低热固相法合成磷酸盐系列纳米材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低热固相反应法具有无须溶剂、选择性强、产率高、能耗低、操作简单等诸多优点,已成为合成无机纳米材料的新途径。本文采用低热固相反应法合成了(NH_4)_2Ti(PO_4)_2、Ce_(1-x)Ti_xP_2O_7及NH_4MnPO_4·H_2O系列新型无机纳米粉体。同时对(NH_4)_2Ti(PO_4)_2催化合成乙酸正丁酯及NH_4MnPO_4·H_2O纳米晶的热分解动力学进行了研究。本研究论文共分为六章:
     第一章绪论
     介绍了纳米材料的特性及其合成研究进展。同时,综述了固相反应法制备无机材料的原理及其在合成纳米无机材料中的优点。
     第二章磷酸钛铵的低热固相合成与表征
     以Ti(SO_4)_2和(NH_4)_3PO_4·3H_2O为原料,采用低热固相反应法制备(NH_4)_2Ti(PO_4)_2。采用TG/DTA、IR、XRD、UV和TEM对产品及其热解产品进行表征。结果表明:80℃下保温5h得到的是无定型的(NH_4)_2Ti(PO_4)_2粉体,其平均粒径约为40nm;产品经900℃煅烧后,得到结晶良好、空间群为Pa3(205)、平均粒径约为23nm的TiP_2O_7晶体。产品及其热分解产品具有较高的紫外吸收能力。
     第三章磷酸钛铵催化合成乙酸正丁酯的研究
     以纳米级磷酸钛铵为催化剂,冰醋酸和正丁醇为原料合成了乙酸正丁酯。通过均匀设计法确定了最佳实验条件,结果表明:当酸醇物质的量比为1.92:1,反应时间为5.1h,催化剂用量为1.4g(质量百分比为7.8%)时,其酯化率可达0.99。该催化剂制备工艺简单,可重复使用,基本无腐蚀和污染,是一种颇具工业应用开发前景的催化剂。
     第四章Ce_(1-x)Ti_xP_2O_7粉体的低热固相合成及其紫外屏蔽性能研究
     以Na_4P_2O_7·10H_2O、Ti(SO_4)_2、Ce(SO_4)_2·4H_2O为原料,采用低热固相反应法合成了Ce_(1-x)Ti_xP_2O_7(x=0,0.2,0.5,0.7,0.9,和1.0)。通过XRD、TG/DTA、UV和TEM对产品及其热分解产物进行了表征。结果表明,100℃下得到的产品均为无定型纳米粉体,且具有良好的紫外遮光效果。其中,CeP_2O_7的紫外遮光效果最佳,但无定型的Ce_(0.8)Ti_(0.2)P_2O_7较CeP_2O_7能稳定至更高的温度。因此,可通过往CeP_2O_7中掺钛来实现CeP_2O_7无定型态的稳定。这种稳定性的改善使这些无定型的焦磷酸盐不仅能适用于化妆品和涂料,同样也适用于塑胶和薄膜中应用。
     第五章NH_4MnPO_4·H_2O的低热固相合成与表征
     以MnSO_4·H_2O和(NH_4)_3PO_4·3H_2O为原料,先在室温下研磨反应混合物进行固相反应,然后将混合物于室温下静置陈化12h,接着用水洗去混合物中的可溶性无机盐,后将沉淀物在60℃烘干,即得NH_4MnPO_4·H_2O纳米晶。采用XRD、TG/DTA、IR、UV和SEM对产品表征。结果表明,所得产品为结晶良好、空间群为Pmnm(59)的正交NH_4MnPO_4·H_2O,其平均粒径约为45nm;将NH_4MnPO_4·H_2O分别在600℃、900℃下煅烧3h则得到空间群为C2/m(12)的单斜(Monclinic)Mn_2P_2O_7。它们的粒径分别约为22nm和61nm。
     第六章NH_4MnPO_4·H_2O的热分解动力学研究
     采用热重差热法分析研究了NH_4MnPO_4·H_2O的热分解过程,结果表明:NH_4MnPO_4·H_2O在低于600℃下的热分解分两步进行,第一步为结晶水和氨气的脱附,第二步为MnHPO_4脱水缩合成Mn_2P_2O_7。各分解过程的活化能(E)、频率因子(A)和热分解机理函数分别为:反应(1)E=105.7 kJ/mol,lnA=24.9s~(-1),G(a)=(1-a)~(-1)-1;反应(2)E=113.6 kJ/mol,lnA=14.5s~(-1),G(a)=[1/(1-a)~(1/3)-1]~2。
Solid-state reaction method at low heat has many advantages, such as few solvent, high selectivity, high output, low energy cost, so it has became a novel synthetic technique for preparing nanometer size inorganic materials. In this paper, nanometer size (NH_4)_2Ti(PO_4)_2, Ce_(1-x)Ti_xP_2O_7 and NH_4MnPO_4·H_2O powders were synthesized via solid-state reaction at low heat. Besides, catalytic performance of (NH_4)_2Ti(PO_4)_2 in the synthesis of butyl acetate and thermal decomposition kinetics of nanometer crystalline NH_4MnPO_4·H_2O were also investigated. The paper consists of six chapters.
     Chapter one: Introduction
     Characteristic and preparation progress of nanometer materials were introduced. Besides, the principle of preparing nanometer inorganic material via solid-state reaction and its advantage were also summarized.
     Chapter two: Preparation of (NH_4)_2Ti(PO_4)_2 via solid-state reaction at low heat and characterization
     The (NH_4)_2Ti(PO_4)_2 was obtained via solid-state reaction at low heat when Ti(SO_4)_2 and (NH_4)_3PO_4·3H_2O were used as raw materials. Product and its thermal decomposition products were characterized using TG/DTA, IR, XRD, UV and TEM. The results showed that average particle size of amorphous (NH_4)_2Ti(PO_4)_2 obtained at 80℃for 5h was about 40nm. When (NH_4)_2Ti(PO_4)_2 was calcined at 900℃for 3h, the nanometer crystalline TiP_2O_7 with high crystallization, space group Pa-3(205), was obtained, and its average particle size was about 23nm. The product and its thermal decomposition products behaved as excellent UV-shielding materials.
     Chapter three: Study on (NH_4)_2Ti(PO_4)_2 used for catalytic synthesis of butyl acetate
