黑龙江省黑土有机碳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑土是黑龙江省主要的耕作土壤,土壤有机碳含量常被认为是评价农田土壤质量的一个重要指标,土壤有机碳的大量损失可造成土壤退化以及降低农田利用的可持续性。试验区设在黑龙江省典型黑土区嫩江,海伦,绥化,双城4个区域,通过野外调查、采样分析和资料收集,研究该黑土地区中组分有机碳的相互关系及碳储量。每个研究区域采样30点,每个采样点随机选取,取0~20cm表层土壤的3个点混合样品,各个地点各选取6个有代表性的采样点进行一个三层取样,取样深度为0~20cm,20~40cm和40~60cm。
     研究结果表明:表层土壤有机质平均含量为嫩江>海伦>绥化>双城,有机质含量由北向南越来越低。黑土总有机碳含量含量随纬度的增加呈现出逐渐升高的趋势。黑土有机质的土壤剖面垂直分布特点是,在土壤表层有机质聚集、含量较高,表层以下呈现下降的趋势,在黑土的不同区域都呈现一致的趋势。四个地点20~40cm土壤平均含量为嫩江>海伦>绥化>双城,有机质含量由北向南逐渐降低。四个地点40~60cm土壤平均含量为嫩江>海伦>绥化>双城,有机质含量由北向南逐渐降低。下层土壤有机质含量变化规律与表层相同,表明这四个地点有机质含量在自然成土因素作用下就是具有由北向南逐渐降低的规律。四个地点的活性有机质含量的平均值为海伦>绥化>嫩江>双城,分布规律与总有机质的分布规律不同,与总有机质相关性不显著。pH为双城>绥化>海伦>嫩江,pH由南向北逐渐降低,酸性逐渐增大,由南向北有酸化的趋势。
     另外,表层土壤游离态轻组有机碳平均含量为嫩江>海伦>绥化>双城,与总有机碳含量呈极显著的正相关性;表层土壤闭蓄态轻组有机碳平均含量差异很小,与总有机碳分布规律不同,与总有机碳含量不具有相关性;土壤游离态轻组有机碳(fLF)含量随着土壤剖面深度的增加而减少,与土壤总有机碳变化规律相同,土壤闭蓄态轻组有机碳(OLF)含量沿着土壤剖面向下分布没有规律,分布具有随机性;表层土壤重组有机碳平均含量为嫩江>海伦>绥化>双城,四个地点表层土壤重组有机碳含量与总有机碳含量呈极显著的正相关性。下层土壤重组有机碳(HF)含量随着土壤剖面深度的增加而减少。
     四个地点的有机无机复合度大都在70%以上,未复合的轻组仅有一小部分,表明该地区黑土有机物质的腐殖化程度均很高并大多与无机胶体复合形成有机无机复合体
     表层碳密度平均值为嫩江>海伦>绥化>双城,研究区域表层土壤的有机碳密度具有高度的空间变异性,土壤有机碳密度分布是不均匀的,整个研究区的有机碳密度从北向南呈逐渐递减的趋势。
Black soil is the main farming soil in Heilongjiang Province, soil organic carbon content is often considered to evaluate the quality of agricultural soil is an important indicator of a large loss of soil organic carbon can cause soil degradation and reduced agricultural land use sustainabilit.The pilot area is located in the Heilongjiang Province typical black earth area Nenjiang, Hailun, Suihua, Shuangcheng four regions, through the open country investigation, the sampling analysis and the acquisition of information, studies in this black earth area the component organic carbon reciprocity and the carbon reserves. Each research region sampling thirty spots, each sampling point selects stochastically, takes the 0~20cm surface layer soil three spot biased sample, each place selects six to have the representative sampling point to carry on three samples, the sample depth is respectively 0~20cm,20~40cm and 40~60cm.
