仿生贝壳珍珠质材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中,许多生物矿物具有规则的结构以及不可思议的力学性质。其中贝壳珍珠质由于其独特的光学和力学性质被人们广泛研究,它出色的强度,韧性以及硬度则很大程度上归功于珍珠质中碳酸钙和有机物交替形成的高度有序结构。因此仿生贝壳材料工作成为了一大热点并且在许多领域有很大的指导意义和应用价值。
     本文基于对贝壳结构和矿化机制的研究,以及对各种晶型碳酸钙尤其是无定型碳酸钙的合成技能,制备了不同的贝壳类结构或性质材料。开始是仿生贝壳外层结构的碳酸钙复合薄膜制备,然后基于不同模板可控合成了不同晶型和形貌的碳酸钙,并进一步揭示了贝壳的矿化机理,最后实现了高力学性能有机无机复合薄膜的制备。不断深入的研究为仿生贝壳材料的制备提供了新的思路和方法,全文共分6章。
     第一章主要阐述了贝壳珍珠质的结构和矿化理论研究,介绍了碳酸钙尤其是无定形碳酸钙以及其在生物矿化中的实例。又总结了目前国内外仿生贝壳材料重要的相关研究工作,并提出了我们课题的研究方向和需要解决的问题。
     第二章我们仿生贝壳外层结构制备了方解石-文石的复合膜。我们首先通过无定型碳酸钙的可控转化制备了均匀的一层方解石膜,然后在镁离子的作用下又在之前的方解石膜上沉积了一层文石膜,从而用简洁的方法制备了方解石-文石复合膜,在这个过程中我们发现镁离子对方解石-文石的转化起到了非常重要的作用。这个工作通过简洁的方法实现了对贝壳最外层结构的初步模拟。
     第三章我们用有机基底作为模板可控合成了不同晶型和形貌的碳酸钙晶体。我们用鸡蛋膜作为模板,在镁离子和基丙烯酸(PAA)的存在下合成了碳酸钙晶体。其中我们在钙镁比为1:1的溶液中一步沉积得到了方解石-文石的复合膜,在钙镁比为1:4的溶液中得到了致密的文石膜,我们还阐述了镁离子和PAA在这个过程中的作用。这个工作为贝壳矿化机制提供了深入的理解并且为可控合成有机-无机复合膜提供了途径。
     第四章我们在贝壳模板上得到了一层致密的文石膜。我们用贝壳基底作为模板,在聚苯稀磺酸钠(PSS)的存在下沉积了文石晶体。我们发现不同次氯酸钠(NaClO)处理时间的贝壳模板可以诱导出不同形貌和取向的碳酸钙晶体,其中我们在30mmin处理时间的贝壳模板上制备了类似于贝壳取向的均—文石膜,并且我们认为贝壳中的无定型碳酸钙在这层文石膜的形成过程中起到了重要的作用。这个工作进一步揭示了贝壳的矿化机制,并为制备以碳酸钙为基础的环保功能材料提供了一条途径。
     第五章我们通过无定形的先驱相制备了高强度和刚性的有机无机复合膜。首先我们在聚丙烯酸(PAA)的存在下合成了无定形碳酸钙(ACC)胶体溶液,然后又把ACC和聚乙烯醇(PVA)交替旋涂在玻璃基底上,形成有机无机的多层复合结构,再将得到的无定型复合膜在80度下结晶48h。我们发现经过热处理的膜具有高度的取向性,通过力学性质测试,结晶的复合膜在强度,硬度和弹性模量上比之前有大幅度提升,并且强度和模量接近于贝壳的最佳值,这个工作提为制备高性能复合材料提供了新的思路和方法。
     第六章我们提出了仿生贝壳材料需要解决的问题,并展望了其在新材料领域的广阔发展前景。
In nature, biominerals have the ability to assemble ordered structure and remarkable mechanical properties. For example, nacre was widely studied due to its unique optical and mechanical property. Its excellent strength, toughness and hardness are largely attributed to a highly regular arrangement of organic-inorganic hybrid structure which combines polygonal calcium carbonate platelets and biological macromolecules such as chitin and proteins. Therefore, preparation of materials inspired from nacre is the vanguard of materials research with significant leading meanings and application values in many fields.
