水基缓蚀剂的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自然条件(如潮湿空气、酸雨)、工业酸洗、油气井酸化等造成的腐蚀随处可见,而合理使用缓蚀剂是防止金属及其合金在环境介质中发生腐蚀的有效方法。咪唑啉类缓蚀剂是一类低毒、高效、抗高温的酸化缓蚀剂,是当前缓蚀剂的研究热点。
     本论文选取不同脂肪酸为原料合成了咪唑啉中间体,并对相应结构中间体进行季铵化改性合成了咪唑啉季铵盐,并采用红外光谱和紫外光谱进行了结构鉴定。咪唑啉衍生物结构中的疏水基团、不饱和键和季铵化,以及腐蚀浓度、温度、酸度、腐蚀时间等对缓蚀性能有一定影响。结果表明,亚麻酸咪唑啉季铵盐缓蚀剂能明显抑制金属腐蚀,抗高温效果好,该类化合物在金属表面的吸附遵循Langmuir吸附定理,是自发吸附。探讨了咪唑啉化合物的缓蚀作用机理。
     论文合成了双(二甲基烷基)烷撑双季铵盐表面活性剂,简称为n-2-n·2Br,用红外光谱和质谱对其结构进行了表征,对影响合成双(二甲基烷基)乙撑双季铵盐Gemini表面活性剂的因素进行讨论。测定了所合成的系列Gemini型表面活性剂的表面张力γcmc和临界胶束浓度cmc值,对Gemini类表面活性剂在酸性介质中的抗腐蚀效果进行了初步探讨,实验结果表明,所合成的Gemini类表面活性剂具有很好的抗腐蚀性能,在金属表面的吸附遵循Langmuir吸附定理,是自发吸附,最大缓蚀率出现在cmc附近。探讨Gemini化合物的缓蚀作用机理。
     对所合成的两类缓蚀剂与无机化合物以及有机化合物的协同缓蚀作用进行了研究,筛选出KI与咪唑啉类缓蚀剂有明显的协同作用,缓蚀效果好于工业缓蚀剂CT1-3B。
     采用静态腐蚀实验、SEM以及激光扫描显微镜对缓蚀效果进行了性能评价,结果表明所合成的缓蚀剂是性能优良的缓蚀剂。
Corrosion is prevalent occurring,owing to natural conditions(like wet air,acid rain),acid pickling,oil field acidizing,and using inhibitors is one of the most efficient methods to prevent corrosion.Imidazoline derivative as a low toxic,efficient and high temperature resistance inhibitor,is a research hot spot at present.
     In this article a seris of imidazoline is synthesized with different fatty acid,then modified by quaternary ammoniation,and the products are characterized by IR and UV.The influencing factors are studied in corrosion inhibition,such as hydrophobic group,unsaturated bond,quaternary ammoniation.The corrosion conditions are also studied,such as concentration,temperature,acidity,corrosion time,which have an important effect on corrosion inhibition.The results show,linolenic acid imidazoline quaternary ammonium can greatly inhibit corrosion on metal surface and have a effective high temperature resistance. According to Langmuir adsorption isotherm,negative value is calculated for the energy of adsorption indicating the spontaneity of the sdsorption process.The corrosion mechanism is discussed.
     A series of 1,2-ethane bis(dimethyl alkyl(C_nH_(2n+1))ammonium bromide) is synthesized, namely n-2-n·2Br,and characterized by MS and IR.The factors which influence reaction are carried on the discussion.The surface tension of the Gemini surfactantγ_(cmc),critical micelle concentration cmc value and inhibiton effect are determined.The result shows good inhibition effect by fitting the experimental data with Langmuir adsorption isotherm,and the inhibition effect reaches maximum at an optimal concentration near CMC(critical micelle concentration). The corrosion mechanism is also discussed.
     The synergistic inhibition effect for the two types of compounds synthesized with organic and inorganic inhibitors is investigated.It shows obvious synergistic effect,and the inhibition effect is better than industrial inhibitor CT1-3B.
     The weight loss measurement,scanning electron microscope and laser scanning microscope are applied to corrosion inhibition evaluation,it is found that the inhibitors have a excellent inhibition performance on metal.