     The result showed that the surface layer soil ulmin average content is Nenjiang > Halun> Suihua > Shuangcheng, the organic content is from north to south getting more and more low. The black earth total organic carbon content content along with the latitude the tendency which increases presents elevates gradually. The black earth organic archery target soil profile vertical distribution characteristic is, at the soil mantle organic matter accumulation, the content is high, the surface layer following presents the drop the tendency, presents the consistent tendency in the black earth zones of different. Four place 20~40cm soil average content for the Nenjiang > Hailun > Suihua > Shuangcheng, the organic content reduces gradually from north to south.
     Four place 40~60cm soil average content for the Nenjiang > Hailun > Suihua > Shuangcheng, the organic content reduces gradually from north to south. The lower level soil ulmin content change rule and the surface layer are the same, indicate these four place organic content, in the nature becomes the rule which under the earth factor function has reduces gradually from north to south.Four place's active organic content's mean value is Hailun > Suihua > Nenjiang > Shuangcheng, the distributed rule and is always organic the archery target distributed rule to be different, is not remarkable with the total organic matter relevance. the pH mean value for Shuangcheng > Suihua > Hailun > Nenjiang, the pH content reduces gradually from south to north, the acidity increases gradually, has the acidified tendency from south to north.
     Other, the surface layer soil free state light group organic carbon average content for the Nenjiang > Hailun >Suihua > Shuangcheng, assumes the extremely remarkable relevance with the total organic carbon content; The surface layer soil shuts gathers condition the light group organic carbon average content difference to be very small, is different with the total organic carbon distributed rule, does not have the relevance with the total organic carbon content; The soil free state light group organic carbon (fLF) the content increases along with the soil profile depth reduces, is the same with the soil total organic matter change rule, the soil shuts gathers condition the light group organic carbon (OLF) the content not to have the rule along the soil profile downward distribution, the distribution to have randomness; The surface layer soil reorganization organic carbon average content for Nenjiang > Hailun > Suihua > Shuangcheng, four place surface layer soil reorganization organic carbon content and the total organic carbon content assumes the extremely remarkable relevance. The lower level soil reorganization organic carbon (HF) the content increases along with the soil profile depth reduces.
     Four place's organic inorganic compound above 70%, the compound light group only has not had mostly a small part, indicated that this local black earth organic matter the humification degree is very high and mostly compound forms the organic inorganic complex with the inorganic colloid.
     The surface layer carbon density mean value for Nenjiang > Hailun > Suihua > Shuangcheng, studies the region surface layer soil the organic carbon density to have the high spatial changeability, the soil organic carbon density portion is non-uniform, entire research area organic carbon density. Assumes the tendency which from north to south decreases progressively gradually.
引文
蔡祖聪,沈光裕,颜晓元. 1998.土壤质地、温度和EH对甲烷排放的影响[J].土壤学报35 (2): 145~153