     In our study, we prepare different materials inspired from nacre. Based on the study and understanding of nacre structure and its biomineralization mechanism with experiment skills in calcium carbonate especially amorphous calcium carbonate (ACC) synthesis, we do research on biomimetic preparation of different materials with nacre-like structure or mechanical property. At the beginning, we synthesized complex calcium carbonate films that mimic nacre external structure in vitro. Then calcium carbonate crystals with different polymorph and morphology were controllable deposited on different substrate. The works can lead a further understanding of nacre formation process. In the end, strong and stiff hybrid materials were achieved via amorphous precursor. In-depth study provides new methods and understanding for preparation of materials inspired from nacre. The thesis contains six chapters in total.
     In chapter1, we elucidate nacre structure and its current biomineralization theory. We also introduce calcium carbonate especially amorphous calcium carbonate (ACC) and its role in biominerals formation. Then we summarize important research works related to biomimic nacre materials at present, and give our research direction and problems to be solved.
     In chapter2, we fabricate calcite-aragonite complex films that duplicate nacre external structure. We first synthesize a uniform calcite film transformed from amorphous calcium carbonate. Then we deposit an aragonite film on the previous calcite film with the aid of Mg ions. A calcite-aragonite complex film was easily fabricated in vitro. In the preparation process we discuss the important role of Mg ions for the transition of calcite to aragonite crystals. This work opens a simple method to mimic nacre external structure.
     In chapter3, we use organic substrate to controllably fabricate calcium carbonate crystals with different polymorph and morphology. We first use eggshell membrane as the substrate to deposit CaCO3crystals in the presence of Mg ions and PAA. We can obtain a calcite-aragonite complex film from one-step deposition in the solution of Mg/Ca ratio is1:1. While an unifrom aragonite film was obtained in the solution of Mg/Ca ratio is4:1. We also discuss the role of Mg ions and PAA in the process. This work can lead a further understanding of nacre biomineralization mechanism and provides a pathway for preparation organic-inorganic complex films.
     In chapter4, we obtain a compact aragonite film on nacre substrate. Aragonite crystals were fabricated using nacre substrate in the presence of PSS. We found different NaCIO treated nacre substrate can induce different calcium carbonate crystals in morphology and polymorph. And uniform aragonite film with similar nacre orientation was obtained on30min-NaClO treated substrate. And we suggest amorphous calcium carbonate (ACC) in nacre plays key roles for this aragonite film formation. This work further reveals nacre biomineralization mechanism and provides a way to fabricate CaCO3based functional materials with environmental benignity.
     In chapter5, we achieve strong and stiff hybrid films via amorphous precursor. Firstly, we synthesize uniform ACC colloid with the size around100nm in the presence of PAA. Then ACC and PVA were spin-coated on glass substrate alternatively to form a multilayered organic-inorganic hybrid film. The amorphous hybrid film was heated at80℃for48h for fully crystallization. We find crystallized hybrid film after thermal heating becomes highly oriented that is similar to nacre. After mechanical test, the hardness, stiffness and tensile strength of crystallized hybrid film increases notably. And the stiffness and tensile strength of the crystallized hybrid film is close to optimal value of nacre. This work opens an novel and simple pathway for preparation of hybrid materials with high mechanical performance.
     In chapter6, we point out the problems to be solved in biomimetic materials in the future, we also highlight its broad development prospects in new materials areas.
引文
[1]G. E. Browll, et al. Metal Oxide Surfaces and their interactions with Aqueous Solutions and microbial orgnisms. Chem. Rev.1998,99,77-174.
    [2]S. Man et al. Crystallization at Inorganic-organic Interfaes:Biominerals and Biomimetic Synthesis. Science 1993,261,1286-1292.
    [3]B. E. Volcani, T. L. Simpson, Silicons and siliceous structure in biological systems. (Springer Verlag,1982).
    [4]R. B. Frankel, R. P. Blakemore, Iron Biominerals.(Plenum Press,1991).
    [5]L. B. Gower, Biomimetic Model Systems for investigating the amorphous precursor pathway and its role in Biomineralization. Chem. Rev.2008,108,4551-4627.
    [6]J. Aizenberg, et al. Skeleton of Euplectella sp.:Structure Hierarchy from the Nanoscale to the Macroscale. Science 2005,309,275-278.
    [7]H. A. Lowenstam, S. Weiner, On Biomineralization. Oxford University Press, New York.1989.