引文
[1]杨雪莲,常青.缓蚀剂的研究与进展[J].甘肃科技,2004,20(1):79
    [2]蒋秀,郑玉贵.油气井缓蚀剂研究进展[J].腐蚀科学与防护技术,2003,15(3):164
    [3]Srdjan Ne(?)ic.Key issues related to modeling of internal corrosion of oil and gas pipelines—A review[J].Corrosion Science,2007,49:4308-4338
    [4]Pandian Bothi Raja,Mathur Gopalakrishnan Sethuraman.Natural products as corrosion inhibitor for metals in corrosivemedia—Areview[J].Materials Letters,2008,62:113-116
    [5]张天胜,张浩,高红,等.缓蚀剂[M].北京:化学工业出版社,2008.
    [6]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1985.
    [7]Guoan Zbang,Changfeng Chen,Minxu Lu et al,Evaluation of inhibition efficiency of an imidazoline derivative in CO_2-containing aqueous solution[J].Materials Chemistry and Physics,2007,105:331-340
    [8]LU Yuan,LIU He-xia,ZHAO Jing-mao,Inhibition Mechanism of Imidazoline Derivate in Simulated Water from Deep Gaswell Containing CO_2[J].ELECTROCHEMISTRY,2007,13:242-247
    [9]J.Z.Ai,X.P.Guo,J.E.Qu,Z.Y.Chen,et al.Adsorption behavior and synergistic mechanism of a cationic inhibitor and KI on the galvanic electrode[J].Colloids and Surfaces A:Physicochem.Eng.Aspects,2006,281:147-155
    [10]Y.Abboud,A.Abourriche,T.Saffaj,et al,2,3-Quinoxalinedione as a novel corrosion inhibitor for mild steel in 1M HCl[J].Materials Chemistry and Physics,2007,105:1-5
    [11]M.Scendo,M.Hepel,Inhibiting properties of benzimidazole films for Cu(Ⅱ)/Cu(Ⅰ)reduction in chloride media studied by RDE and EQCN techniques[J].Corrosion Science,2007,49:3381-3407
    [12]Adriana.Patru.Samide,Ion Bibicu,Mircea Preda,et al.M(o|¨)ssbauer spectroscopy study on the corrosion inhibition of carbon steel in hydrochloric acid solution[J].Materials Letters,2008,62:320-322
    [14]M.Behpour,S.M.Ghoreishi,M.Salavati-Niasari,et al.Evaluating two new synthesized S-N Schiff bases on the corrosion of copper in 15%hydrochloric acid[J].Materials Chemistry and Physics,2008,107:153-157
    [15]T.Hong,Y.H.Sun,W.P.Json.Study on corrosion inhibitor in large pipelines under multiphase flow using EIS[J].Corrosion Science,2002,44:101-112
    [16]M.A.Deyab,H.A.Abo Dief,E.A.Eissa,et al.Electrochemical investigations of naphthenic acid corrosion for carbon steel and the inhibitive effect by some ethoxylated fatty acids[J].Electrochimica,2007,52:8105-8110
    [17]朱镭,于萍,罗运柏.咪唑啉缓蚀剂的研究与应用进展[J].材料保护,2003,36(12):4
    [18]龚敏,曾宪光,罗宏.咪唑啉衍生物缓蚀剂的研究进展[J].四川理工学院学报,2006,19(5):13
    [19]高秋英,梅平,陈武,等.咪唑啉类缓蚀剂的合成及应用研究进展.化学工程师,2006,128(5):18
    [20]傅送保.环烷基咪唑啉的合成及其缓蚀杀菌性能研究[J].精细化工中间体,2004,34(2):39
    [21]葛际江,张贵才,任熵,等.用一阶导数分光光度法测定临盘油田产出液中缓蚀剂的含量[J].西安石油大学学报,2007,22(5):61
    [22]Nathalie Defacqz,Van Tran-Trieu,Alex Cordi,et al.Synthesis of C5-substituted imidazolines.Tetrahedron Letters,2003,44:9111-9114
    [23]邱海燕.酸化缓蚀剂的合成及机理研究[D].四川:西南石油学院,2004.
