茶渣有机无机复合肥”研制及对茶叶品质和土壤环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用从自然发酵茶渣中分离到的多种微生物混合发酵废弃茶渣,研究开发出“茶渣有机-无机复合肥”,并进行了茶园田间试验,研究该复合肥对茶园产量、茶叶品质及茶园土壤的影响,得到以下结果:
     1.从自然发酵茶渣中分离出好氧菌两株:假丝酵母Yeast和青霉菌Penicillium;厌氧菌两株:黑曲霉Aspergillusniger和白地霉OidiumLactis Fresenius。
     2.对茶渣设置5个处理,进行发酵试验得到最佳发酵条件,即前3天好氧发酵后3天厌氧发酵。发酵后的茶渣的pH5.0、茶多酚4.5%、氨基酸1.85%、水浸出物22.12%、粗纤维21.30%、全氮量4.95%。
     3.经过反复中试,确定最佳发酵条件和发酵工艺:茶渣有氧发酵→茶渣厌氧发酵→茶渣干燥→配方→磨碎机磨碎→拌料机搅拌均匀→造粒机造粒→干燥→包装机包装
     4.在杭州施用茶渣肥后茶树的最低产量也比施用尿素的茶树高出18.7%,新昌4、5月份施用茶渣肥的茶树产量比施用菜饼的茶树分别增加8.5%和26.2%。杭州地区所采茶样的总儿茶素、咖啡碱都是施用茶渣肥的茶叶高于施用尿素的茶叶,氨基酸是4月和5月施用茶渣肥的茶叶比施用尿素的茶叶高出44.8%和10.8%,水浸出物是4月和10月施用茶渣肥的茶叶比施用尿素的茶叶高出18.1%和16.2%,从总体上看施用茶渣肥的茶叶各种成分略高于施用长征牌有机肥的茶叶。
     5.茶渣肥对土壤酸化具有缓冲作用,而尿素对土壤则没有缓冲作用;施用茶渣肥后0—15cm土层的土壤有机质含量分别比施用尿素和菜饼的土壤增加80.7%和30.2%;茶多酚具有抑制脲酶的作用,施用茶渣肥后0—15cm土层的土壤脲酶的活性比施用尿素的土壤降低
    
     16.4%,而施用长征牌有机肥的土壤的腺酶活性比施用尿素的土壤
     增加26.9%:施用茶渣肥后士壤中细菌、放线菌以及真菌的数量比
     施用尿素的土壤分别高出 69.0%、22石%和 162.5%。
Tea residue was fermented by four species of microorganisms isolated from the landfill of tea residue. A new-type of organic- inorganic compound fertilizer of tea residue (OICFTR) has been researched and developed. The effects of the fertilizer on tea yield, tea ingredient, and soil were studied. The results were concluded as follows:
    1. Yeast, Penicillium, Aspergillusniger and OidiumLactis Fresenius had been separated from the landfill of tea residue.
    2. The optimum condition for fermenting tea residue was three days of aeration and then three days of anaeration. The physiochemical properties of the fermented tea residue were: pH 5.0, tea polyphenols 4.5%, amino acids 1.85%, water extraction 22.12%, crude fiber 21.30% and the total nitrogen content 4.95%.
    3. The process to produce OICFTR is as follows:
    aerobic microorganisms grew in tea residue medium anaerobic
    microorganisms grew in tea residue medium dried fermented tea
    residue add some compounds and mixed triturated
    shaped dried packed OICFTR
    4. The tea yield of tea garden fertilized by the OICFTR in Hangzhou was 18.7% higher than that of the carbamide. Tea yields were 8.5% and 26.2% higher than those of by rape cake in April and May, respectively. The catechins and caffeine of tea used with OICFTR were higher than that of with carbamide in Hangzhou, the amino acid of tea used with the OICFTR was 44.8% and 10.8% higher than that of with carbamide in
    
    
    