    [8]Y. Oaki, H. Imai, The Hierarchical Architecture of Nacre and Its Mimetic Material. Angew. Chem. Im. Ed.2005,44,6571-6575.
    [9]S. Weiner, H. D. Wagner, The Material Bone:Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci.1998,28,271-298.
    [10]R. Z. Wang, S. G. Himadri, Deformation and Fracture mechanisms of Bone and Nacre. Annu. Rev. Mater. Res.2011.41,41-50.
    [11]J. Aizenberg, et al. Calcitic Microlenses as Part of the Photoreceptor System in Brittlestars. Nature 2001,412,819-822.
    [12]E. Rafal, et al. Magnetic Microstructure of Magnetotactic Bacteria by Electron Hologrphy. Science 1998,282,1868-1870.
    [13]C. Sollner, et al. Control of Crystal size and Lattice Formation by Stamaker in otolith Biomineralization. Science 2003,302,282-286.
    [14]S. Weiner, L. Addadi, Design strategies in mineralized biological materials. J Mater. Chem.1997,7,689-693.
    [15]W. K. Burton, N. Cabrera, F. C. Frank, Growth of Crystals and the Equilibrium Structure of their Surfaces. Royal Soc London Philos Trans.1951, A243, 299-358.
    [16]C. Robinson, et al.-Dental Enamel-a Biological Ceramic:Regular Substructures in Enamel Hydroxypatite Crystals revealed by Atomic Force Microscopy. J. Mater. Chem.2004,14,2242-2248.
    [17]P. C. Hohenberg, B. I. Halperin, Theory of Dynamic Critical Phenomena. Rev. Mod. Phys.1977,49,435-479.
    [18]M. Kahlweit, "Nucleation in Liquid Solutions" In:Physical Chemistry, Vol. VII. Eyring H(ed), Academic Press, New York,1969,675-698.
    [19]P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge,1995.
    [20]D. Kashchiev, Nucleation:Basic theory with applications, Butterworths, Heinemann, Oxford,1999.
    [21]M. M. Tlili, M. B. Amor, C. Gabrielli, S. Joiret, G. Maurin, et al. Characterization of CaCO3 hydrates by micro-Raman spectroscopy.J. Raman Spectrosc.2001,33,10-16.
    [22]N. Kallay, V. Tomasic, Z. S. Suzana, L. Brecevic. Calorimetric investigation of kinetics of solid phase dissolution:Calcium carbonate dissolution in aqueous EDTA solution. Colloids. Surf.1997,188,68-74.
    [23]B. Dickens, W. E. Brown, Crystal structure of calcium carbonate hexahydrate at about-120 Deg. Inorg. Chem.1970,9,480-486.
    [24]M. Neumann, M. Epple, Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals. Bur. J. Inorg. Chem.2007,1953-1957.
    [25]R. S. K. Lam, J. M. Charnock, L. Lennie, F. C. Meldrum, Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm,2007,9, 1226-1236.
    [26]L. Ameye, G. D. Becker, C. Killian, F. Wilt, R. Kemps, et al. Proteins and saccharides of the sea urchin organic matrix of mineralization:Characterization and localization in the spine skeleton. J. Struct. Biol.2004,134,56-66.
    [27]0. N. Patricia, Polycrystalline echinoderm calcite and its fracture mechanics. Science 1981,213,646-648.
    [28]T. X. Wang, H. Colfen, M. Antonietti, Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive.J. Am. Chem. Soc.2005,127,3246-3247.
    [29]A. M. Travaille, L. Kaptijn, P. Verwer, B. Hulsken, H. V. Kempen, et al. Highly oriented self-assembled monolayers as templates for epitaxial calcite growth. J. Am. Chem. Soc.2003,125,1571-1577.
    [30]C. A. Ornle, A. Noy, A. Wierzbicki, M. T. McBride, J. J. De Yoreo, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001,411,775-779.
    [31]S. E. Wolf, N. Loges, B. Mathiasch, M. Panthofer, W. Tremel, et al. Phase selection of calcium carbonate through the chirality of adsorbed amino acids. Angew. Chem. Int. Ed.2007,46,5618-5623.
    [32]T. Ogino, T. Suzuki, K. Sawada, The formation and transformation mechanism of calcium carbonate in water. Geochim. Cosmochim. Acta,1987,51,
    [33]H. Tang, J. G. Yu, D. H. L. Ng, PSS-controlled synthesis of CaCO3 superstructures. Cryst. Res. Technol.2007,42,856-861.