    [24]熊颖,陈大钧,张磊,等.一种咪唑啉类抗高温酸化缓蚀剂的制备与性能评价[J].钻采工艺,2007,30(4):141
    [25]刘建平,苗永霞,周晓湘.复配咪唑啉类酸洗缓蚀剂的缓蚀性能研究[J].材料保护,2005,38(8):21
    [26]M N H Moussa,A A El-Far,A A El-Shafei.The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium[J].Materials Chemistry and Physics,2007,105:105-113
    [27]刘福国,杜敏.复合缓蚀剂在31%NaCl溶液中的缓蚀性能[J].腐蚀与防护,2007,28(10):523
    [28]杨怀玉,陈家坚,曹楚男,等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报,2003,23(2):75
    [29]周琦,赵红顺,贾建刚,等.X65钢在CO_2/H_2S介质中的高温高压腐蚀行为[J].兰州理工大学学报,2007,33(4):18
    [30]熊颖,陈大钧,张磊,等.一种防H_2S腐蚀的缓蚀剂制备与现场挂片试验研究[J].钴采工艺,2007,30(5):131
    [31]S.A.Umoren,E.E.Ebenso.The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H_2SO_4.Materials Chemistry and Physics,2007,106:387-393
    [32]Daxi Wanga,Shuyuan Lia,Yu Ying,et al.Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives.Corrosion Science,1999,41:1911-1919
    [33]杨怀玉,陈家坚,曹楚男,等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报,2002,22(3):148
    [34]Esmaeel Naderia,A.H.Jafari,M.Ehteshamzadeha,Effect of carbon steel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1M HCl solution by EIS[J].Materials Chemistry and Physics,2007
    [35]Carlos A.Gonz(?) lez-Rodr(?) guez,Francisco J.Rodr(?) guez-Go(?) mez,Joan Genesca(?)-Llongueras,The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater[J].Electrochimica Acta,2008,54:86-90
    [36]孙福星,庞正智,武德珍,等.HC1中咪唑衍生物复配对碳钢的缓蚀作刚研究[J].北京化工大学学报,2005,32(6):99
    [37]S.A.Umoren,E.E.Ebenso.The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H_2SO_4[J].Materials Chemistry and Physics,2007,106:387-393
    [38]刘福国,杜敏.复合缓蚀剂在31%NaCl溶液中的缓蚀性能[J].腐蚀与防护,2007,28(10):523
    [39]李建忱,蒋青,吕晓霞.盐酸溶液中碘化对金属的缓蚀效应[J].农业机械学报,2000,31(2):107
    [40]李向红,邓书端,木冠南,等.缓蚀协同效应研究现状及展望[J].清洗世界,2006,22(12):18
    [41]唐世华,黄建滨,李子臣,等,Gemini表面活性剂研究的新进展[J].2001,11(12):1240
    [42]崔庆华.新型Gemini表面活性剂的设计与合成[D].山东:山东大学,2007.
    [43]王睿.新型Gemini表面活性剂的合成、表面性能评价及破乳性能探讨[D].四川:西南石油大学,2006.