     The butyl acetate was synthesized when nanometer size amorphous (NH_4)_2Ti(PO_4)_2 was used as catalyst, and glacial acetic acid and n-butanol were used as raw materials. The optimum conditions were obtained via uniform design method. The results showed that the optimum conditions were as follows: molar ratio of acetic acid to butanol was 1.92:1, reaction time was 5.1h, catalyst dosage was 1.4g (7.8%w/w), and esterification yield was 0.99 under the optimum conditions. The catalyst can be prepared via simple technique, and used repeatedly, little equipment cauterization and environmental pollution, so this catalyst would have a bright future for industrial application.
     Chapter four: Preparation of Ce_(1-x)Ti_xP_2O_7 powders via solid-state reaction at low heat and study on their UV absorbency.
     Ce_(1-x)Ti_xP_2O_7(with x = 0, 0.2, 0.5, 0.7, 0.9, and 1.0) were obtained via solid-state reaction at low heat when Ce(SO_4)_2·4H_2O, Ti(SO_4)_2 and Na_4P_2O_7·10H_2O were used as raw materials. The products and its products calicined were characterized using XRD, TG/DTA, UV and TEM. The results showed that naometer size amorphous Ce_(1-x)Ti_xP_2O_7 obtained at 100℃behaved as an excellent UV-shielding materials respectively. There into, the CeP_2O_7 has the most excellent UV-shielding effect, the amorphous state of Ce_(0.8)Ti_(0.2)O_7 can keep at higher temperature than CeP_2O_7. Therefore, the stabilization of the amorphous state of the cerium pyrophosphates was carried out by doping titanium (Ti). This stabilization is a significant improvement, which enables to apply these amorphous pyrophosphates not only to cosmetics and paints, but also plastics and films.
     Chapter five: Preparation of NH_4MnPO_4·H_2O via solid-state reaction at low heat and characterization
     The nanometer crystalline NH_4MnPO_4·H_2O was obtained when MnSO_4·H_2O and (NH_4)_3PO_4·3H_2O were fully ground via solid-state reaction at room temperature, then mixture was kept at room temperature for 12h, and washed with water to remove soluble inorganic salts and dried at 60℃. Product was characterized using XRD, TG/DTA, IR, UV and SEM. The results showed that average particle size of nanometer crystalline NH_4MnPO_4·H_2O obtained at 60℃with high crystallization, orthorhombic system, space group Pmnm(59), was about 45nm. When NH_4MnPO_4·H_2O was calcined at 600℃and 900℃for 3h respectively, the nanometer crystalline Mn_2P_2O_7 with space group C2/m(12), monclinic system, was obtained, and their average particle sizes were about 22 nm and 61nm respectively.
     Chapter six: Study on thermal decomposition kinetics of NH_4MnPO_4·H_2O
     Thermal decomposition kinetics of NH_4MnPO_4·H_2O was investigated using thermo-gravimetric-differential thermal analysis (TG-DTA). The results showed that thermal decomposition of NH_4MnPO_4·H_2O at temperature below 600℃occurs in two well-defined steps. The first step is attributed to the desorption of water and ammonia from NH_4MnPO_4H_2O, and the second step is attributed to dehydration of MnHPO_4 and formation of Mn_2P_2O_7. Activation energy (E), frequency (A), and mechanism function of each thermal decomposition reaction step are as follows: E = 105.7 kJ/mol, lnA = 24.9 s~(-1), G(a) = (1-a)~(-1)-1 for reaction(1); and E = 113.6 kJ/mol, lnA=14.5 s~(-1), G(a) = [1/(1-a)~(1/3)-1]~2 for reaction(2).
引文
[1]马向东.纳米材料的进展及展望[J].水利电力机械,2004,26(2):35-37.
    