    [34]L. Qiao, Q. L. Feng, Z. Li, Special vaterite found in freshwater lackluster peals. Crystal Growth & Design.2007,7,275-279.
    [35]X. R. Xu, J. T. Han, K. Cho, Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater.2004,16,1740-1746.
    [36]G. Christos, Kontoyannis, V. V. Nikos, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst.2000,125,251-255.
    [37]J. Aizenberg, J. Lambert, S. Weiner, L. Addadi, Factors involved in the formation of amorphous and crystalline calcium carbonate:a study of an ascidian skeleton. J. Am. Chem. Soc.2002,124,32-39.
    [38]S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less traveled. Science 2005,309,1027-1028.
    [39]S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988,334,692-695.
    [40]B. R. Heywood, S. Mann, Template directed nucleation and growth of inorganic materials. Adv. Mater.1994,6,9-20.
    [41]J. Aizenberg, A. J. Black, G. M. Whitesides, Controlling local disorder in self-assembled monolayers by paaeming the topography of their metallic supports. Nature 1998,394,868-871.
    [42]J. Aizenberg, A. J. Black, G. M. Whitesides, Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver.J. Am. Chem. Soc.1999,121,4500-4509.
    [43]Y. J. Han, J. Aizenberg, J. Face-selective nucleation of calcite on self-assembled monolayers of aikanethiols:Effect of the parity of the alkyl chain. Anger. Chem. Int. Ed.2003,42,3668-3670.
    [44]J. Kuther, R. Seshadri, W. Knoll, W. Tremel, Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiois on gold.J. Mater. Chem.1998,8,641-650.
    [45]I. Lee, S. W. Han, S. J. Lee, H. J. Choi, K. Kim, Active matrix displays based on all—organic electrochemical smart pixels printed on paper. Adv. Mater.2002, 14,1640-1643.
    [46]H. Colfen, L. M. Qi, M. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double—hydrophilic block copolymer. Chem. Eur. J. 2001,7,106-116.
    [47]S. H. Yu, H. Colfen, J. Hartmann, M. Antonietti, Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double—hydrophilic block copolymers. Adv. Funct. Mater.2002,12,541-545.
    [48]L. M. Qi, J. Li, J. M. Ma, Biomimetic morphogenesis of calcium carbonate in mxed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater. 2002,14,300-303.
    [49]S. F. Chen, S. H. Yu, T. X. Wang, J. Jiang, H. Colfen, B. Hu, B. Yu, Polymer —directed formation of unusual CaC03 pancal (as with controlled surface structures). Adv. Mater.2005,17,1461-1465.
    [50]T. Kato, A. Sugawara, N. Hosoda, N. Calcium carbonate-organic hybrid materials. Calcium carbonate-organic composite. Adv. Mater.2002,14,869-877.
    [51]B. Hasse, H. Ehrenberg, J. Marxen, W. Becker, M. Epple, Calcium carbonate modifications in the mineralized shell of the freshwater snail biomphalaria glabrata. Chem. Eur. J.2000,6,3679-3685.
    [52]A. Becker, U. Bismayer, M. Epple, H. Fabritius, B. Hasse, J. M. Shi, A. Ziegler, Structural characterisation of X—ray amorphous calcium carbonate (ACC) in sternal deposits of the Crustacea Porcellio Scaber. Dalton. Trans.2003,551-555.
    [53]L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder, Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater.2003,15,959-965.
    [54]R. S. K. Lam, J. M. Charnock, L. Lennie, F. C. Meldrum, Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm.2007,9, 1226-1232.
    [55]L. J. Brecevic, A. E. Nielsen, Solubility of amorphous calcium carbonate. J. Cryst. Growth.1989,98,504-510.
    [56]N. Koga, Y. Nakagoe, H. Tanaka, Crystallization of amorphous calcium carbonate. Thermochim. Acta.1998,318,239-244.
    [57]M. Faatz, F. Grohn, G. Wegner, Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization. Adv. Mater.2004,16,996-1000.
    [58]A. W. Xu, Q. Yu, W. F. Dong, M. Antonetti, H. Colfen, Stable amorphous CaCOs microparticles with hollow spherical superstructures stabilized by phytic acid. Adv. Mater.2005,17,2217-2221.