    April and May, the water extract of tea used with OICFTR was 18.1% and 16.2% higher than that of with carbamide in April and October. On the whole, tea ingredient used with the OICFTR was higher than that of with Changzheng organic fertilizer.
    5. The OICFTR had little effect on the soil acidity, but the carbamide did. The organic matter content of the surface soil(0-15cm) used with OICFTR was 80.7% and 30.2% higher than that of with carbamide and rape cake. The tea polyphenols could inhibit the activities of the urease, the activities of the urease used with the OICFTR was 16.4% lower and the activities of the urease used with Changzheng organic fertilizer was higher 26.9% than that of with carbamide in the surface soil(0-15cm). The amount of microbes, actinomyces and the epiphytes in soil used with the OICFTR was 69.0%, 22.6% and 162.5% higher than that of with the carbamide, respectively.
引文
1. Asea P E A. Kucey R M N and Stewart J W B. Inorganic phosphate solubilization by two Penicilliom species in solution culture and soil. Soil Biol. Biochem. 1988, 20:459-464
    2. Bailey R. G. and McDowell I. et al. J. Sci. FoodAgric. 1990, 52: 509-525
    3. Bhatta Chasrya M. K. The Assam Review of Tea News. 1982, (1): 56
    4. Chabot R, Antoun H and Cescas M P. Growth promotion of maize and letuce by phosphate-solubilizing Rhizobium leguminosatum biovar phaseoli. Plant and Soil. 1996, 184: 311-321
    5. Dalal R C, Henderson P A, Glasby J M, Organic matter and microbial biomass in a vertisol after 20yr of zero tillage. Soil Biol. Biochem. 1991, 23: 431-435
    6. Gaind S and Gaur A C. Thermotolerant Phosphate solubilizing microofanisms and Their Interaction with mung bean. Plant and Soil. 1991, 133: 141-149
    7. Illmer P and Schinner F. Solubilization of inorganic phosphatcs by microorganisms isolated from forest soils. Soil Biol. Biochem. 1992, 24(4): 389-395
    8. Krishnapillai S. Plant andsoil. 1979, (4): 563
    9. Krishnapillai S. Tea Q. 1981, 50 (3): 98
    10. Kumamoto Sonda T. Evaluation of the antioxidative activity of tea by an oxygen electrode method. Bioscience. Biotechnology and Biochcemistry. 1998, 62:175-177
    11. Ladd J N, Amato M, Zhou L K, Schultz J E. Differential effects of
    
    rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian Alfso. Soil Biol. Biochem. 1994, 26: 821-831
    12. Luo An-cheng and Sun Xi. Effect of organic fertilizer on the biological accivities associated with insoluble phosphorus release in a blue purple paddy soil. Commun Soil Sci. Plant Anal. 1994, 25(13.14): 2513-2522
    13. Mukhtar H, Almad N. Mechanism of cancer chemopreventive activity of green tea. Proceeding of the Society for Experimental Biology and Medicine. 1999, 220: :234-238
    14. Patra D D et al. Seasonal changes of soil microbial biomass in an arable and grass-land soil which bave been under uniform management for many years. Soil Biol. Biochem. 1990, 22(6): 739-742
    15. Ritz K, Whcadcy R E, Effects of water amendment on basal and substrate induced respiration rates of mineral soil. Biol. Fertil. Sois. 1989, 8: 242-246
    16. S. Krishnapillai. Effect of waste tea (tea fluff) on growth of young tea plants (camellia sinensis l). Tea Q. 1998, 50(3): 98-104
    17. Smith J L et al. The significance of soil microbial biomass estimation. Soil Biochemstiy. Marcel Dekker, Inc, New york and Basel. 1990, 6: 357-396
    18. Stevenson F J. Cycles of soil carbon, nitrogen, phoshorus, sulfur micronutrients[M]. John Willey and Sons. New York, 1986
    19. Tadano T. Ozawa K. Sakai H.Osaki M and Matsui H.Secretion of acid phosphatase by the roots of crop plants under P-deficient conditions and some properties of the enzyme secreted by lupin root. Plant and Soil.
    
    1993, 155: 95-98
    20. Whitbread. A. M. Lefroyt. R D. B. and Blair, G. J, A survey of the impact of cropping on soil physical and chemical properties in north-western New South. Australian Journal of soil Research. 1998, 36: 669-681
    21. Yokozawa T, Dong E, Nadagawa T, Kashiwagi H,Nadagawa H, Takeuchi S, Chung HY. In vitro and in vivo studies on the radical-scaveng activity of tea. J Agri Food Chem. 1998, 46. 2143-2150
    22.白毓谦等.微生物试验技术.山东大学出版社.1987
    23.陈明智.肥料与植物营养管理.热带农业科学.2001,3:27-32
    24.陈利燕等.茶多糖的药理作用研究进展.中国茶叶.2001,5:8-9
    25.陈暄等.酵母发酵绿茶汤后活性成分及代谢产物的初步研究.茶叶科学.2002,22 (1):66-69
    26.陈声明等.微生物学研究法.中国农业科技出版社.1996
    27.董素钦等.施用蘑菇废料对甘蔗产量品质及其培肥地力的效应,甘蔗糖业.1998,1:18-20
    28.高爱华等.玉米芯生料栽培平菇高产技术试验.山东农业科学,1997,2:21-24
    29.高大威等.不同配比的培养基对纤维素分解菌发酵饲料的影响.黄牛杂志.2001,27 (6):26-28
    30.高凤仙等.速溶茶渣饲用价值研究.湖南农业大学学报.1998,24(6):465-467
    31.葛晓光.长期定位施用氮肥对菜田土壤肥力变化的影响.中国蔬菜.1997,(5):1-6
    32.龚加顺等.单宁酶的制备及其澄清茶饮料的动力学研究.食品科学.1998,19 (9):5-8
    