    [2]唐辉,李玲玲.纳米材料的制备方法研究进展[J].科技资讯,2006,22(5):6-7.
    
    [3]张立德,牟季美.纳米材料学[M].辽宁:科学技术出版社,1994.3-7.
    
    [4]王丽萍.稀土-聚合物纳米复合材料的制备与表征[D].长春:中国科学院长春应用化 学研究所,1999.
    
    [5]李星国.纳米材料的研究及其应用[J].纺织科学研究,2004,6(2):33-38.
    
    [6]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.5-7.
    
    [7]夏林胜.SnO_2纳米棒的制备及其性能研究[D].合肥:中国科学技术大学,2006.
    
    [8]白正宇.稀土纳米材料的水热溶剂热合成及其机理研究[D].新乡:河南师范大学, 2007.
    
    [9]刘兴芝,房大维,王鲁宁,等.纳米材料及其应用[J].辽宁大学学报,2004,5(1): 89-93.
    
    [10] Takayasu O. Masuura I. Procceedings of the 10~(th) Internatonal congress on catalysis[J]. eudapest, 1992.19-24.
    
    [11]曾健青,钟炳,罗庆云.纳米SO_4~(2-)/M_nO_m型固体超强酸的制备及表征[J].分子催化, 1 993,7(6):453-458.
    
    [12]林德娟,沈水发,播海波,等.纳米复合固体超强酸SO_4~(2-)/CoFe_2O_4的制备和表征 [J].无机化学学报,2000,1 6(5):757-762.
    
    [13]赵立志.纳米材料的应用[J].天津化工,2003,17(5):39-40.
    
    [14]赵梅枝.纳米材料的功能性及工业应用[J].蹼阳职业技术学院报,2007,20(4):18-19.
    
    [15] Katayama H, Hamamoto M, Sato J I, et al. New development in laser-assisted magnetic recording[ J]. Traps Magn, 2000, 36(1): 195-199.
    
    [16]胡圣飞,严海标,王燕舞,等.纳米级CaCO_3填充PVC/CPE复合材料研究[J].塑料 工业,2000,28(1):14-15.
    