    [59]X. R. Xu, J. T. Han, D. H. Kim, K. J. Cho, Two modes of transformation of amorphous calcium carbonate films in air. Phys. Chem. B.2006,110,2764-2770.
    [60]H. S. Lee, T. H. Ha, K. Kim, Fabrication of unusually stable amorphous calcium carbonate in an ethanol medium. Mater. Chem. Phys.2005,93,376-380.
    [61]C. Gunthera, A. Beckerb, G. Wolfa, M. Z. Eppleb, In vitro synthesis and structural characterization of amorphous calcium carbonate. Anorg. Allg. Chem.2005, 631,2830-2835.
    [62]P. K. Ajikumar, L. G. Wong, G. Subramanyam, R. Lakshminarayanan, S. Valiyaveettil, Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst. Growth & Design.2005,5,1129-1134.
    [63]J. J. J. M. Donners, B. R. Heywood, E. W. Meijer, R. J. M. Nolte, N. A. J. M. Sonrmerdijk, Control over calcium carbonate phase formation by dendrimer/ suffactant templates. Chem. Bur. J.2002,8,2561-2567.
    [64]N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Nat1. Acad. Sci. USA.2005,102, 12653-12655.
    [65]S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, L. Addadi, L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater. 2003,13,480-486.
    [66]J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Direct fabfication of large micropattemed single crystals. Science 2003,299,1205-1208.
    [67]Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, L. Sea urchin spine calcite forms via transient amorphous carbonate phase. Science 2004,306,1161-1164.
    [68]M. Li, S. Mann, Emergent nanostructures:Water-induced mesoscale transformation of surfactant—tabilized amorphous calcium carbonate nanoparticles in reverse microemulsions. Adv. Funct. Mater.2002,12,773-777.
    [69]Q. Shen, H. Wei, Y. Zhou, Y. P. Huang, H. R. Yang, D. J. Wang, D. F. Xu, Properties of amorphous calcium carbonate and the template action of vaterite spheres.J. Phys. Chem. B.2006,110,2994-3000.
    [70]L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006, 12,980-987.
    [71]X. R. Xu, J. T. Han, K. Cho, Deposition of amorphous calcium carbonate hemispheres on substrates. Langmuir.2005,21,4801-4804.
    [72]J. T. Han, X. R. Xu, D. H. Kim, K. Cho, single—crystal CaC03 thin films fabricated on modified polymer templates. Adv. Func. Mater.2005,15,475-480.
    [73]J. T. Han, X. R. Xu, D. H. Kim, K. Cho, K. Biomimetic fabrication of vaterite film from amorphous calcium carbonate on polymer melt:Effect of polymer chain mobility and functionality. Chem. Mater.2005,17,136-141.
    [74]E. Loste, F. Meldrum, Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume. Chem. Commun.2001,901-902.
    [75]R. J. Park, F. C. Meldrum, Synthesis of single crystals of calcite with complex morphologies. Adv. Mater.2002,14,1167-1169.
    [76]N. B. J. Hetherington, A. N. Kulak, K. Sheard, F. C. Meldrum, Crystallization on surfaces of well—defined topography. Langmuir.2006,22,1955-1958.
    [77]S. Tugulu, M. Harms, M. Fricke, D. Volkmer, H. Klok, Polymer brushes as ionotropic matrices for the directed fabrication of microstructured calcite thin film. Angew. Chem. Int. Ed.2006,45,7458-7461.
    [78]0. N. Patricia, Polycrystalline echinoderm calcite and its fracture mechanics. Science 1981,213,646-648.
    [79]M. A. Meyers, P. Y. Chen, A. Y. M. Lin, Y. Seki, Biological materials:Structure and mechanical properties. Pro. Mater. Sci.2008,53,1-206.
    [80]A. Lin, A. Meyers, Growth and structure in abalone shell. Mater. Science. Eng A.2005,390,27-41.
    [81]F. Banhelat, C. M. Li, C. Comi, H. D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res.2006,21, 1977-1986.
    [82]Z. H. Xu, Y. C. Yang, Z. W. Huang, X. D. Li, Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Materials Science and Engineering C.2011,31,1852-1856.
    [83]B. J. F. Bruet, H. J. Qi, M. C. Boyce, Panas, K. Tai, L Frick, C. Ortiz, Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res.2005,20,2400-2419.
    [84]Z. H. Xu, X. D. Li, Deformation Strengthening of Biopolymer in Nacre. Adv. Funct. Mater.2011,21,3883-3888.
