压电晶体磷酸三镓的生长、性能与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体是长程有序的固体物质,其组成单元在三维空间周期性排列。晶体材料的周期性结构决定了其独特的物理特性,因此可利用晶体材料实现电、磁、光、声和热的交互作用和相互转换,晶体成为现代科学技术中不可或缺的重要材料之一,是光电技术、激光技术和微电子技术的材料基础,目前已获得广泛应用并发挥至关重要的作用。压电效应是功能晶体的一个重要性质,是晶体在外力作用下发生应变时某些表面出现电荷聚集的现象。具有压电效应的晶体称为压电晶体,利用压电效应可以实现机械能和电能的相互转化,用压电晶体制作的各种器件已应用于军事、航空航天、通讯等领域,如滤波器、谐振器、光偏转器、声表面波器件等,压电晶体是现代电子技术中最重要的基础功能材料之一。
     磷酸盐压电晶体的研究始于1935年人们对磷酸铝(AlPO4)晶体的研究,该晶体的结构和已获得广泛应用的石英晶体相同,相变点彼此接近,其部分性能要优于石英晶体,被视为可替代石英的压电晶体。磷酸镓(GaPO4)是磷酸铝的同族晶体,因磷酸镓晶体与石英晶体结构相同,几乎具有石英晶体的所有优点,并且该晶体的热稳定性、压电系数和机电耦合系数要略优于石英。在25~933℃之间,磷酸镓晶体的物理特性也只有很小的变化,它是一种具有潜在应用前景的压电晶体材料,可制成压电器件在高温条件下取代石英晶体使用。磷酸镓晶体的优异性能引起了广大科研工作者的研究兴趣,该晶体成为压电晶体的研究热点之一。但是高质量大尺寸磷酸铝和磷酸镓晶体的生长困难,难以实现工业化生产,成本高,因此更难以实现商品化从而限制这两种晶体的应用。
     GaPO4是Ga2O3-P2O5体系中最先发现的一种无对称心结构的晶体,1998年Sophie Boudin等人发现了Ga2O3-P2O5体系中第二种无对称心结构的晶体-磷酸三镓(Ga3PO7)晶体。他们采用水热法首次合成了Ga3PO7晶体,以NH4H2PO4与Ga2O3为溶质,H2O为溶剂,在773K、210×106Pa的条件下获得了Ga3PO7单晶。Ga3PO7晶体属于三方晶系,空间群为R3m。该晶体不具有对称中心,属于10种极性晶类之一,从其结构推测Ga3PO7晶体应具有压电类晶体的基本性质,是一种新压电类晶体材料。2007年我们课题组首次采用助熔剂法成功生长出厘米级Ga3PO7晶体,随后对该晶体的热学、光学等性质进行表征。2008年,Z. X. Cheng等人对Ga3PO7晶体的电子结构和光学性质进行了理论计算,文章指出该晶体在光电应用中是一种非常有应用前景的晶体。除本课题组的一些工作外,有关该晶体其他物理性质尚未见报道。本论文对这种无对称中心的压电类晶体Ga3PO7的生长、性能及应用展开了进一步较为深入的研究。
     本论文探索了生长Ga3PO7晶体的助熔剂体系,并确定了适于该晶体生长的助熔剂体系,在此基础上,采用顶部籽晶法生长了Ga3PO7晶体,优化了生长工艺参数,得到大尺寸Ga3PO7单晶体;测量和观察了Ga3PO7晶体的结构、形貌和缺陷;采用实时拉曼光谱技术研究了Ga3PO7晶体生长的界面过程;测量和研究了这一晶体的基本性质,特别是系统地研究了该晶体的压电、介电和弹性等性质,设计了不同频率的谐振器,初步探索了Ga3PO7晶体压电器件的性质。主要研究内容如下:
     1、Ga3PO7晶体生长助熔剂体系的探索。
     采用自发成核法分别以X2M03O10(X=Li、Na. K)、X2W3O10(X=K) X2Mo2O7(X=Li)、X2W2O7(X=Li)、X2MoO4(X=Li)以及Na2O-B2O3作助熔剂进行晶体生长实验,结果表明各种X2Mo3O10(X=Li、Na、K)助熔剂体系均可生长Ga3PO7晶体;通过设计实验对比X2Mo3O10(X=Li、Na、K)各助熔剂体系,发现K2Mo3O10助熔剂体系Mo03的挥发量最小,体系最稳定,并且Ga3PO7的析晶量最大,采用该助熔剂自发成核得到毫米级Ga3PO7单晶体,形状规则,面发育完全,结晶性好,由此确定K2Mo3O10助熔剂体系是最适于大尺寸体块Ga3PO7单晶生长。
     2、厘米级Ga3PO7晶体的顶部籽晶法生长。
     采用顶部籽晶法,以K2Mo3O10Ga3PO7作助熔剂,分别用任意方向、a方向、垂直于c方向的任意方向以及垂直于(101)面方向籽晶生长了厘米级Ga3PO7晶体,通过对不同方向籽晶生长晶体的定向,确定晶体显露面主要为{101}、{021}和{012}晶面族,利用负离子配位多面体生长基元理论模型研究分析了Ga3PO7晶体在c方向出现的极性生长现象。
     探索并优化了顶部籽晶法生长Ga3PO7晶体的生长工艺参数。在相同的生长周期、相同降温速率以及相同的温场条件下,采用不同溶液浓度进行自发成核实验,确定溶质浓度为20wt%时Ga3PO7晶体析晶量最大,即20wt%为最佳溶质浓度。分析籽晶方向对体块晶体生长的影响,综合考虑晶体尺寸、质量,以及后期定向加工和利用率,确定垂直于(101)面方向的籽晶最适于生长晶体。根据多次自发成核和顶部籽晶法晶体生长实验和经验确定了Ga3PO7晶体的生长区间为975℃到850℃,设计了合适的温场,确定了合适的降温速率和籽晶固定方式。
     3.Ga3PO7晶体结构、形貌与缺陷的表征。
     采用X射线单晶结构分析仪(四圆衍射仪)对Ga3PO7晶体结构进行解析,确定Ga3PO7晶体属于三方晶系,R3m空间群,晶胞参数为a=b=7.8890(1)A, c=6.7314(2)A,Z=3;构成Ga3PO7晶体的结构基元为GaO5三角双锥和PO4四面体,且两基元发生不同程度的畸变,计算了GaO5三角双锥和PO4四面体结构基元的偶极矩,证明Ga3PO7晶体的压电和其他性质源于该两基元的畸变;采用X射线能谱仪对晶体进行成分分析,确定晶体中Ga:P:O的原子个数比实验值为26.54:8.94:64.52,接近其化学式的元素组成比理论值。
     根据顶部籽晶法所生长晶体的显露面族{101}、{021}和{012}及其各显露面之间关系,并参考自发成核晶粒形状,利用晶体对称性,得到采用K2Mo3O10作助熔剂生长的Ga3PO7晶体晶体的理想形貌。
     采用光学显微镜和原子力显微镜观察了原生晶体的形貌,并观察到晶体中存在晶界、包裹体、开裂、不规则表面以及负晶等常见缺陷,结合晶体生长过程探讨了各种缺陷的形成的原因并提出了提高晶体完整性的办法。采用化学腐蚀法对Ga3PO7晶体(001)、(110)和(101)面进行了腐蚀,利用扫描电镜和光学显微镜观察了不同面的腐蚀形貌,(001)面和(110)面腐蚀坑分别符合三次轴和对称面的对称性。
     4.Ga3PO7晶体的拉曼光谱
     采用拉曼散射技术研究了Ga3PO7单晶的偏振拉曼振动。采用的拉曼散射配置为x(zz)x,x(yz)x,x(yy)x,z(yy)z和y(xx)y,分别对应于A1(TO),E(TO), A1(TO)+E(TO),A1(LO)+E(TO)和A1(TO)+E(LO)对称性的拉曼光谱。根据已有的对PO4基团的化合物的拉曼光谱方面的研究工作,指认了Ga3PO7单晶中PO4四面体的内振动模,并观察到v1,v3和v4内振动模的LO-TO的劈裂,确定959和1001cm-1对应PO4基团v1振动模,484cm-1处对应PO4基团v2振动模,1095,1127,1139和1208cm-1处对应P04基团v3振动模,678,706,716和773cm-1处对应PO4基团v4振动模。
     利用高温共焦激光显微拉曼光谱技术,首次研究了Ga3PO7晶体生长的界面过程。研究发现随着温度的升高原子间键长增大,Ga3PO7晶体的拉曼谱会向低频方向移动;通过分析籽晶和生长溶液之间不同点的拉曼光谱,确定了结构基元PO4在生长溶液和籽晶边界层附近稳定存在,探讨了相应的生长机理。