    [17]刘吉平,郝向阳.纳米科学与技术[M].北京:科学技术出版杜,2002.45-50.
    
    [18]张立德.纳米材料[M].第一版.北京:化学工业出版社,2000.23-26.
    
    [19]沈茹娟,贾殿赠,乔永民,等.纳米ZnO的固相合成及其气敏特性[J].无机材料学 报,2001,16(4):625-629.
    
    [20] Li F, Zheng H G, Jia D S, et al. Syntheses of perovskite-type composite oxides nanocrystals by solid-state reactions[J]. Materials Letters, 2002, 63(53): 282-286.
    
    [21]刘润茹.固相反应合成稀土钙钛矿氧化物的研究[J].长春大学学报,2005,15(2): 70-72.
    
    [22]胡平,王晓华,徐甲强.低温固相反应在纳米材料制备中的应用[J].郑州牧业工程 高等专科学校学报,2006,26(2):40-43.
    
    [23] Stein A, Keller S W. Mallouk[J]. Science, 1993,259(12): 1558.
    
    [24] Nalwa H S. Handbook of nanostructured materials and nanotechnology [J]. Synthesisand Processing, 2000,1(1): 252.
    
    [25] Rao C N R. Gopalaknshran J. New direction in solid state chemistry(Second Edition)[J].Cambridge University Press: Cambridge, 1997,189(6): 5-8.
    
    [26]杨或,贾殿赠,葛炜炜,等.低热固相反应制备无机纳米材料的方法[J].无机化学 学报,2004,20(8):88 1-888.
    
    [27] Jin C F, Jing S, Xin X Q. Wuji Huaxue Xuebao[J]. Chinese Inorganic Chemistry, 2002,18(9): 859.
    
    [28] Xin X Q, Dai A B. Pure&Appl[J]. Chemistry, 1988, 60(8): 1217.
    
    [29] Yuan J H, Xin X Q, Dai A B. Wuji Huaxue Xuebao[J]. Chinese Inorganic Chemistry,1988,4(2): 52.
    
    [30] Yuan J H, Xin X Q, Dai A B. Gaodeng Xuexiao Huaxue Xuebao [J]. Chemistry InUniversity, 1988,9(11): 1095.
    
    [31] LaDZ, Yu JQ,XinXQ. CN Patent Apple[P]. China: 98111231.5.
    
    [32]周益明,忻新泉.低热固相合成化学[J].无机化学学报,1999,15(3):273-288.
    
    [33] Toda F. Aoc. Chemistry [J]. Science, 1996,28(12): 480 and references therein.
    
    [34] Lai Z, Xin X Q, Zhou H N. Wuji Huaxue Xuebao[J]. Chinese Journal of Chemistry,1997,18(3): 330.
    
    [35] Xin X Q, Zheng L M. Edge vortices of a double element wing in ground effect[J]. SolidState Chemistry, 1998,108(4): 451.
    
    [36] Toda F, Tanaka K, Sekikawa A J. Chemical Service [J]. Chemistry, 1987, 56(23): 279.
    
    [37] Boldyrev V V. Reactivity of solids past present and future [J]. Blackwell Science Ltd,1996, 111(56): 236.
    
    [38]连红芳.低热固相反应合成纳米粉体的研究现状[J].广东化工,2006,33(7):8-10.
    
    [39]朱钰方,方莹,张少明.低温固相反应制备氧化锌微粉研究[J].南京工业大学学报, 2002,24(6):70-74.
    
    [40]谭绩业,邹凡.固相反应制备纳米氧化铜[J].大连大学学报,2003,24(2):52-58.
    
    [41]毛样武,金卓仁.低温固相反应合成碳酸锶纳米粉体[J].无机盐工业,2002,34(5): 13-14.
    
    [42]姜求宇,吴文伟,廖森,等.室温固相合成磷酸锌纳米晶[J].当代化工,2005,34(4): 240-242.
    