    [85]B. Mohanty, K. S. Katti, D. R. Katti, D. Verma, Dynamic nanomechanical response of nacre.J. Mater. Res.2006,21,2045-2051.
    [86]B. Mohanty, D. Verma, K. S. Katti, D. R. Katti, Time dependent nanomechanical response of nacre. Mater. Res. Soc. Symp. Proc.2007,975,0975-DD03-03.
    [87]J. D. Currey, Mechanical properties of mother of pearl in tension. Proc. Roy. Soe. Lond B.1977,196,443-463.
    [88]A. P. Jackson, J. F. V. Vincent, R. M. Turner, The mechanical design of nacre. Proc. Roy. Soc. London. B.1988,234,415-440.
    [89]G. M. Bond, R. H. Richman, W. P. McNaughton, Mimicry of natural material designs and processes. J. Mater. Eng. Perform.1995,4,334-345.
    [90]张刚生.生物矿化材料及仿生材料工程.矿产与地质,2002,16,98-102.
    [91]M. Sarikaya, K. E. Gunnison, M. Yasrebi, J. A. Aksay, Mechanical property-microstructural relationships in abalone shell. Mater. Res. Soc.1990,174, 109-116.
    [92]R. Menig, M. H. Meyers, M. A. Meyers, K. S. Vecchio, Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta. Mater.2000,45, 2383-2398.
    [93]K. Okumura, P. G. Gennes, Why is nacre Strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur. Phys. J. E.2001,4, 121-127.
    [94]F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li, H. D. Espinosa, On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure. J. Mech Phys. Solids,2007,55,306-309.
    [95]B. R. Heywood, S. Rajam, S. Mann, J. Chem. Soc. Faraday Trans. Calcite single crystals formation with ultrastrucure.1991,87,735-742;
    [96]崔福斋,冯庆玲.生物材料学.北京:清华学出版社2004.
    [97]J. Webb, L. R. Brooker, A. P. Lee, J. G. Hockridge, et al. Biomineralization —controlled microarchitecture in the radula teeth of chitons and limpets. Aust. J. Chem.2001,54,611-614.
    [98]李恒德,冯庆玲,崔福斋,马春来,李文治,毛传斌.贝壳珍珠层及仿生制备研究.清华大学学报(自然科学版),2001,41,41-47.
    [99]F. Banhelat, C. M. Li, C. Comi, H. D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res.2006,21, 1977-1986.
    [100]X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, M. Chang, Nanoscale structural and mechanical characterization of a natural nanocomposite material:The shell of red abalone. Nano. Lett.2004,4,613-617.
    [101]X. Li, Z. H. Xu, R. Z. Wang, In situ observation of nanograin rotation and deformation in nacre. Nano. Lett.2006,6,2301-2304.
    [102]S. Weiner, L. Hood, Soluble protein of the organic matrix of mollusk shells.-A potential template for shell formation. Science 1975,190,987-989.
    [103]G. F. Xu, N. Yao, I.A. Aksay, J. T. Groves, Formation of amorphous calcium carbonate thin films and their role in biomineralization./Am. Chem. Soc.1998, 120,11977-11985.
    [104]E. Loste, E. Daz-Mart, A. Zarbakhsh, F. C. Meldrum, Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy. Langmuir.2003,19,2830-2837.
    [105]J. Aizenberg, Patterned crystallisation on self-assembled monolayers with integrated regions of disorder. J. Chem. Soc. Dal ton. Trans.2000,3963-3968.
    [106]R. J. Park, F. C. Meldrum, Synthesis of single crystals of calcite witll complex morphologies. Adv. Mater.2002,14,1167-1169.
    [107]P. J. Bui jnsters, J. J. Donners, S. J. Hill, B. R. Heywood, R. J. Nolte, B. Zwanenburg, N. A. Sommerdijk, Oriented crystallization of calcium carbonate under self-organized monolayers of amide--ontaining phospholipids. Langmuir.2001,17, 3623-3628.
    [108]T. E. Schaffer, C. I. Zanetti, R. Proksch, M. Fritz, D. A. Waiters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma, Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge? Chem. Mater.1997,9,1731-1740.
    [109]A. Y. Lin, P. Y. Chen, A. Meyers, The growth of nacre in the abalone shell. Acta. Biomater.2008,4,131-138.