     5、Ga3PO7晶体基本性质的测定。
     采用浮力法测定了Ga3PO7晶体在30℃时的密度,为4.8413g·cm-3,并计算了其随温度的变化情况;采用维氏硬度法测定了Ga3PO7晶体的硬度,采用25克力测得其a和c方向的硬度分别为1107和920kgf/mm2,该晶体具有良好的机械强度且较易加工;测量了Ga3PO7晶体的比热、热扩散和热膨胀,热重差热测试表明在温度高至1348.0℃时无相变,且尚未熔化,但开始分解为GaPO4和Ga2O3,对Ga3PO7晶体的热性质测试表明Ga3PO7晶体具有良好的热稳定性;Ga3PO7晶体不同面在200nm—2800nm的波长范围内的透过率均在80%以上,Ga3PO7晶体具有较高的透过率;中红外透过光谱的测量表明在1141.59和1095.17cm-1处的吸收峰对应PO4基团存在对称伸缩振动,964.25cm-1处的吸收峰对应P04基团对称弯曲振动,702.94和657.49cm-1处的吸收峰对应P04基团非对称弯曲振动;Ga3P07晶体具有良好的化学稳定性,不潮解、不解理,室温下不溶于盐酸和硝酸,微溶于磷酸和氢氟酸;沸腾的磷酸可作为该晶体的腐蚀剂。
     6、Ga3PO7晶体电弹性质及压电器件的设计。
     通过坐标旋转法设计了用于测试Ga3PO7晶体的全部介电、压电和弹性常数的全部10个切型的样品,并在室温下测定了Ga3PO7晶体的全部自由介电常数、压电应变常数以及弹性柔顺常数。确定了各常数矩阵,结果如下:
     在-50~120℃范围内,研究了Ga3PO7晶体的介电、压电、弹性常数以及机电耦合系数的温度稳定性;通过计算晶体弹性常数的温度系数,发现s11的温度系数最小。设计了频率分别为400K和2M的谐振器,在-50~120℃的温度范围内对谐振器频率的温度稳定性进行了研究,结果表明yx切压电振子的温度稳定性较高,有望得到实用。
     本文深入研究了磷酸三镓Ga3PO7晶体的生长条件和工艺,确认这是在Ga2O3-P2O5体系中存在的一种无对称中心的压电类晶体,确定了采用助熔剂生长厘米级Ga3PO7晶体的条件:以K2Mo3O10为助熔剂,溶质Ga3PO7浓度为20wt%,最佳籽晶方向为垂直于(101)面方向,采用籽晶试探法确定饱和点,生长区间为975℃到850℃。室温拉曼光谱表明:959和1001cm-1对应PO4基团v1振动模,484cm-1处对应P04基团v2振动模,1095,1127,1139和1208cm-1处对应PO4基团v3振动模,678,706,716和773cm-1处对应P04基团v4振动模。高温拉曼谱表明在晶体和生长溶液的边界层相互有稳定的P04基团出现,生长基元往不同晶面上的叠合构成了晶体的生长。Ga3PO7晶体属三方晶系,R3m空间群,a=b=7.8890(1)A, c=6.7314(2)A, Z=3;30℃时晶体密度为4.8413g·cm-3,采用25克力测得晶体a和c方向的硬度分别为1107和920kgf/mm2。对Ga3PO7晶体热学性质测试结果显示:在20-C时Ga3PO7晶体比热为0.491J/gK,在35℃到494℃的温度范围内,Ga3PO7晶体a方向和c方向的平均线性热膨胀系数分别为2.484×10-6K-1和3.794×10-6K-1;在30℃时Ga3PO7晶体沿a、c两个方向的热导率分别为5.144W/(m·K)和5.446W/(m·K),在温度高至1348.0℃时Ga3PO7晶体未熔化,开始分解为Ga2O3和GaPO4。对Ga3PO7晶体光学性质测试结果显示:Ga3PO7晶体不同方向的透过率均在80%以上,晶体具有较高的透过率;中红外透过光谱的测量表明:1141.59和1095.17cm-1,964.25cm-1,以及702.94和657.49cm-1处的吸收峰分别对应PO4基团的对称伸缩振动,对称弯曲振动和非对称弯曲振动;Ga3PO7晶体没有明显的倍频效应,因此不会在非线性光学方面有所应用。系统的研究了Ga3PO7晶体的电弹性质,室温下其相对介电常数ε11和ε33分别为11.08和7.73,压电常数d22和d15分别为4.3和7.7pC/N,六个独立的弹性常数S11、S12、S13、S14、S33、S44和S66分别为5.84、-0.35、0.84、0.70、4.98、9.92和12.38pm2/N;通过对Ga3PO7晶体电弹常数的温度稳定性测量,确定S11的温度系数最小,采用yx切压电振子的谐振器的温度稳定性较高,有望得到实用。
Crystals are solid materials of long-range order. And the primary units of the crystal are periodic arranged, which determines its unique physical properties. Therefore, crystals are special materials which can realize energy interaction and transformation of electricity, magnetism, light and heat. Thus, crystal material are one kind of indispensable materials in modern science and technology, and they are substantial base of optical-electric, laser and microelectronics technologies. Now, they are widely used and play an important role in many fields. Piezoelectric effect is one of the important properties in functional crystals, and it was discovered by the Curie brothers in1880. Piezoelectric effect is the phenomenon that electric charges accumulate in the corresponding surfaces of the crystal when the deformation occures under the impact of external force. The crystals with piezoelectric effect are named piezoelectric crystals and they can realize the transformation between mechanical enegry and eletric enegry. Various piezoelectric devices made by piezoelectric crystals, such as piezoelectric filter, piezoelectric resonator, piezoelectric optical deflector, surface acoustic wave component, have been successfully applied in the fields of military, aerospace and communication, et al., and piezoelectric crystals have been regarded as an important basic materials in modern electronic technology.