    
    33.官志远.不同培养料栽培杏鲍菇的品质分析.食用菌学报.2002,9(2):46-49
    34.韩晓日.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用.植物营养与肥料学报.1996,2(1):16-22
    35.和文祥等.培肥对土壤酶活性影响的研究.浙江大学学报:农业与生命科学版.2001,27 (3):265-269
    36.黄意欢等.茶学实验技术.中国农业出版社.1995
    37.梁国庆.长期施肥对石灰性潮土氮素形态的影响.植物营养与肥料学报.2000,6(1):3-10
    38.林启美.四种不同生态系统的土壤解磷细菌数量及种群分布.土壤与环,2000,9(1):34-37
    39.刘佳铭.生物发酵有机复合肥的开发研究.磷肥与复肥.1998,4:9-11
    40.刘杰等.黑龙江省有机肥料产业化前景展望.黑龙江农业科学.2002,(1):41-42
    41.刘姝,涂国全.茶渣经微生物固体发酵成饲料的初步研究.江西农业大学学报.2001 (1):130-133
    42.罗安程.有机肥对水稻根际土壤中微生物和酶活性的影响.植物营养与肥料学报.1999,5(4):321-327
    43.毛景英,土壤益菌对植物抗病与营养的影响评价.环境化学.1998,17(4):408-409
    44.毛平生.我省茶园土壤肥力及其分析方法.蚕桑茶叶通讯.1995,(3):16-18
    45.闵航.微生物学.浙江大学出版社.1999
    46.舒庆龄等.茶渣饲养肉用鸡效果研究.安徽农业科学.1995,23 (4):
    
    355-356
    47.庞欣.不同供氮水平对根际微生物量氮及微生物活度的警响.植物营养与肥料学报.2000,6(4):476-480
    48.邱亚先等.几种化合物对土壤脲酶抑制作用动力学.江西农业大学学报.2000,22 (3):356-358
    49.饶志明.柑桔加工废渣制作发酵饲料.漳州师范学院学报(自然科学版).2002,15 (3):66-69
    50.任祖淦等.有机无机肥料配施对土壤微生物和酶活性的影响.植物营养与肥料学报.1996,2 (3):279-283
    51.沈中泉等.有机肥料对改善农产品品质的作用及机理.植物营养与肥料学报.1995,1 (2):54-56
    52.孙君社.秸秆同步固态发酵法生产酒糟饲料蛋白的初步研究.饲料工业.2002,23(9):32-34
    53.(日)土壤标准分析测定法委员会编.土壤分析标准方法.北京大学出版社.1988
    54.王晖.微生物肥料对植物生长的影响.山西农业科学.2000,28 (3):50-52
    55.王立克,戴四发等.生物发酵对小麦麸皮营养成分的影响.安徽技术师范学院学报.2002,16(3):31-33
    56.王征等.黑曲霉单宁酶提纯及其性质的研究.湖南农业大学学报.2001,27(1):60-62
    57.文启孝等编著.土壤有机质研究法.农业出版社.1984
    58.席北斗,刘鸿亮等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备.2002,3(3):19-23
    59.梢绿山等.一种植物秸秆复合肥及其生产方法.CN1037088C.1998
    
    
    60.夏会龙.植物对有机农药的吸收与污染修复研究.博士学位论文.2002.1
    61.徐楚生.茶园土壤pH近年来研究的一些进展.茶叶通报.1993,15 (3):1-4
    62.杨昌照.茶饮料的发展前途广阔.饮料工业.2000,3 (6):1-1
    63.杨慧玲.不同基质肥料配方对黄瓜幼苗生长的影响.河南农业大学学报.2002,36 (1):70-74
    64.严昶升主编.土壤肥力研究法.农业出版社.1988
    65.袁玲.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报.1997,3 (4):300-306
    66.浙江土壤.浙江科学技术出版社.1994
    67.张承龙.农业废弃物资源化利用技术现状及其前景.新疆环境保护.2002,24(1):22-25
    68.赵小蓉等.C、N源及C/N比对微生物溶磷的影响.植物营养与肥料学报.2002,8(2):197-204
    69.钟萝.茶叶品质理化分析.上海科技出版社.1989
    70.中国科学院南京土壤研究所微生物室编著.土壤微生物研究法.科学出版社.1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700