    [44]包新颜,许虎君,梁金龙,一种酯型双子表面活性剂的合成及其协同效应[J].2006,36(1):1240
    [45]叶志文,Gemini表面活性剂C_(12)-3-C_(12)·2Br及C_(12)-3(OH)2C_(12)·2Cl的合成及表面活性[J].2007,29(9):513
    [46]韩铁柱,胡星琪,刘福梅,一种新型Gemini表面活性剂的合成,2002,24(6):57
    [47]Reiko Oda et al,Gemini Surfactants as New,Low Molecular Weight Gelators of Organic Solvents and Water,Angew.Chem.Int.Ed,1998,37:2689-2691
    [48]M.El Achouri,M.R.Infante,F.Izquierdo et al,Synthesis of some cationic gemini surfactants and their inhibitive e.ect on iron corrosion in hydrochloric acid medium,Corrosion Science,2001,43:19-38
    [49]Taiga Tatsumi,Wanbin Zhang,Toshiyuki Kida et al,Novel Hydrolyzable and Biodegradable Cationic Gemini Surfactants:1,3-Bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane Dichloride,Journal of Surfactants and Detergents,2000,3:167-172
    [50]Lionel Massi,Fr(?)d(?)ric Ouittard,Richard Levy et al,Preparation and antimicrobial behaviour of gemini fluorosurfactants,European Journal of Medicinal Chemistry,2003,38:519-523
    [51]Kenichi Sakai,Shin Umezawa,Mamoru Tamura et al,Adsorption and micellization behavior of novel gluconamide-type Gemini surfactants,Journal of Colloid and Interface Science,2008,318:440-448
    [52]M.El Achouri,S.Kertit,H.M.Gouttaya et al,Corrosion inhibition of iron in 1M HCI by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide),2001,43:267-2?3
    [53]Ling-Guang Qiu,An-Jian Xie,Yu-Hua Shen,The adsorption and corrosion inhibition of some cationic gemini surfactants on carbon steel surface in hydrochloric acid,Corrosion Science,2005,47:273-278
    [54]Ling-Guang Qiu,An-Jian Xie,Yu-Hua Shen,Understanding the effect of the spacer length on adsorption of gemini surfactants onto steel surface in acid medium,Applied Surface Science,2005,246:1-5
    [55]Rong Li,Qibin Chen,Dazhi Zhang et al,Mixed monolayers of Gemini surfactants and stearic acid at the air/water interface,Journal of Colloid and Interface Science,2008,327:162-168
    [56]Masahiko Abe,Takaaki Koike,Hironori Nishiyama et al,Polymerized assemblies of cationic gemini surfactants in aqueous solution,Journal of Colloid and Interface Science,2009,330:250-253
    [57]Zhongbin Ye,Fuxiang Zhang,Lijuan Han et al,The effect of temperature on the interracial tension between crude oil and gemini surfactant solution,Colloids and Surfaces A:Physicochem.Eng.Aspects,2008,322:138-141
    [58]Lijuan Han,Hong Chen,Pingya Luo,Viscosity behavior of cationic Gemini surfactants with long alkyl chains,Surface Science,2004,564:141-148
    [59]Frederic C B,Verona N J.US2524218,1950.
    [60]高冰贤,赵艳谨,魏文林,等.新型双季铵盐缓蚀杀菌剂的合成及其性能研究[J].化学与生物工程,2009,26(3):24
    [61]孙立成,张壮余.咪唑啉型两性表面活性剂的研究[J].大连理工大学学报,1988,27:95-101
    [62]孙立成,张壮余.两性表面活性剂进展[J].精细化工,1988,5:10-16
    [63]王兆辉,王大喜.咪唑啉化合物生成机理的量子化学研究[J].石油学报,1999,15(6):10
    [64]王大喜,王明俊.取代基咪唑啉分子结构与缓蚀性能的理论研究—咪唑啉分子与铁原子化学吸附位能曲线的量子化学计算[J].石油学报,2000,16(6):74
    [65]王大喜,王兆辉.取代基咪唑啉分子结构与缓蚀性能的实验研究[J].中国腐蚀与防护学报,2001,21(2):112
    [66]王大喜,俞英.新型咪唑啉化合物的合成及缓蚀性能测试[J].石油大学学报,2000,24(6):52
    [67]蒋平平.国内外磷酸酯表面活性剂合成与应用研究现状及发展趋势[J].日用化学工业,1997,3:32-37
    [68]陈树大,吴建一.脂肪醇聚氧乙烯醚磷酸酯盐的合成与性能[J].嘉兴学院学报,2003,15(3):32
    [69]周富荣,邓芳.月桂酸二乙醇酰胺磷酸酯盐的合成及性质[J].表面活性剂工业,2000,4:27
    [70]王丰收,磷酸酯的耐碱性和渗透性,2000,23(1):59-60
    [71]姜健,梁鹏.脂肪醇聚氧乙烯醚混合磷酸酯含量的分别测定[J].辽东学院学报,2006,33(2):66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700