    [43] Parida K M, Sahu B B, Das D P. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline α-zirconium(Ⅳ), tin(Ⅳ), and titanium(Ⅳ) phosphates [J]. Journal of Colloid and Interface Science, 2004, 270(5): 436-445.
    
    [44] Costa M C C, Hodson L F, Johnstone R A W, et al. The mechanism of gas-phase dehydration of cyclohexanol and the methylcyclohexanols catalysed by zirconium phosphate and zirconium phosphite [J]. Journal of Molecular Catalysis A: Chemical, 1999,142(20): 349-360.
    
    [45] Rustum R, Vance E R, Alamo J, et al. A new radiophase for ceramic nuclear waste forms [J]. Materials Research Bulletin, 1982,17(5): 585-589.
    
    [46]王锦航.磷酸锆晶体的合成及XRPD法解析晶体结构初探[D].大连:中国科学院大 连化学物理研究所,2004.
    
    [47]朱阳春,安永林,白音孟和.过渡金属磷酸盐空旷骨架化合物合成研究[J].材料导 报,2004,18(11):19-21
    
    [48]解丽丽,胡柳花,袁吴.过渡金属磷酸盐开放骨架结构材料的合成及性质[J],2006, 23(3):205-209.
    
    [49]王绪宁,马长勤,刘希玲,等.Cr:KTiOPO_4晶体缺陷的研究[J].人工晶体学报,2000, 29(1):310-311.
    
    [50] Chen C, Yang Y L, Huang K L. Hydrothermal synthesis and intercalation behavior of a layered titanium phosphate Ti_2(H_2PO_4)(HPO_4)(PO_4)_2·0.5C_6N_2H_(16) with an extended r-phase intercalated into organic amine[J]. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, 2004, 23(8): 3033-3042.
    
    [51] Bipini B S, Kulamani P. Cation exchange and sorption properties of crystalline α-titanium(Ⅳ) phosphate[J]. Journal of Colloid and Interface Science, 2002, 248(13): 221-230.
    
    [52] Masui T. New sunscreen materials based on amorphous cerium and titanium phosphate[J]. Journal of Alloys and Compounds, 2006,412(21): 1141-1144.
    
    [53] Yahia H B. Gaudin E, Darriet J. Structure and magnetic properties of the new phosphate??RbMnPO_4[J]. Journal of Alloys and Compounds, 2007, (442): 74-76.
    
    [54] Neeraj S, Maria L N, Anthony K. Structure and magnetic properties of a three-dimensional framework manganese(II) phosphate, [NH_4][Mn_4(PO_4)_3] [J]. Solid State Sciences, 2002, 6(4): 397-404.
    
    [1] Parida K M, Sahu B B, Das D P. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline a-zirconium(Ⅳ), tin(Ⅳ), and titanium(Ⅳ) phosphates [J]. Journal of Colloid and Interface Science, 2004, 270(5): 436-445.
    
    [2] Costa M C C, Hodson L F, Johnstone R A W, et al. The mechanism of gas-phase ehydration of cyclohexanol and the methylcyclohexanols catalysed by zirconium phosphateand zirconium phosphite [J]. Journal of Molecular Catalysis A: Chemical, 1999, 142(20): 349-360.
    
    [3] Krishna R M, Kevan L. Photoinduced electron transfer from N, N, N ', N '-tetramethylbenzidine incorporated into layered zirconium phosphate studied by ESR and diffuse reflectance spectroscopies [J]. Microporous and Mesoporous Materials, 1999, 32(5): 169-174.
    
    [4] Chen C, Yang Y L. Hydrothermal synthesis and intercalation behavior of a layered titanium phosphate Ti_2(H_2PO_4)(HPO_4)(PO_4)_2·0.5C_6N_2H_(16), with an extended y-phase intercalated into organic amine[J]. Polyhedron, 2004,23(8): 3033-3042.
    
    [5] Parida K M, Sahu B B, Das D P. A comparative study on textural characterization: cation-exchange andsorption properties of crystalline α-zirconium(Ⅳ), tin(Ⅳ),and titanium(Ⅳ) phosphates [J]. Journal of Colloid and Interface Science, 2004, 70(15): 436-445.
    