     In1935, the aluminium phosphate was researched firstly, and it was the beginning of research on the phosphate crystals as piezoelectric crystal. Its structure is the same as quartz crystal which has been used widely, and the temperature of phase transformation is close to that of quartz crystal. The performances of aluminium phosphate are superior to that of quartz, and it is substitute material of quartz crystal. Gallium orthophosphate is the kin crystal of aluminium phosphate, and it not only possesses almost all the advantages of quartz, but also has higher thermal stability, higher piezoelectric effect and larger electromechanical coupling constants than quartz. There are only small changes of the physical properties in the temperature range25℃to933℃, which makes it a very potential piezoelectric crystal material, and its piezoelectric devices can take place of quartz devices in high temperature. Gallium orthophosphate is of great interest owing to its excellent properties and becomes one of research hotspots in piezoelectric crystals. But there are some problems in the growth of high-quality and large size GaPO4crystal, and its industrial growth can not be achieved. It is too difficult to realize the commercialization and application of GaPO4crystal. GaPO4crystal is the first noncentrosymmetric structure crystal that discovered in Ga2O3-P2O5binary system. And the second noncentrosymmetric structure crystal, trigallium phosphorus heptoxide(Ga3PO7), was discovered by Sophie Boudin et al. in1998. Ga3PO7was synthesized by the hydrothermal synthesis method at high temperature (773K) and pressure (210x106Pa), using NH4H2PO4and Ga2O3as solvend and H2O as solvent. It crystallizes in a noncentrosymmetric trigonal crystal system with space group R3m, which belongs to one of the ten polar crystal systems. Due to its special structure, it may possess the basic properties that exist in the piezoelectric crystals. Ga3PO7is a novel piezoelectric crystal. In2007our group had grown the Ga3PO7crystal by the flux method firstly, and then characterized its thermal and optical properties. In2008Z. X. Cheng et al. calculated the structural parameters, electronic structures and optical properties. The results showed that Ga3PO7has potential application in optoelectric decvices. Except our work on the growth and physical properties of Ga3PO7, little work was reported since Ga3PO7was synthesized. In this work, we researched this noncentrosymmetric crystal including the growth, properties and application in depth.
     In this work, spontaneous nucleate method was used to explore the flux systems, and the flux suitable for the growth of single crystal Ga3PO7was determined. Large-size Ga3PO7crystals have been grown by the top-seeded solution-growth method, and the growth parameters are optimized. The structure, morphology and defects of Ga3PO crystal were studied. The Raman spectra technique was used to observe the growing interface. The basic properties of this crystal were measured and researched systematically, especially the elastic, dielectric, and piezoelectric properties. The resonators with different frequency were designed and evaluated. The main research contents and results are as follows:
     1. The exploration of flux systems for the growth of Ga3PO7crystal.
     The experiments of Ga3PO7crystal growth were carried out by the spontaneous nucleate method with the fluxes X2Mo3O10(X=Li, Na, K), X2W3O10(X=K), X2Mo2O7(X=Li), X2W2O7(X=Li) and X2MoO4(X=Li) respectively. The results indicate that the fluxes X2Mo3010(X=Li, Na, K) are suitable for the growth of Ga3PO7crystal. By comparing the flux systems X2Mo30io(X=Li, Na, K), the flux K2Mo3O10 had the minimum volatilization of MoO3and the maximum crystallization of Ga3PC>7. The spontaneous nucleate Ga3PO7has regular shape, well developed faces and the crystallinity was good. Therefore, the flux K2M03O10is the most suitable for the growth of large-sized Ga3PO7crystal.
     2. The growth of centimeter-sized Ga3PO7crystal by the top-seeded method.
     The single Ga3PO7crystals were grown using different orientated seeds from K2CO3-MoO3flux system by the top-seeded method. The orientations of different seeds were a random direction, a-direction, a random direction but perpendicular to c-direction and the direction perpendicular to the (101) face, respectively. All the as-grown Ga3PO7crystals were oriented and the{101},{021} and{012} faces were present in all the crystals. The c-axis polar growth of Ga3PO7crystal was analysed by the anion coordination polyhedron growth unit theory mode.
     The growth parameters were studied and optimized during the process of Ga3PO=7crystal growth. In the same growth period, cooling rate and thermal field, the spontaneous nucleate experiments were carried out with different solute concentrations. The results show that when the concentration is20wt%the crystallization of Ga3PO7is maximum. Considering the crystal size, crystal quality, the late orientation and utilization ratio, it can be concluded that the direction perpendicular to the (101) face is best. According to the experience and experinments of crystal growth, the applicable temperature field, proper cooling rate and the seed fixed form are determined.
     3. The characterizations of structure, morphology and detects for Ga3PO7crystal.
     The crystal structure was determined using a X-ray single crystal diffractometer (four-circle diffractometer). The result shows that Ga3PO7crystallizes in trigonal crystal system with the space group R3m, the unit cell parameters are a=b=7.897(3)A, c=6.757(6)A, Z=3. Its structure comprise PO4tetrahedra and GaO5trigonal bipyramids which are distorted in vary degrees. The dipole moments of both units were calculated. The component analysis of Ga3PO7crystal is using the x-ray energy spectrometer, and the result shows that the atomic number ratio(Ga:P:O) is26.54:8.94:64.52which is approximate with the theoretical value.
     According to the exposed{101},{021} and{012} faces, the spontaneous nucleate crystal shape and the crystal symmetry, we determined the ideal shape of crystal.
     The surface of as-grown crystal was investigated by optical microscopy and atomic force microscope. The grain boundary, inclusion, crack and irregular surface are observed. Combined with the crystal growth process, we analyze the reasons of the defect formation and put forward the corresponding solutions to improve the crystal integrity.(001),(110) and (101) faces are etched, the etch pits are observed by optical microscopy. The etch pits on (001) and (110) accord with three fold axis and symmetry plane respectively.
     4. The Raman spectrum of Ga3PO7crystal.
     The phonon modes of the Ga3PO7single crystal at room temperature were investigated by the Raman scattering technique. For x(zz)x, x(yz)x, x{yy)x z(yy)z and y(xx)y polarizations, the raman spectrum were observed corresponding to A1(TO), E(TO), A1(TO)+E(TO), A1(LO)+E(TO) and A,(TO)+E(LO) symmetries. A tentative mode assignment is given based on correlations with other PO4-based compounds. The TO-LO splitting is observed only for the v1, v3and v4internal PO4modes. We undoubtedly observed7A1(TO)+7E(TO) out of7A1(TO)+10E(TO) vibrations predicted.