    陈庆强,沈承德,易惟熙. 1998 .土壤碳循环研究进展[J].地球科学进展. 13 (6): 555~563
    陈琼贤,刘国坚,段炳源. 1998 .有机无机肥料对土壤肥力和作物产量的影响研究初报[J]. 土壤学报. 20 (2): 45~53
    访华军,杨学明,张晓平. 2003 .农田土壤有机碳动态研究进展[J].土壤通报. 34 (6): 562~568
    方精云. 1996 .中国陆地生态系统碳库[A].中国科学技术出版社. 2~267
    何云峰,徐建民,侯惠珍. 2003 .有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性[J].土壤学报. 41 (6): 22~28
    黑龙江省土地管理局,黑龙江省土壤普查办公室. 1992.黑龙江土壤[M].北京农业出版社. 74~89
    黑龙江省土地管理局,黑龙江省土壤普查办公室编. 1992 ..黑龙江土壤[M].北京农业出版社. 149~152
    黄琴,魏朝富,谢德体. 1996 .不同耕作制对稻田甲烷排放通量的影响[J].西南农业大学学报. 18~25
    姜岩,吴景贵,王明辉. 1998 .非腐解有机物培肥对草甸黑土型水稻土腐殖质结合形态的影响[J].土壤通报. 29 (5): 203~205
    劳秀荣,孙伟红,王真. 2003 .秸秆还田与化肥配合施用对土壤肥力的影响[J] .土壤学报. 40 4): 618~622
    李江涛,张斌,彭新华. 2004 .施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响.土壤学报. 41 (6): 912~913
    李克让. 2002 .土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京气象出版社. 22 (4): 23~25
    梁文举,闻大中,李维光. 2000 .开垦对农业生态系统土壤有机碳动态变化的影响[J].农业系统科学与综合研究. 16 (4): 41~244
    林心雄. 1998.中国土壤有机质状况及其管理[A].沈善敏主编.土壤肥力[C].北京中国农业出版社. 111~153
    卢维盛,廖宗文,张建国. 1999.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护. 18 (5): 200~202
    潘根兴,李恋卿,张旭辉. 2003 .中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J] .地球科学进展. 18 (4) :609~618
    潘根兴. 1999.中国土壤有机碳、无机碳库量研究[J].科技通报. 15 (5): 330~332
    邵月红,潘剑君,孙波. 2005长期施用有机肥对瘠薄红壤有效碳库及碳库管理指数的影响.土壤通报. 36 (2): 177~180
    苏永中,赵哈林. 2002.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠. 22 (3): 220~228
    陶波,葛全胜,李克让. 2001 .陆地生态系统碳循环研究进展[J].地理研究. 20 (5): 564~573
    王绍强,刘纪远. 2002 .土壤蓄积量变化的影响因素研究现状[J].地球科学进展. 17 (4): 528~534
    王绍强,刘纪远,于贵瑞. 2003.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报. 14 (5): 797~802
    王绍强,周成虎. 1999.中国陆地土壤有机碳库的估算[J] .地理研究. 18 (4): 349~355
    王旭东,张一平. 1998.不同施肥条件下胡敏酸级分变异及性质的研究.土壤学报. 35 (3): 177~180
    吴海斌,郭正堂,彭长辉. 2001.末次间冰期以来陆地生态系统的碳储量与气候变化[J]. 第四纪研究. 21 (3): 220~228
    吴景贵,姜岩,王明辉. 1998.非腐解有机物培肥对苏打草甸水稻土腐殖质结合形态的影响.吉林农业大学学报. 20 (2): 46~50
    武天云. 2003.黄土高原和北美大平原主要农业土壤的有机碳现状和动态对比研究[D]. 土壤学报. 41 (6) :912~913
    谢小立,王卫东,王明星. 1995.施肥对稻田甲烷排放的影响[J].农村生态环境. 11 (1): 10~14
    徐明岗,于荣,孙小凤. 2006a .长期施肥对我国典型土壤活性有机质及碳库管理指数的影响.植物营养与肥料学报. 12 (4): 459~465
    杨景成,韩兴国,黄建辉. 2003 .土壤有机质对农田管理措施的动态响应.生态学报. 26~36
    张稳,黄耀,郑循华. 2004 .稻田甲烷排放模型研究—模型及其修正[J].生态学报.24 (11): 2347~2352
    周玉荣,于振良,赵士洞. 2000.我国主要森林生态系统碳贮量和碳衡[J].植物生态学报. 24 (5): 518~522
    周志田,成升魁,刘允芳,李家永. 2005.中国亚热带红壤丘陵区不同土地利用方式下CO2 排放规律初探[J].土壤学报. 366~376
    Alvarez c R,Alvarez R,Grigera M S ,et Al. 1998. Associations between organic matter fractions and the active soil microbial biomass[J]. Soil Biology and Biochemistry. 30: 767~773
    Ande Stevenson F J,Saggar S,Bettany J R ,et a1. 1981. Particlesize fractions and their usein studies of soil organic matter.I the nature and distribution of form sof carbon nitrogen and sulfur[J]. Soil Science Society of America Journal. 45: 767~772
    Barrios E,Buresh R J,Sprent J I. 1996. Organic matter in soil particle size and density fractions from maize and legume cropping systems[J] .Soil Biology and Biochemistry. 28: 185~193
    Barrios E,Kwasiga F,Sprent J I. 1997. Light fraction soil organic matter and available nitrogen following trees and maize[J]. Soil Science So ciety of America Journa1. 61: 826~831
    Batjes NH. 1996. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science. 47: 151~163
    Besnard E,Chenu C,Balesdent J. 1996 .Fate of particulate organic matter in soil aggregates during cultivation[J] .European Journal of Soil Science. 47: 495~503
    Bohn HL. 1976 .Estimate of organic carbon in world soils [J] .Soil ScSoc. Am. J. 40: 468~470