    [6]张蕤,胡源,宋磊,等.层状化合物α-磷酸钛的水热合成与表征[J].稀有金属材料与 工程,2001,30(5):84-387.
    
    [7] Fei H L, Zhou X Q, Zhou H J, et al. Facile template-free synthesis of meso-macroporous titanium phosphate with hierarchical pore structure [J]. Microporous and Mesoporous Materials, 2007,100(32): 139-145.
    
    [8]冯文科,殷怕海.无机离子交换剂磷酸钛的合成及其吸附色谱性能的研究[J].离子 交换与吸附,1991,7(6):427,
    
    [9] Anatoly F S, Sergei V L, Alexander S L, et al. Synthesis in the Melt and Characterization of Condensed Binary Phosphates BaNH4(PO_3)_3 , BiNH_4P_4O_(12) , and Ti(NH_4)_2P_4O_(13) [J]. Journal of solid state chemistry, 1996,125(56): 43-46.
    
    [10] Halil G, Figen K. A rapid synthesis of sodium titanium phosphate, NaTi_2(PO_4)_3 by using microwave energy [J]. Materials Chemistry and Physics, 2006, 99(52): 394-397.
    
    [11]胡平,王晓华,徐甲强.低温固相反应在纳米材料制备中的应用[J].郑州牧业工程 高等专科学校学报,2006,26(2):40-44.
    
    [12]连红芳.低热固相反应合成纳米粉体的研究现状[J].广东化工,2006,33(7):8-10.
    
    [13]杨或,贾殿赠,葛炜炜,等.低热固相反应制备无机纳米材料的方法[J].无机化学 学报,2004,20(8):881-886.
    
    [14]肖玲.甲醛法测定铵盐含氮量[J].化工技术与开发,2003,32(5):25-26.
    
    [15]铁矿石化学分析方法-硫酸铁铵容量法测定钛[S].GB 6730.23-86.
    
    [16]磷矿石和磷精矿中五氧化二磷含量的测定[S].GB/T1871.1-1995.
    
    [17]柯以侃,董慧茹.分析化学手册第三分册[M](第二版).北京:化学工业出版社, 1998:938-939.
    
    [1]张长花,李红.AlCl_3·6H_2O催化合成醋酸正丁酯[J].自然科学报,2003,23(2):118-120.
    
    [2]李毅群,肖小云.十二水合硫酸铁铵催化合成乙酸正丁酯[J].广州化工,1999,7(3): 42-43.
    
    [3]许招会,刘显亮.四水氯化锰催化合成乙酸正丁酯[J].江西师范大学学报,2004,8(5): 401-402.
    
    [4]孟宪昌,康永胜,王孟歌.SnCl_2·H_2O催化合成乙酸丁酯[J].保定师专学报,2000, 13(4):42-44.
    
    [5]陈淑芬,甘黎明,史文权.SO_4~(2-)/La_2O_3-TiO_2-HZSM-5催化合成乙酸丁酯[J].应用化工, 2005,34(4):212-214.
    
    [6]周德凤,李长春,刘景福,等.稀土固体超强酸SO_4~(2-)/TiO_2/La~(3+)催化合成醋酸丁酯[J]. 化学世界,2001,6(12):653-655.
    
    [7]赵黔榕,毕韵梅,李璧玉,等.纳米二氧化钛催化合成乙酸丁酯的研究[J].云南师范 大学学报,2004,4(3):28-30.
    
    [8]邹立科,谢斌,卢燕,等.硫酸铝催化乙酸正丁酯的合成[J].西南民族大学学报, 2006,2(6):1172-1174.
    
    [9]廖森主编.实验设计与数据挖掘技术[M].中国教育文化出版社,2006:90-92.
    
    [10]廖森,宋宝玲,吴文伟,等.数据挖掘技术在磷酸锌纳米晶合成中的应用[J].有色 金属,2005,57(1):30-34.
    
    [11]许美羡,许利闽,黄秋锋.H_4[PM_(011)VO_(40)]催化合成乙酸丁酯.福建师范大学学报, 2003,19(1):52-53.
    