     Using the high micro-Raman spectroscopy, Ga3PO7crystal, GaPO4crystal and their high temperature solutions were studied. When the temperature rose, the wavenumber in Ga3PO7or GaPO4raman spectrum shift to low frequency. The internal modes of the PO4were observed in boundary layer between the seed and the solution. It is confirmed that the PO4units is existing stably in the boundary layer and the corresponding growth mechanism is discussed.
     5. The measurements of basic properties for Ga3PO7crystal.
     The density of Ga3PO7crystal was measured to be4.8413g/cm3at30℃using Archimedes'method, and its temperature dependence was calculated. When the load was25GF, the vickers hardness of a direction and that of c direction were1107and920kgf/mm2respectively, which certified that the GasPO7crystal has enough mechanical strength. The measurement of the DTA/TG proved that the crystal would decompose into GaPO4and Ga2O3up to1348.0℃. The specific heat, thermal diffusion and thermal expansion of Ga3PO7crystal were tested. All the thermal testing results show Ga3PO7has good thermal stability.
     The transmittances of different wafers are above80%in the wavelength range200nm-2800nm. The room temperature mid-IR spectra of the as-grown crystal indicates that the peaks at1141.59and1095.17cm-1correspond to PO4asymmetric stretching vibration modes, the peak at964.25cm-1is assigned to the symmetrical stretching band of the PO4group, and the peaks at702.94and657.49cm-1are both attributed to the asymmetric bending deformation vibration.
     The crystal is stable and nonhygroscopic, and it cannot be dissolved in nitric acid and muriatic acid at room temperature. But it can be dissolved in boiling phosphate acid, therefore the phosphate acid is the corrosive agent of Ga3PO7crystal.
     6. The electro-elastic properties and the piezoelectric device design of Ga3PO7
     crystal.
     All the10crystal samples, which are used to measure the dielectric, piezoelectric and elastic constants of Ga3PO7crystal, have been designed by coordination rotation method. At room temperature, the dielectric, piezoelectric and elastic constants of Ga3PO7crystal were measured. The results are as follows:
     The temperature dependence of all the electro-elastic constants, including dielectric constants, piezoelectric constants, elastic constants and coupling coefficients, have been measured in the temperature range-50~120℃. By comparing the first-, second-and third-order temperature coefficients of the elastic constants, it can be confirmed that the elastic constant s11is the most stable in the whole temperature range.
     The400K and2M resonators were designed, and the temperature dependence of the resonators were measured in the temperature range-50~120℃. The results indicate that yx-cut plate is the most stable and potential in piezoelectric application.
     This work researched the growth technology and growth process parameters in depth. The optimization results are as follows:K2Mo3O10flux is the best solvent, solute concentration is20%wt, the seed direction is perpendicular to the (101) face, and the growth temperature range is from975℃to850℃. Ga3PO7crystal is an noncentrosymmetric piezoelectric crystal in Ga2O3-P2O5binary system. It crystallizes in trigonal crystal system with space group R3m, a=b=7.8890(1)A, c=6.7314(2)A, Z=3. At30℃the density of Ga3PO7crystal is4.8413g·cm-3. When the load is25GF, the hardness of a direction and that of c direction are1107and920kgf/mm2respectively. The room temperature raman spectrum are tested, and the assignments for Ga3PO7crystal are as following:the vi modes at959and1001cm-1, the v2mode at484cm-1, the v3modes at1095,1127,1139and1208cm-1, and the v4modes at678,706,716and773cm-1. By using the high micro-Raman spectroscopy, the internal modes of the PO4were observed in the boundary layer between the seed and the solution. It is confirmed that the PO4unit is existing stably in the boundary layer. The thermal properties of Ga3PO7crystal are measured and the results are as follow:at20℃the specific heat is0.491J/(g-K), in the temperature range35℃~494℃, the thermal expansion coefficients of a and c directions are2.484×10-6K-1and3.794×10-6K-1respectively, at30℃the thermal conductivities of a and c directions are5.144W/(m·K) and5.446W/(m·K) respectively, when the temperature is up to1348.0℃, the Ga3PO7crystal decompose into Ga2O3and GaPO4before melting. The optical properties are also measured. The transmittances of different wafers are above80%, which indicate that the Ga3PO7crystal has high transmittance. The room temperature mid-IR spectra of the as-grown Ga3PO7crystal indicates that the peaks at1141.59and1095.17cm-1correspond to PO4asymmetric stretching vibration modes, the peak at964.25cm-1is assigned to the symmetrical stretching band of the PO4group, and the peaks at702.94and657.49cm-1are both attributed to the asymmetric bending deformation vibration. The frequency doubling effect of the Ga3PO7crystal powder is too low to apply to nonlinear optical field. The electro-elastic properties of crystal are researched. The relative dielectric constants en and ε33are11.08and7.73, the piezoelectric constants d22and d15are4.3and7.7pC/N, and the elastic constants S11、S12、S13、S14、S33、S44and S66are5.84、-0.35、0.84、0.70、4.98、9.92and12.38pm2/N, respectively. By comparing the first-, second-and third-order temperature coefficients of the elastic constants, it can be confirmed that the elastic constant s11is the most stable in the whole temperature range. And yx-cut plate is the most stable and potential in piezoelectric application.