    Bohn HL. 1982. Estimate of organic carbon in world soils [J]. Soil ScSoc. Am. J. 46: 1118~1119
    Bolin. 1977. Change of land biota and their importance for the carboncycle[J]. Science. 196(4290) :613~615
    Boone R D. 1994. Light fraction soil organic mater orion and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemi stry. 26: 1459~1468
    Bremer E,Eller B H,Janzen H H. 1995. Total and light fraction carbon dynamics during four decades aftercropping changes[J]. Soil Science Society of America Journa1. 59: 1398~1403
    Bremer E,Janzen H H,Johnston A M. 1994. Sensitivity of total light fraction and mineralizable organic matter to management practices in a Lethbridge soi1[J]. Canadian Journal of Soil Science. 74: 131~138
    Cambardela C A,Elliot E T. 1992. Particulate soil organic matter across a grasshnd cultivation sequence[J]. Soil Science Societyof America Journal. 56: 777~783
    Cambardelia. 1993. Methods for physical separation and characterization of soil organic matter fractions[J].Geoderma.56: 49~57
    Cambardella C,Eu E. 1994. Carbon and nitrogen dynamics of soil organic mater fractions from cultivated grassland soils[J] .S0il Science of Society of America Journal. 58: 122~130
    Cambsrdella C A,Elliott E T. 1992 .Particulate soi1 organic matter changes across a grass 1and cultivationsequence[J]. Soil Science Society of America Journa1. 56: 777~783
    Campbell C A,Lafond G P,Moulin A P,et a1. 1997. Cropproduction and soil organic matter in long termcrop rotations in the sub-humid northern GreatPlains of Canada[A]. Soil Organic Matter in Temperate Agro-ecosystemsl. 297~315
    Chap inFSⅢ, Maston P A,Mooney H A. 2002. Princip les of Terrestrial Ecosystem Ecology[M]. New York:. 35~38
    Christensen B T. 2001. Physical fractionation of soil andstructural and functional complexity in organic matter turnover[J]. European Journal of Soil Science. 52: 345~353
    Christensen B T. 1992 Physical fractionation of soil andorganic matter in primary particle size and densityseparates[J]. Advance in Soil Science. 20: 290
    Cookson W R,Abaye D A,Marschner P,et a1. 2005. The contribution of soil organic matter fractions to carbon and nitrogen mineralization andmicrobial community size and structure[J]. Soil Biochem. 37: 1726~1737
    Dalai R C,Mayer R J. 1986. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southernQueenslan distribution and kinetics of soil organic carbon in particlesize fractions[J]. Australia Journal Soil Research. 24: 293~300
    Dalai R C,Mayer R J. 1986. Longterm trends in fertility of soil under continuous cultivation and cereal cropping in southern queensland.Loss of organic carbon from different density fractions[J]. Australia Journal of soil Research. 24: 301~-309
    Dalai R C,Mayer R J. 1986. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland IV.Loss of organic carbon from diferent density functions[J]. Australia Journal of Soil Research. 24: 301~309
    Dixon R K,Brown S,Houghton R A,et al. 1994. Carbon pools and flux of global forest ecosystems[J]. Science. 263: 185~190
    Dhakhwa G B,et al. 1998. Maize growth assessing the effects of global warming and CO2 fertilization with cropmodels[J]. Agricultural and ForestMeteorology. 87 (4): 251~270
    Ellert B H,Clapperton M J,Anderson D W. 1997 .An ecosystem perspective of soil quality[A] .Development in Soil Science. 25:1 15~141
    Eswaran H,Van der Berg E,Reich P. 1993 .Organic carbon in soils the world [J]. Soil. 57: 192~194
    Eswaran H,Vander Berg E,Reich P. 1993. Organic carbon in soils of the world [J]. Soil. 57: 192~194