    [110]F. Song, X. H. Zhang, Y. L. Bai, Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res.2002,17,1567-1570.
    [111]F. Song, A. K. Soh, Y. L. Bai, Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials.2003,24,3621-3631.
    [112]J. M. Nefr, Ultrastructure of the outer epithelium of the mantle in the clam mercenaria mercenaria in relation to calcification of turtle shell. Tissue & Cell. 1972,4,591-600.
    [113]M. E. Marsh, Biomineralization in the presence of calcium-binding phosphoprotein particles. J. Exp. Zool.1986,239,207-220.
    [114]A. P. Mount, A. P. Wheeler, R. P. Paradkar, D. Snider, Hemomediated shell mineralization in the eastern oyster. Science 2004,304,297-300.
    [115]L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006, 12,980-987.
    [116]I. M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite.J. Exp. Zool.2002, 293,478-491.
    [117]N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, Amorphous layer around aragonite platelets in nacre. Proc. Nat1. Acad. Sci. USA.2005,102, 12653-12655.
    [118]E. Loste, R. J. Park, F. Warren, F. C. Meldrum, Precpitation of calcium carbonate in confinement. Adv. Fund. Mater.2004,14,1212-1220.
    [119]张刚生,谢先德,戚绍祺,胡萍春.贝壳珍珠层的X射线衍射研究.矿物岩石2002,22,8-11.
    [120]F. Nudelman, E. Shimoni, E. Klein, M. Rousseau, X. Bourrat, E. Lopez, L. Addadi, S. Weiner, Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera:An enyironmental-and cryo-scanning electron microscopy study.J. Struct. Biol.2008,162,290-300.
    [121]X. D. Li, Z. W. Huang, Unveiling the formation mechanism of pseudo-single crystal aragonite platelets in nacre. Phys. Rev. Lett.2009,102,075502 (1-4).
    [122]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Ultrastrong and stiff layered polymer nanocomposites. Science 2007,318,80-83.
    [123]L. J. Bonderer, A. R. Studart, L. J. Gauckler, Bioinspired desigh and assembly of plate reinforced polymer films. Science 2008,319,1069-1073.
    [124]E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R.0. Ritchie, Tough, Bioinspired hybrid materials. Science 2008,322,1516-1520.
    [125]Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. V. Aken, J. Bill, Toughing through nature-adapted nanoscale design. Nano. Lett.2009,9,4103-4108.
    [1]a) S. Mann, J. Webb, R. J. P. Williams, Biomineralization:Chemical and Biochemical Perspectives, VCH Publishers, New York,1989.; b) S. Mann, Biomineralization princlples and concepts in bioinorganic materials chemistry, Oxford university press, New York,2001.
    [2]G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996,271,67-69.
    [3]A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse, Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996,381,56-58.
    [4]a) S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988,334,692-695. b) B. R. Heywood, S. Mann, Template directed nucleation and growth of inorganic materials. Adv. Mater. 1994,6,9-20. c) A. P. Jackson, J. F. V. Vincent, R. M. Turner, The mechanical design of nacre. Proc. Roy. Soc. London. B.1988,234,415-440. d) G. F. Xu, N. Yao, I.A. Aksay, J. T. Groves, Formation of amorphous calcium carbonate thin films and their role in biomineralization.J Am. Chem. Soc.1998,120,11977-11985.
    [5]a) J. Kuther, R. Seshadri, W. Knoll, W. Tremel, Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiois on gold. J. Mater. Chem.1998,8,641-650. b) J. Aizenberg, A. J. Black, G. M. Whitesides, Controlling local disorder in self-assembled monolayers by paaeming the topography of their metallic supports. Nature 1998,394,868-871. c) S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988,334,692-695. d) J. Aizenberg, A. J. Black, G. M. Whitesides, Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J. Am. Chem. Soc.1999,121,4500-4509. e) Y. J. Han, J. Aizenberg, J. Face-selective nucleation of calcite on self-assembled monolayers of aikanethiols: Effect of the parity of the alkyl chain. Angew. Chem. Int. Ed.2003,42,3668-3670.
    [6]M. Faatz, F. Grohn, G. Wegner, Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization. Adv. Mater.2004,16,996-1000.
    [7]B. Mohanty, K. S. Katti, D. R. Katti, D. Verma, Dynamic nanomechanical response of nacre. J. Mater. Res.2006,21,2045-2051.