引文
[1]张沛霖,钟维烈等,压电材料与器件物理,济南:山东科学技术出版社,1997
    [2]方奇,于文涛,晶体学原理,国防工业出版社(2002)
    [3]姚连增,晶体生长基础,中国科学技术大学出版社(1995)
    [4]Chen C, Wu B, Jiang A, You G, et al., New nonlinear-optical crtstal:LiB3O5, J. Opt. Soc.Am.B,6,616-621 (1989)
    [5]Zhang T, and Yonemura M, Properties of CsLiBeO10 and KBe2BO3F2 crystals for Sencond-Harmonic Generation with Ultrashort Laser Pulses, Jpn. J. Appl. Phys.,36, 6353-6359(1997)
    [6]Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B, Ye N, Tang D, The vacuum ultraviolet phase-matching charateristics of nonlinear optical KBe2BO3F2 crystal, Appl. Phys. Lett.,68,2930-2932 (1996)
    [7]Boyd G D, Kasper H M, Mcfee J H, Linear and nonlinear optical properties of LiInS2. J. Appl. Phys.,44(6),2809-2812 (1980)
    [8]F Rotermund, V Petrov, F Noack, P Schunemann. Charaterization of ZnGeP2 for parametric generation with near-infraed femtosecond pumping, Fiber and Integrated Optics,20,139-150 (2001)
    [9]Ren De-Ming, Huang Jin-Zhe, Qu Yan-Chen, Hu Xiao-Yong, Andreev Yuri, Geiko Pavel, Badikov Valerii and Shaiduko Anna. Optical properties and frequency conversion with AgGaGeS4 crystal, Chinese Phys.,13,1468-1473 (2004)
    [10]Bei-Jun Zhao, Shi-Fu Zhu, Feng-Liang Yu, et al., Polycrystalline Synthesis and Single Crystal Growth of AgGeS2, Cryst. Res. Technol.,33,943-948 (1998)
    [11]W L Smith, KDP and ADP transmission in the vacuum ultraviolet, Appl. Opt.,16, 1798(1977)
    [12]张克从,近代物理学基础,科学出版社(1987)
    [13]肖学峰,杜懋陆,人工晶体材料的研究进展,科技创新导报,8,6-7(2009)
    [14]谭浩然,无机功能晶体材料研究进展,中国科学院院刊,3,208-211(1991)
    [15]肖定全,王民,晶体物理学,四川大学出版社(1989)
    [16]RC Alferness, Appl. Phys. Lett.,36,513(1980)
    [17]张福学,王丽坤,现代压电学,北京:科学出版社(2001)
    [18]IP Kaminov, EH Turner, Proc. IEEE.,54,1374 (1966)
    [19]A.A.丘里巴诺夫著,李杰萃,夏绍良译,石英片制造工艺.北京:国防工业出版社(1959)
    [20]A Garzarella, RJ Hinton, SB Qadri, Dong Ho Wu, Appl. Phys. Lett.,92,22111 (2008)
    [21]X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, Subpicosecond Electro-optic Measurement of Relativistic Electron Pulses, Phys. Rev. Lett.,85,3404 (2000)
    [22]Kolb ED, Key PL, Pressure Volume-Temperature Behavior in the System HbO-NaOH-SiO2 and it's Relationship to the hydrothermal growth of quartz, Proc. 37th Ann. Freq. Contr. Symp.,153-156 (1983)
    [23]张福学,孙慷,压电学.北京:国防工业出版社(1984)
    [24]Laudise R. A., Stevens S., High performance quartz, Proc.42nd Ann. Freq. Contr. Symp.,116-126(1988)
    [25]D F Holshouser, H Von Foerster, and G L Clark, Microwave modulation of light using the Kerr effect, J. Opt. Soc. Amn.,51,1360-1365(1961)
    [26]经和贞,刘承钧,人造石英技术,北京,科学出版社,1992
    [27]秦自楷等,压电石英晶体,北京,国防工业出版社,1980
    [28]Wemple S. H., Dodomenico M., Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3 and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization. Appl. Phys. Lett.,1968(12):209-211
    [29]Yamada T., Iwasaki H. and Niizeki N., Piezoelectric and elastic properties of LiTaO3 temperature characteristics, Jpn. J. Appl. Phys.,1969(8):1127-1132
    [30]Carruthers T.R., Peterson G.E., Grasso M., Nonstoichiometry and crystal growth of lithium niobate, J. Appl. Phys.,42,1846-1849 (1971)
    [31]Kaminow I.P., Turner E.H., Borns R.L., Crystallographic and electrooptic properties of cleaved LiNbO3, J. Appl. Phys.,51,4379-4384 (1980)
    [32]陈福深,光通信中的LiNbO3集成波导光电器件,压电与声光,13,5-12(1991)
    [33]J Kuwata, K Uchino, S Nomura, Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system, Ferroelcetrics,37,579-582(1981)
    [34]T R Shrout, Z P Chang, N Kim, et al., Dielectric behavior of single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary, Ferro. Lett.,12, 63-69 (1990)
    [35]Y Yamashita, Y Yokohama, Saitoh S, United States Patent,5 410 209,1995
    [36]罗豪甦,沈关顺,王评初等,新型压电材料-弛豫铁电体单晶的研究,无机材料学报,12,767(1997)
    [37]SE Park, TR Shrout, Relaxor based ferroelectric single crystals for electro-mechanical actuators, Mat. Res. Innovat.,1,20-25(1997)
    [38]Service F, Shape-changing crystals get shifter, Science,1997,275,1878
    [39]徐家跃,新型弛豫铁电单晶(1-x)Pb(Mg1/3Nb2/3)03-xPbTi03生长的技术创新,硅酸盐学报,35,82-88(2007)
    [40]Jia Shou-Ouan, Jiang Pei-Zhi, Crystal growth from solution in the Institute of Physics of Chinese Academy of Sciences., Prog. Crystal Growth and Charact, 1985(11):335-342
    [41]张克从,王希敏,非线性光学晶体材料,北京,科学出版社,1996
    [42]I. Martynyuk-Lototska, T. Dudok, O. Mys and R. Vlokh, Elastic, piezooptic and acoustooptic properties of SrB4O7 and PbB4O7 crystals, Optical Materials,31, 660-667(2009)
    [43]I. Martynyuk-Lototska, O. Mys, T. Dudok, V. Adamiv, Ye. Smirnov and R. Vlokh, Acoustooptic interaction in a-BaB2O4 and Li2B4O7 crystals, Appl. Opt.,47,3446 (2008)
    [44]I Martynyuk-Lototska, O Mys, O Krupych, V Adamiv, Ya Burak, R Vlokh, Elastic, piezooptic and acousto-optic properties of borate crystals (BaB2O4, Li2B4O7 and CsLiB6O10), Integr. Ferroelectrics,63,99 (2004)
    [45]Buzanov O A,Naumov A V, Nechaev V V, Knyazev S N. New approach to the growth of langasite crystal, Proc.50th Ann. Freq. Contr. Symp.,1996,131-136
    [46]Gotalskaja A N, Dresin D I, Schegolkova S N, Langasite crystal quality improvement aimed at high-Q resonators fabrication, Proc.49th Ann. Freq. Contr. Symp.,1995,657-666
    [47]石绪忠,CNGS和CTGS晶体的生长及性能研究,山东大学博士论文,2007
    [48]于法鹏,高温压电晶体的生长、性能表征和应用研究,山东大学博士论文,2011
    [49]尹鑫,王继扬,张少军,La3Ga5SiO14晶体电光Q开关的研究,中国激光,31,29-32(2004)
    [50]Kolb E D, barns R L, Grenier J C, Laudise R A, Solubility crystal growth and perfection of aluminum orthophosphatc, Pro.33th Ann. Freq. Contr. Syrup.,1979: 88-97
    [51]Bentama J, CristaUogenes et propfietes, Physiques de 1a berlinite (AIPO4) elaboree en milieu chlorhydrique, These Doctarot, Montpellier,1987
    [52]Philippot E, Goiffon A, Jumas J C, Avinem C, et al., New advancesin crystalgrowth of high purity berlinite:a New solvent the sulfuric acid, Pro.22th Ann. Freq. Contr. Symp.,1988:138-145
    [53]Laudise R A. Crystals Growth of Electronic Materials, ed. Kaldis, Elsevier Science Publ.,1985
    [54]Detaint J, Philippot E, Jumas J C, et al. Crystal growth, physics characterization and baw devices application of berlinite. Proc.39th Ann. Freq. Contr. Symp.,1985: 234-246.