    Farquhar GD,RoderickML. 2003. Pinatubo Diffuse Light and the carbon cycle[J]. Science. 299: 1997~1998
    Golchin A,Oades JM,Skjemstad J O,et a1. 1994. Study offree and occludedparticulate organic matter in soils by solid state[C]. AustralianJournal of Soil Research. 32: 285~309
    Greenland D J. 1964. Separation of partially humified organic materials by ultrasonic dispersion[C]. International Society ofSoil Scienc raghth International Congress of Soil Science. 3: 137~148
    Gregorich E G,Carter M R,Doran J W,et a1. 1997. Biological attributers of soil quality[A]. Development in Soil Science. 81~113
    Gregorich E G,Greer K J,Anderson D W ,et al. 1998. Carbon distribution and losseserosion anddeposition effects[C]. Soil Tillage Research. 47: 291~320
    Gu L H,BaldocchiD D,Wofsy S C,et al. 2003. Response of a deciduous forest to the mount pinatubo erup tion enhanced photosynthesis[J]. Science . 299: 2035~2038
    Gunderson C A,Wullschleger S D. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2 broaderperspective[J]. Photosyth. 39: 369~388
    Han Xingguo,LiLinghao,Huang Jianhui. 1999. The fundamental of biogeochemistry[J]. Beijing: Higher Education. 177~185
    Hasink J. 2003 .Preservation of plant residues in soils differing in unsaturated protective capacity[J].Soil Science .34 (6): 562~568
    Hassink J. 1995 .Decomposition rate constants of size anddensity fraction of soil organic matter[J]. Soil Science Society of America Journa1. 59: 1631~1635
    Houghton R A. 1995. Effects of land use change surface temperature,and CO2 concentration on terrestrial stores ofcarbon [J]. New York:Oxford Univ Press. 333~350
    JennyH. 1980. The soil resource origin and behavior[M]. New YorkSpringer. 325~390
    Janzen H H,Campbel C A,Brandt S A,et a1. 1992. Light fration organic mater in soils from long-term crop rotations[J]. Soil Science Society of Am erica Journal. 56: 1799~1806
    Janzen H H,Campbell C A,Ellert B H,et a1. 1997. Soilorganic matter dynamics and their relationship tosoil quality[A] .The Netherlands Elsevier. 277~291
    Janzen H H,Johnston A M ,Carefoot J M ,et a1. 1997. Soi1 organic matter dynamics in longterm experiment in southern Alberta[A]. Soil Organic Matterin Temperate Agroecosystems. 273~281
    Jenkison D S,Fox R H. 2000. Interactions between fertilizer nitrogen and soil nitrogenthe so called priming effect[J] .Journal of Soil Science. 36: 425~444
    Jobbgy E G,Jackson R B. 2006. The vertical distribution of soil organiccarbon and its relation to climate and vegetation [J]. EcologicalApplications. 10: 423~436
    Keeling C D,Bacastow R B,CarterA F,et al. 1989A. Three dimensionalmodel of atmospheric CO2 transport based on observed winds Analysis of observational data.[J]. MonogrSer. 55: 165~236
    Kononova M M. 1964. Soil organic matter its nature itsrole in soil formation and in fertility[M] .Pergamon Press. 5~20
    Lacelle B. 1997. Canada s soil organic carbon database [A]. Boca Raton: CRPress. 93~102
    Law RM,et al. 1996. Variations in modeled atmospheric transport of carbon dioxide and theconsequences for CO2 inversions[J]. GlobalBiogeochem Cycles. 10: 783~796
    Luo YQ,Reynolds J,Wang Y P. 1999. A search for predictive understanding of plant responses to elevated CO2 [J]. Global Change Biol. 5: 143~156
    Molioy L F,Speir T W. 1977. Studies on a climosequene of soils in tussock grassland Constituents of the soil light fraction[J] .New Zealand Journal of Soil Science. 20: 167~177
    Norby R. 1997. Carbon cycle inside the black box[J]. Nature. 388: 522~523
