in the powder form. IEEE Journal of Quantum Electronics, 1981, Vol. 17, Issue 4: 513-517.
    [92] S. P. Velsko, Direct assessment of the phase matching properties of new nonlinear materials. Laser and Nonlinear Optical Materials, Proceedings of the Meeting, L. G. Deshazer, ed., SPIE, 1986, Vol. 681, 25-30.
    [1] J. R. Clark. The crystal structure of tunellite, SrB6O9(OH)2·3H2O. American Mineralogist, 1964, vol. 49, No. 11-12: 1549-1568.
    [2] I. Kumbasar. Veatchite-A, a new modification of veatchite. American Mineralogist, 1979, vol. 64, No. 3-4: 362-366.
    [3] C. L. Christ. Crystal chemistry and systematic classification of hydrated borate minerals. American Mineralogist, 1960, vol. 45, No. 3-4: 334-340.
    [4] G. Heller. Darstellung und Systematisierung von Boraten und Polyboraten. Berlin, 1969.
    [5] J. R. Clark, etc. Studies of borate minerals (Ⅵ): investigation of veatchite. American Mineralogist, 1959, vol. 44, No. 11-12: 1141-1149.
    [6] O. Gandymov, etc. The crystal structure of the p-veatchite (SrO)4(B2O3)11(H2O)7 = Sr4B22O34(H2O)7 = Sr2[B5O8(OH)2B(OH)3](H2O). Doklady Akademii Nauk SSSR, 1968, Vol. 180: 1216-1219.
    [7] J. R. Clark, etc. Veatchite: crystal structure and correlations with p-veatchite. American Mineralogist, 1971, vol. 56, No. 11-12: 1934-1954.
    [8] Veatchite, Mineral Data Publishing, version 1.
    [9]李如康.博士学位论文.中国科学院福建物质结构研究所. 1988.
    [1] B. Morosin, etc. Crystal structure, linear and nonlinear optical properties of Ca(IO3)2·6H2O. Acta Crystallographica Section B, Structural Crystallography and Crystal Chemistry, 1973, Vol. 29, Part 5:1067-1072.
    [2]张克从,等.非线性光学晶体材料科学,北京:科学出版社, 1996.
    [3] A. M. Günter, etc. Photorefractive Materials and Their Application I-Fundamental Phenomena, Springer-Verlag, Berlin, Herdelberg, New York, London, Paris, Tokyo (1988).
    [4]肖定全,等.晶体物理学,成都:四川大学出版社(1989).
    [5] P. Günter. Electro-optical Effect in Dielectric Crystals, ETH H?nggerberg, CH-8093 Zürich, Switzerland (1986).
    [6] P. Günter, etc. Self-potation and optical chaos in self-pumped photorefractive BaTiO3. Optics Communications, Vol. 55, No. 3: 210-214.
    [7] D. Phanon, etc. New potential materials for infrared nonlinear optics. Preparation, characterisation and optical transparency of monometallic and bimetallic iodates. Solid State Sciences, 2006, Vol. 8, Issue 12: 1466–1472.
    [8] B. Bentria, etc. Crystal engineering strategy for quadratic nonlinear optics. PartⅡ: Hg(IO3)2. Solid State Sciences, 2003, Vol. 5, Issue 2: 359–365.
    [9] D. Phanon, etc. Crystal structure of M(IO3)2 metal iodates, twinned by pseudo-merohedry with MⅡ: MgⅡ, MnⅡ, CoⅡ, NiⅡand ZnⅡ. Zeitschrift für Kristallographie, 2006, Vol. 221, Issue 9: 635–642.
    [10] M. Weil. Dimorphism in Mercury(Ⅱ) Iodate(Ⅴ): Preparation and Thermal Behavior ofα- andβ-Hg(IO3)2, and Single Crystal Structure Analysis ofβ-Hg(IO3)2. Z. Naturforsch., B: Chem. Sci., 2003, Vol. 58: 627–632.
    [11] M. Jansen. Zur Kistallstruktur von FeI3O9. Journal of Solid State Chemistry, 1976, Vol. 17, Issue 1-2: 1–6.
    [12] D. Phanon, etc. New materials for infrared nonlinear optics. Syntheses, structural characterisations, second harmonic generation and optical transparency of M(IO3)3 metallic iodates. Journal of Materials Chemistry, 2007, Vol. 17: 1123-1130.
    [13] Xue-An Chen, etc. Gallium tris(iodate), Ga(IO3)3. Acta Crystallographica Section C, Crystal Structure Communications, 2005, Vol. 61: i109-i110.
    [14] N. Ngo, etc. Synthesis and structure of In(IO3)3 and vibrational spectroscopy of M(IO3)3 (M=Al, Ga, In). Journal of Solid State Chemistry, 2006, Vol. 179, Issue 12: 3824–3830.
    [1] Xuean Chen, etc. Hydrothermal synthesis and crystal structures of two NLO compounds, NaIO3·H2O and In(IO3)3. Journal of Alloys and Compounds, 2006, Vol. 415: 261–265.
    [2] JCPDS card 32-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700