    [55]Gomez Morales J, Rodriguez Clemente R, Growth morphology of berlinite crystals obtained under hydrothermal conditions, J. Cryst. Growth,128,250-256 (1993)
    [56]W. Wallnofer, P. W. Krempl and A. Asenbaum, Determination of the elastic and photoelastic constants of quartz-type GaPO4 by Brillouin scattering, Phys. Rev. B 49,10075(1994)
    [57]P.W.Krempl, G. Voborsky, U. Posch, W. Wallnofer, AT-PS 393 183B,1994, Vienna
    [58]P. Krempl, G. Schleinzer, W. Walln6fer, Gallium phosphate, GaPO4:a new piezoelectric crystal material for high-temperature sensories, Sensors and Actuators A,61,361-363 (1997)
    [59]H. Thanner, P.W. Krempl, W. Walln. ofer, P.M. Worsch, GaPO4 high temperature crystal microbalance with zerotemperature coefficient, Vacuum 67 (2002)687-691
    [60]K. Jacobs, P. Hofmann, D. Klimm,OH impurities in GaPO4 crystals:correlation between infrared absorption and mass loss during thermal treatment, J. Cryst. Growth 237-239 (2002) 837-842
    [61]J. Hainesa, O. Cambona, D.A. KeenNeutron powder diffraction and totalscattering studies of a-quartz-type piezoelectric materials at high temperature, Physica B,350, e979-e981 (2004)
    [62]M.N. Hamidona, V. Skarda, N.M. White, et al., Fabrication of high temperature surface acoustic wave devices for sensor applications, Sensors and Actuators A 123-124,403-407(2005)
    [63]D. Palmier, A. Goiffon, Crystal growth and characterizations of quartz-like material:gallium phosphate (GaPO4), Journal of Crystal Growth,166, 347-353(1996)
    [64]Shin-ichi Hirano, Kazuo Miwa and Shigeharu Naka, Hydrothermal synthesis of gallium orthophosphate crystals, Journal of Crystal Growth,79(1-3), 215-218(1986)
    [65]R Mittal, S L C, A I Kolesnikov, C K Loong. Inelastic neutron scattering and lattice dynamics studies of AlPO4 and GaPO4, Physica B,385-386,147-149 (2006)
    [66]G. Engel, H. Klapper and P. Krempl, Growth twinning in quartz-homeotypic gallium orthophosphate crystals, Journal of Crystal Growth,94(3),597-606 (1989)
    [67]S. Defregger, G. F. Engel, and P. W. Krempl, Linear and nonlinear optical properties of quartz-type GaPO4, Phys. Rev. B,43,6733-6738 (1991)
    [68]E. Philippot, A. Ibanez and A. Goiffon, A quartz-like material:gallium phosphate (GaPO4), crystal growth and characterization, Journal of Crystal Growth,130(1),195-208 (1993)
    [69]徐国纲,Ga3PO7晶体的熔盐法生长、结构及性质研究,山东大学博士学位论文,2009
    [70]Sophie boudin and Kwang-Hwa Lu, Ga3PO7, Acta Cryst., C54,5-7 (1998)
    [71]Guogang Xu, Jing Li, Jiyang Wang, et al. Growth and thermal properties of Ga3PO7 bulk single crystals. Applied Physics Letters,92,101906 (2008)
    [72]Guogang Xu, Jing Li, Jiyang Wang, et al. Flux grown and characterizations of Ga3PO7 single crystal, Crystal Growth and Design,8(10),3577-3580 (2008)
    [73]Guogang Xu, Jing Li, Jiyang Wang, Hongyang Zhao, Yonggui Yu, Optical properties of Ga3PO7 single crystals, Journal of Crystal Growth,311,3163-3166 (2009)
    [74]ZX Cheng, XL Wang. Optical property and electronic band structure of a piezoelectric compound Ga3PO7 studied by the first-principles calculation. Appl. Phys. Lett.,92,261915 (2008)
    [1]R. C. L. Mooney. The crystal structure of aluminium phosphate and gallium phosphate, low-cristobalite type. Acta Cryst.9,728-734(1956)
    [2]Sophie boudin and Kwang-Hwa Lu, Ga3PO7, Acta Cryst., C54,5-7(1998)
    [3]张福学,王丽坤,现代压电学,北京:科学出版社(2002)
    [4]Shin-ichi Hirano, Kazuo Miwa and Shigeharu Naka, Hydrothermal synthesis of gallium orthophosphate crystals, Journal of Crystal Growth,79(1-3),215-218 (1986)
    [5]G. Engel, H. Klapper and P. Krempl, Growth twinning in quartz-homeotypic gallium orthophosphate crystals, Journal of Crystal Growth,94(3),597-606 (1989)
    [6]D. Palmier, A. Goiffon,Crystal growth and characterizations of quartz-like material:gallium phosphate (GaPO4), Journal of Crystal Growth,166,347-353 (1996)
    [7]P. Hofmann, H. Federmann, M. Schulz, H. Fritze, H.L. Tuller, Growth and high-temperature properties of gallium orthophosphate, Solid State Ionics,177, 3175-3178(2006)
    [8]P. Yot,O. C., D. Balitsky, A. Goiffon, E. Philippot, Advances in crystal growth and characterizations of gallium orthophosphate, GaPO4, Journal of Crystal Growth,224,294-302 (2001)
    [9]E. Philippot, A. Ibanez and A. Goiffon, A quartz-like material:gallium phosphate (GaPO4), crystal growth and characterization, Journal of Crystal Growth,130(1), 195-2081993
    [10]P. Krempl, G. Schleinzer, W. Walln6fer, Gallium phosphate, GaPO4:a new piezoelectric.crystal material for high-temperature sensories, sensors and Actuators A,61,361-363 (1997)
    [11]H. Thanner, P.W. Krempl, W. Walln. ofer, P.M. Worsch, GaPO4 high temperature crystal microbalance with zerotemperature coefficient, Vacuum,67, 687-691 (2002)