    [12]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1984:20-35.
    
    [13]王俏,刘晓红.硫酸钛催化合成乙酸正丁酯的研究[J].精细石油化工进展,2004, 5(5):49-51.
    
    [1]徐卫,杜小豪,杜雪洁.防晒化妆品中紫外线吸收剂含量的测定[J].日用化学工业, 2000,6(30):39-42.
    
    [2]邓家邦.紫外线对皮肤的损伤及防晒霜剂的选用[J].中国个体防护装备,2001,6(3): 31-32.
    
    [3]吕天喜,郝仕油,应桃开.纳米氧化铈抗紫外的研究[J].江西化工,2005,9(3): 102-103.
    
    [4]徐宝财,赵珞,梁云峰.新型防晒霜的研制[J].精细化工,1998,15(4):18-20.
    
    [5]金名惠,张家新.纳米ZnO/TiO_2复合颗粒制备及紫外屏蔽性能研究[J].华中科技大 学学报,2005,33(2):119-121.
    
    [6] Herrmann J M, Guillard C, Pichat P. Catalysis[J]. Today, 1993,17(2): 7.
    
    [7] Trovarelli A. Catalysis by ceria and related materials[J]. Imperial College Press,London, 2002, 15(4): 23-26.
    
    [8] Imanaka N, Masui T, Hirai H, et al. Chemstry[J]. Mater, 2003,15(5): 2289.
    
    [9] Masui T. New sunscreen materials based on amorphous cerium and titanium phosphate[J].Journal of Alloys and Compounds, 2006,408(45): 1141-1144.
    
    [10]孙郑冬.纳米氧化物紫外屏蔽性能评估方法及其应用研究[D].上海:华东师范大 学,2005.
    
    [11]陈光勇,陈旭冰,刘光明.紫外线和防晒化妆品[J].山东化工,2006,35(4):17-20.
    
    [12]祖庸,樊安.紫外线屏蔽剂纳米TiO_2[J].钛工业进展,1999,17(3):26-28.
    
    [13] Hu Z S. Coarsening of metal oxide nanoparticles[J]. Physical Review E-StatisticalPhysics, 2002,66(8): 011403/1-011403/4.
    
    [14] Sham S. Sorption of selenium at micromolar levels onto hydrous titanium oxide fromAqueous solutions using radiotracer technique[J]. Applied Radiation and Isotopes, 1997,48(39): 595-600.
    
    [15]姚刚,沈湘林.基于分形的超细颗粒声波团聚数值模拟[J].东南大学学报,2005, 35(32):146-148.
    
    [16]井立强,辛柏福,王德军.ZnO和TiO_2纳米粒子的光致发光性能及其与光催化活性 [J].高等学校化学学报.2005,26(12):11 1-115.
    
    [17] Zhang L D, Mou C M. Nanostructured[J]. Mater, 1995, 6(10): 831-834.
    
    [1]张莉莉,陆路德.无机层状化合物及其应用述评[J].化工新型材料,2004,32(3):1-4.
    
    [2]耿利娜,相明辉,李娜,等.层状无机化合物-磷酸锆的研究和应用进展[J].化学进 展,2004,16(5):717-723.
    
    [3] Bu W B. Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystalnanowires[J]. Chemistry Letters, 2004, 33(5): 612- 613.
    
    [4] Bartley J K. Preparation of vanadium phosphate catalysts using water as solvent[J].Catalysis Today, 2003, 81(1): 197- 203.
    
    [5] Geng J. One-dimensional BiPO_4 nanorods and two-dimensional BiOCl lamellae: fastlow-temperature sonochemical synthesis,characterization, and growth mechanism[J].Inorganic Chemistry, 2005,44(27): 8305-8509.
    
    [6] Wang Y. Partial oxidation of ethane by reductively activated oxygen over iron phosphatecatalyst[J]. Catalysis, 1997,171(2): 106.
    