    Oades J M,Vassallo A M,Waters A G. 1987. Characterization of organic mater in patticle size and density fractions fromRed brown Earth by solidstate [J] .Australia Journal of Soil Research .25: 71~82
    Post W M,Emanuel W R,Zinke P J,et al.. 1982 .Soil carbon pools and world life zones [J]. Nature. 298 (8): 156~159
    Powlson D S,Smith P,Coleman K,et al. 1998 .European net work of longterm sites for studies on soil organic matter[J]. Soil Tillage Research. 47: 263~274
    Rogers H H,Runion GB. 1994 .Plant responses to atmospheric CO2 environmentwith emphasis on roots and the rhi2zosphere[J]. Environmental Pollution .83: 155~189
    Sass R L,Fisher FM,Tumer F T. 1994. Methane emission fromrice fields effect of soil p ropertise [J]. Global Biogeochemical Cycles. 135~140
    SchimelD,MelilloJ,Tian H Q,et al. 2000 Contribution of increasing CO2 and climate to carbon storage by ecosys2tems in the US[J] . Science . 287:2 004~2006
    Schlesinger W H. 1990 .Evidence from chronosequencestudies for fllow carbon storage potential of soils[J]. Nature. 348: 232~234
    Sharkey TD. 1985. Photosynthesis in inact leaves of C3 plants :physics, physiology and rate limitations[J]. BotRev. 51:507
    Shaverb G R,Canadell J,Chap in F SⅢ,et al. 2000. Globalwarming and terrestrial ecosystems: a concep tual frame2work for analysis [J]. Nature. 50: 871~882
    Six J,Elliott E T,Paustian K,et a1. 1999 .Aggregation and soil organic matter accumulation in cultivatedand native grassland soils[J] .Soil Science Society of America Journa1. 62: 1367~1377
    Six J,Elliott E T,Paustian K,et al. 1998. Aggregation and soil organic matter accumulation incultivated and native grassland soils[J]. Soil Science Society of America journal. 62: 1367~1377
    Six J,Elliott ET,Paustian K. 2000a. Soil macroaggregate turnover and microaggregate formation amechanism for sequestration under notillage agriculture[J]. Soil Biology and Biochemistry. 32: 2099~2103
    Skjemstad J O,k Feuvre R P,Prebble R E. 1990. Turnover of soil organic mater under pasture as determined by”naturala Bundance[J]. Australia Journal of Soil Research. 28: 267~276
    Sohulten H R,Leinweber P. 1999. Thermal stability and composition ofminera1.bound organic matter in density fractions of soil[J]. European journal of soil science. 50: 237~248.
    Solomon D,Lehmann J,Zech W. 2001. Land use efects on amino sugar signature of chromic Luvisols in the semi arid part of northern Tanzania[J] .Biology Fertilizer Soils. 33: 33~40
    Solomon D,Lehmann J,Zech W. 2000. Land use efects on soil organic mater properties of chromic and carbohydrates[J].Agriculture Ecosystem Environment. 78: 203~213
    Spycher G,Soliins P,Rose S. 1983 .Carbon and nitrogen in the light fraction offorest soil:vertical distribution and seasonal patterns[J]. Soil Science. 135: 79~87
    Turchenek L W , Oades J M. 1979. Fractionation of Organo-mineral complexes by sedimentation and density techniques[J]. Geoderma. 21: 311~343
    Vourlitis GL,OechelW C,Hastings S J,et al. 1993. The effect of soilmoisture and thaw depth on CH4 flex from wetcoastal tundra ecosystems on the north slope ofAlaska[J]. chemosphere. 26: 329~338
    Vukicevic T,Braswell B H,ScheimelD. 2001. A diagnostic study of temperature controls on global terrestrial carbonexchange[J]. Tell us B. 53: 150~170
    Wang I P. 1993. Soil redox and pH effects on methane production in a flooded rice soil[J]. Soil . 51: 382~388
    Wigley TML,SchimelD S,et al. 2000. The carbon cycle[J]. University Press. 9~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700