    [12]K. Jacobs, P. Hofmann, D. Klimm, OH impurities in GaPO4 crystals:correlation between infrared absorption and mass loss during thermal treatment, J. Cryst. Growth,237-239,837-842 (2002)
    [13]W. Wallnofer, P. W. Krempl and A. Asenbaum, Determination of the elastic and photoelastic constants of quartz-type GaPO4 by Brillouin scattering, Phys. Rev. B, 49(15),10075(1994)
    [14]王继扬,李静,梁曦敏,磷酸镓晶体的助熔剂生长法,ZL200510044842.8
    [15]Guogang Xu, Jing Li, Jiyang Wang, et al. Flux grown and characterizations of Ga3PO7 single crystal, Crystal Growth and Design,8(10),3577-3580(2008)
    [16]Guogang Xu, Jing Li, Jiyang Wang, Hongyang Zhao, Yonggui Yu, Optical properties of Ga3PO7 single crystals, Journal of Crystal Growth,311,3163-3166 (2009)
    [17]Guogang Xu, Jing Li, Jiyang Wang, et al. Growth and thermal properties of Ga3PO7 bulk single crystals. Applied Physics Letters,92,101906 (2008)
    [18]张克从,张乐潓主编,晶体生长科学与技术(上),第二版,科学出版社(1997)
    [19]Jiyang Wang, Jinggian Wei, Yaogan Liu, Xin Yin, Xiaobo Hu, Zongsu Shao, Minhua Jiang, A survey of research on KTP and its analogue crystals, Progress in Crystal Growth and Characterization of Materials,40(1-4),3-15 (2000)
    [20]胡章贵,吴以成,非线性光学晶体LiB3O5研究进展,中国材料进展,29,12-17(2010)
    [21]陈创天,低温相偏硼酸钡(BBO)晶体的发现和意义,中国科学院院刊,1,73-77(1987)
    [22]姚连增,晶体生长基础,中国科学技术大学出版社(1995)
    [23]张建秀,张承乾,黄庆杰,江怀东,胡小波,王继扬,吴以成,陈创天,氟硼铍酸晶体的生长、表面形貌和缺陷,人工晶体学报,30(1),8-12,(2003)
    [24]张承乾,王继扬,吴以成,戚华,胡小波,魏号谦,刘耀岗,刘宏,深紫外激光倍频新晶体KBe2BO3F2,功能材料,32(6),595-597(2001)
    [25]刘如水,沈德忠,张红武,戚立昌译,晶体生长,中国建筑工业出版社
    [26]徐国纲,Ga3PO7晶体的熔盐法生长、结构及性质研究,山东大学博士学位论文,2009
    [27]张建秀,几种单斜双钨酸盐晶体的生长及性能表征,山东大学人博士学位论文,2006
    [28]高文兰,弛豫铁电铌酸钙钡系列晶体生长与性能研究。山东大学博士论文,2010
    [1]姚连增,晶体生长基础,中国科学技术大学出版社(1995)
    [2]Jiyang Wang, Jinggian Wei, Yaogan Liu, Xin Yin, Xiaobo Hu, Zongsu Shao, Minhua Jiang, A survey of research on KTP and its analogue crystals, Progress in Crystal Growth and Characterization of Materials,40(1-4),3-15(2000)
    [3]王继扬,李静,张建秀,一种助熔剂生长法中顶部籽晶重入技术,ZL200810139859.5
    [4]李汶军,施尔畏,仲维卓,殷之文,负离子配位多面体生长基元的理论模型与晶粒形貌,人工晶体学报,28(2),117-125(1999)
    [5]仲维卓,刘光照等,在热液条件下晶体的生长基元与晶体形成机理,中国科学(B),24(4),394(1994)
    [6]仲维卓,于锡玲等,水溶液生长KDP生长基元与形成机理,中国科学(E),28(4),320(1998)
    [7]Zhong Weizhuo, Tang Dingyuan, Growth Units and Morphology of Lithum Triborate (LBO) Crystals, J. Crystal Growth,166,91 (1996)
    [8]元如林,施尔畏等,氧化锌晶粒生长基元与生长形态的形成机理,中国科学(E),27(3),229(1997)
    [9]闵乃本,晶体生长的物理基础,上海科学技术出版社(1982)
    [10]张克从,近代物理学基础,科学出版社(1987)
    [12]Guogang Xu, Jing Li, Jiyang Wang, Hongyang Zhao, Yonggui Yu, Optical properties of Ga3PO7 single crystals, Journal of Crystal Growth,311,3163-3166 (2009)
    [1]方奇,于文涛,晶体学原理,国防工业出版社,(2002)
    [2]Hammond C.Introduction to Crystallpgrapys. New York:Oxford University Press,1990
    [3]肖序刚,晶体结构的几何理论,北京,高等教育出版社,(1993)
    [4]Sophie boudin and Kwang-Hwa Lu, Ga3PO7, Acta Cryst., C54,5-7(1998)
    [5]徐国纲,Ga3PO7晶体的熔盐法生长、结构及性质研究,山东大学博士学位论文,2009
    [6]NE Brese M O'Keeffe, Bond-Valence Parameters for solids, Acta Cryst., B47, 192-197(1991)
    [7]Zhang Junjie, Junjie Zhang, Zhonghan Zhang, Weiguo Zhang, Qingxin Zheng, Youxuan Sun, Chengqian Zhang, andXutang Tao*, Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation, Chem. Mater.,23, 3752-3761 (2011)
    [8]Kang Min Ok and P. Shiv Halasyamani*, Mixed-Metal Tellurites:Synthesis, Structure, and Characterization of Na1.4Nb3Te4.9O18 and NaNb3Te4O16, Inorganic Chemistry,44(11),3919 (2005)
    [9]ID Brown and D Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database, Acta Cryst., B41,244-247 (1985)
    [10]张克从,张乐惠,晶体生长科学与技术,科学出版社,(1997)
    [11]杨宇,硅缺陷发光的研究概况,功能材料,6(4),12-15(2009)
    [12]杨顺华,丁棣华,晶体位错理论基础(第二卷),科学出版社,(1998)
    [13]J.弗里埃德尔著,王煜译,位错,科学出版社,(1980)
    [14]赵珊茸,博士学位论文(导师:王继扬教授),山东大学,2001
    [15]胡晓波,博士后研究工作报告,山东大学,1999
    [16]姚连增,晶体生长基础,中国科学技术大学出版社,(1995)
    [17]徐宝琨,阎卫平,刘明登,结晶学,吉林大学出版社,(1991)
    [18]沈卫军,胡小波,傅佩珍,姚吉勇,曾文荣,陈创天,田玉莲,蒋建华,BPO4晶体的生长及孪晶缺陷分析,人工晶体学报,30(2),140-143(2001)
    [19]Jiyang Wang, Xiaobo Hua, Hong Liu, Jing Li, Shusheng Jiang, Shanrong Zhao, Bing Teng, Yulian Tian, Jianhua Jiang, Growth and defects in YbxY1-xAl3(BO3)4 crystals, Journal of Crystal Growth,229,256-260 (2001)
    [20]王继扬,晶体生长的缺陷机制,物理,30,332-339(2001)
    [1]杨序纲,吴琪琳,拉曼光谱的分析与应用,国防工业出版社,2008
    [2]陆婉珍,现代红外光谱分析技术,中国石化出版社,2007
    [3]R J Ferraro, K Nakamoto, C W Brown, Introduction Raman Spectroscopy (Second edition) 2002, Chapter 2
    [4]张娜娜,几种氧化物晶体的生长和非弹性振动特性,山东大学博士论文,2012
    [5]T C Damen, et al. Phys. Rev.1966 (142) 570
    [6]尤静林,高温拉曼光谱创新技术、光谱计算和在无机化合物微结构研究中的应用,上海大学出版社,2010
    [7]王迪,万松明,张庆礼,孙敦陆,殷绍唐,尤静林,王媛媛,LiB3O5晶体及其自助溶生长溶液的高温拉曼光谱研究,量子电子学报,28,241(2011)
    [8]M.R. Moura, A.P. Ayala, I. Guedes, C.K. Loong, L.A. Boatner, J. Appl. Phys.96, 6344-6347 (2004).