    [7] Chang T S. Catalytic behavior of BiPO_4 in the multicomponent bismuth phosphate systemon the propylene ammoxidation[J].Catalysis Letters, 2000,68(32): 229.
    
    [8] Zhu S M, Honma I. Synthesis of hexagonal mesostructured FePO_4 using cationicsurfactant as the template[J]. Chemistry Letters, 2004, 33(6): 774-775.
    
    [9] Sharma C V K. Magnetic property studies of manganese-phosphate complexes[J].inorganic chemistry, 2003,42(5): 8300-8308.
    
    [10] Hsu C K. The preparation of biphasic porous calcium phosphate by the mixture ofCa(H_2PO_4)_2·H_2O and CaCO_3[J]. Chemistry Physics, 2003, 80(17): 409- 420.
    
    [11]张华,徐金锁,唐颐,等.层状磷酸锆的合成与性质研究[J].高等学校化学学报, 1997,9(18):172-176.
    
    [12]王禹,叶俊伟,王莉,等.二维层状结构磷酸锌化合物的水热合成与结构表征[J]. 吉林大学学报(理学版),2006,44(2):291-294.
    
    [13]张蕤,胡源,宋磊,等.层状化合物α-磷酸钛的水热合成与表征[J].稀有金属材料 与工程,2003,30(5):384-387.
    
    [14]宋宇,李志刚,王永为,等.层状磷酸铝的合成、表征以及有机胺模板能力计算[J]. 大连轻工业学院学报,2006,25(2):111-113.
    
    [15]袁爱群,吴健,黄在银,等.室温固相反应制备纳米四水磷酸锌的热化学研究[J]. 化学物理学报,2005,1 8(6):1 053-1056.
    
    [16]李峰,何静,杜以波,等.α-磷酸锆的制备及热分解非等温动力学研究[J].无机化学 学报,1999,15(1):55-60.
    
    [17] Clearfield A, Nancollas G. H new inorganic ion exchangers[M]. Marcel Dekher, 1973, Chap 1.
    
    [18]柯以侃,董慧茹.分析化学手册第三分册[M].第二版.北京:化学工业出版社, 1 998,938-939.
    
    [19]祖庸,樊安.屏蔽剂纳米TiO_2[J].钛工业进展,1999,12(3):26-28.
    
    [1] Clearfield A. Inorganic ion exchange materials[M]. CRC Press, Boca Raton, FL, 1982.11
    
    [2] Alberti G, Williams PA, Hudson M J. Recent Development in Ion Exchange[M],Elesevier, London, 1987.11-15.
    
    [3] Clearfield A, Cocke D L, Clearfield A. Design of New Materials[M], Plenum, New York,1987.48-50.
    
    [4] Alberti G, Cascida M, Costantino U, et al. Advertising [J]. Mater, 1996,5(8): 291.
    
    [5]李余增.热分析[M].北京:清华大学出版社,1987.91-98.
    
    [6]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.2-10.
    
    [7]吕佳娉,索常怀.几种铈盐的热分解过程及非等温热分解动力学研究[J].自然科学 与工程学报,2006,19(2):118-123.
    
    [8]杨海浪,雷克林.复盐K_2Cu(C_2O_4)_2·2H_2O的热分解动力学研究[J].自然科学报,2004, 22(1):48-50.
    
    [9]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.105-140.
    
    [10]刘振海,岛山立子.分析化学手册第八分册[M].第二版.北京:化学工业出版社, 2000.3-4.
    
    [11] Coats A W, Redfem J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(29): 68-69.
    
    [12]吕佳娉,索掌怀.几种铈盐的热分解过程及非等温热分解动力学研究[J].烟台大学 学报,2006,19(2):1 17-123.
    
    [13] Wang C B, Liu H K, Tang C W. Thermal characterization and microstructure change ofcobalt oxides[J]. Catalysis Letters, 2004,94(42): 69-74.
    
    [14] Pan Y, Guan X, Feng Z, et al. Dehydration reaction of manganese(II) oxalate dehydratein the solid state-new method in the study of non-isothermal kinetics[J]. ThermalAnalysis, 1999, 55(23): 877 - 884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700