    [9]E.N. Silva, A.P. Ayala, I. Guedes, C.W.A. Paschoal, R.L. Moreira, C.K. Loong, et al, Opt. Mats.29,224-230 (2006).
    [1]张克从,张乐潓,晶体生长科学与技术(上),第二版,科学出版社,(1997)
    [2]张福学,孙慷, 压电学.北京:国防工业出版社,(1984)
    [3]肖定全,王民主编,晶体物理学,四川大学出版社,(1989)
    [4]旺相编著,晶体光学,南京大学出版社,(2003)
    [5]张沛霖,钟维烈等,压电材料与器件物理,山东科学技术出版社,(1997)
    [6]高文兰,弛豫铁电铌酸钙钡系列晶体生长与性能研究。山东大学博士论文,2010
    [7]徐国纲,Ga3PO7晶体的熔盐法生长、结构及性质研究,山东大学博士学位论文,2009
    [8](美)T佐尔泰,矿物学原理,(1992)
    [9]吕孟凯,固态化学,山东大学出版社,(1996)
    [10]杨迪,李福欣编著,显微硬度实验,中国计量出版社,(1988)
    [11]K.Jagannathan, S.Kalainathan, T.Gnanasekaran, Microhardness studies on 4-Dimethylamino-N-methyl 4-Stilbazolium Tosylate(DAST), Matterals Letters, 61,4485-4488(2007)
    [12]Banwari Lal, K.K.Bamzai, P.N. Kotru, B.M. Wanklyn, Microhardness, fracture mechanism and dielectric behaviour of flux-grown GdFeO3 single crystals, Mater. Chem. Phys.,85,353-359 (2004)
    [13]K.A.Jackson, Liquid metals and solidification, ASM Cleveland,174 (1958)
    [14]闵乃本著,晶体生长的物理基础,上海科学技术出版社(1982)
    [15]关振铎,张中太,焦金生编著,无机材料物理性能,清华大学出版社(1992)
    [16]程兰征,章燕豪,林青松,董泉玉,物理化学,上海科学技术出版社(1988)
    [17]J.F.Nye, Physical properties of crystals, Oxford University Press, (1985)
    [18]陈泓,李传儒,热分析及其应用,科学出版社,(1985)
    [19]肖定全,王民主编,晶体物理学,四川大学出版社,(1989)
    [20]杨南如主编,无机非金属材料测试方法,武汉工业大学出版社,(1993)
    [21]W.W. Ge, H.J. Zhang, J.Y.Wang J. H.Liu, H. X. Li, et al.. The thermal and optical properties of BaWO4 single crystal, J. Cryst. Growth,276,208-214 (2005)
    [22]李静,梁曦敏,徐国纲,赵洪阳,王继扬,助熔剂法生长GaPO4晶体,压电 与声光,29,695-696(2007)
    [23]胡皆汉等,实用红外光谱学,科学出版社,(2003)
    [24]席时权,兰淑琴,曾广赋,洪广言,李来明,稀土五磷酸盐的红外光谱和拉曼光谱光谱学与光谱分析,4(1)8-15, (1983)
    [1]Curie J, Cruie P, Bull. Soc. Miner. Fr.,3,90(1880)
    [2]张福学,王丽坤,现代压电学,北京:科学出版社(2001)
    [3]蒋民华,晶体物理,济南:山东科学技术出版社(1999)
    [4]张沛霖,钟维烈等,压电材料与器件物理,山东科学技术出版社,(1997)
    [5]Wemple S. H., Dodomenico M., Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LitaO3 and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization. Appl. Phys. Lett.,12,209-211(1968)
    [6]Kaminow I.P., Turner E.H., Borns R.L., Crystallographic and electrooptic properties of cleaved LiNbO3, J. Appl. Phys.,51(8),4379-4384 (1980)
    [7]Carruthers T.R., Peterson G.E., Grasso M., Nonstoichiometry and crystal growth of lithium niobate, J. Appl. Phys.42,1846-1849 (1971)
    [8]Takashige M., Mitsui T., Nakamura T., Grain-size development in the crystallization process from amorphous PbTiO3, Jpn. J. Appli. Phys.,20, L159-162 (1981)
    [9]Kaminow I.P. and Turner E.H., On handbook of Laser. Edit by R.J. Pressley, Chemical Rubber Co., Cleveland, Ohio, U.S.A.,1971
    [10]Yamada T., Iwasaki H. and Niizeki N., Piezoelectric and elastic properties of LiTaO3 temperature characteristics, Jpn. J. Appl. Phys.,8,1127-1132(1969)
    [11]肖定全,王民主编,晶体物理学,四川大学出版社,1989
    [12]张沛森,张仲渊,压电测量,国防工业出版社,1983年;
    [13]张福学,孙慷,压电学,北京国防工业出版社,1984年
    [14]尹鑫,张囡,袁多荣,蒋民华,干涉法测量Cd(C4H8N2S)3Cl2晶体的压电系数,人工晶体学报,18(4)(1989)337-340.
    [15]易明,廖理几,用布里渊散射法测量Li2B4O7单晶的弹性系数和压电系数,北京工业大学学报,18(1)(1992)23—29.
    [16]IEEE Standard on Piezoelectricity, ANSI/IEEE Standards 176-1987,1-66.
    [17]孙慷,张福学,压电学(上册),国防工业出版社,(1984)
    [18]张健,声表面波延迟线用LGS晶体的生长,博士学位论文,2009
    [19]Zeliang Gao, Xutang Tao, Xin Yin, Weiguo Zhang, and Minhua Jiang, Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal, APPLIED PHYSICS LETTERS,93,252906 (2008)
    [20]张园园,无序黄长石ABC3O7系列晶体的生长和性质表征,山东大学博士学位论文,2012
    [21]高泽亮,新型低对称BaTeMo2O9单晶电学、电光性能研究及压电器件的设计与表征,山东大学博士学位论文,2010
    [22]D S Robertson, I M Young, F W Aigger, C O Hara, A M Glazer, The effect of impurities on the piezoelectric properties of lithium germinate, J. Phys. D:Appl. Phys.,12,611(1979)
    [23]W Wallnofer, P W Krepml, Dtermination of the elastic and photoelastic of quartz-type GaPO4 by Brillouin scattering, Physical Review B,49,10075-10080 (1994)
    [24]王弘,徐斌,刘希玲,韩建儒,尚淑霞,α-AlPO4单晶的压电和弹性性质研究,物理学报,1985,34,1634
    [25]WANG Hong, XU Bin, LIU Xiling, HAN Jianru, SHAN Shuxia, LI Hu, The piezoelectric and elastic properties of berlinnite and the effect on the physical properties, J. Crystal Growth,79,227-231 (1986)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700