    [8]L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006, 12,980-987.
    [9]a) T. Kato, T. Suzuki, T. Amamiya, T. Irie, M. Komiyama, H. Yui, Effects of macromoleculers on the crystallization of CaCO?. the formation of organic/inorganic composite. Supramol. Sci.1998,5,411-418; b) T. Kato, A. Sugawara, N. Hosoda, Calcium carbonate-organic composite. Adv. Mater.2002,14,869-877; c) N. Hosoda, T. Kato, Thin-film formation of calcium carbonate crystals:effects of functional groups of polymer matrix. Chem. Mater.2001,13,688-693; d) A. Sugawara, T. Ishii, T. Kato, Self-organized calcium carbonate with regular surface-relief structures. Angew. Chem. Int. Ed.,2003,42,5299-5303.
    [10]A. Sugawara, T. Kato, Aragonite CaCO3 thin-film formation by the cooperation of Mg2+ and organic polymer matrices. Chem. Commun.,2000,487-488.
    [11]E. Loste, E. Daz-Mart, A. Zarbakhsh, F. C. Meldrum, Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy. Langmuir.2003,19,2830-2837.
    [12]Fritz, M.; Belcher, A. M.; Radmacher, M.; Walters, D. A.;Hansma, P. K.; Stucky, G. D.; Morse, D. E.; Mann, S. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature,1994,371,49-53.
    [13]a) C. M. Zaremba, A. M. Belcher, M. Fritz, Y. L. Li, S. Mann, P. K. Hansma, D. E. Morse, J. S. Speck, G. D. Stucky, Critical transitions in the biofabrication of abalone shells and flat pearl. Chem. Mater.1996,8,679-690. b) T. E. Schaffer, C. I. Zanetti, R. Proksch, M. Fritz, D. A. Waiters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma, Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge? Chem. Mater.1997,9,1731-1740.
    [14]C. Gunthera, A. Beckerb, G. Wolfa, M. Z. Eppleb, In vitro synthesis and structural characterization of amorphous calcium carbonate. Anorg. Allg. Chem.2005, 631,2830-2835.
    [15]X. R. Xu, J. T. Han, K. Cho, Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater.2004,16,1740-1746.
    [16]L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder, Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater.2003,15,959-965.
    [17]a) N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Nat1. Acad. Sci. USA. 2005,102,12653-12655. b) Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, L. Sea urchin spine calcite forms via transient amorphous carbonate phase. Science 2004, 306,1161-1164. c) M. Faatz, F. Grohn, G. Wegner, Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization. Adv. Mater.2004,16, 996-1000. d) S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, L. Addadi, L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization. Adv. Fund. Mater. 2003,13,480-486. e) A. W. Xu, Q. Yu, W. F. Dong, M. Antonetti, H. Colfen, Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid. Adv. Mater.2005,17,2217-2221.
    [18]X. R. Xu, J. T. Han, D. H. Kim, K. J. Cho, Two modes of transformation of amorphous calcium carbonate films in air.J. Phys. Chew. B.2006,110,2764-2770.
    [19]B. Hasse, H. Ehrenberg, J. Marxen, W. Becker, M. Epple, Calcium carbonate modifications in the mineralized shell of the freshwater snail biomphalaria glabrata. Chem. Eur. J.2000,6,3679-3685.
    [20]F. Lippmann, Sedimentary carbonate minerals. Springer, Berlin,1973.
    [21]S. Raz, S. Weiner, L. Addadi, Formation of high meganesian-calcite via an amorphous precursor phase:Possible biological implacations. Adv. Mater.2000,12, 38.
    [22]Y. J. Han, J. Aizenberg, Face-Selective Nucleation of Calcite on Self-Assembled Monolayers of Alkanethiols:Effect of the Parity of the Alkyl Chain. J. Am. Chem. Soc.,2003,125,4032.
    [1]S. Mann, J. R. Webb and J. P. Williams, Biomineralization:Chemical and Biochemical Perspectives, VCH Publishers, New York,1989.
    [2]S. Mann, Biomineralization princlples and concepts in bioinorganic materials chemistry, Oxford university press, New York,2001.
    [3]S. Weiner and L. Addadi, Design strategies in mineralized biological materials J. Mater. Chem.1997,7,689-702.
    [4]H. A. Lowebstam and S. Weiner, On Biominerealization, Oxford university press, New York,1989.
    [5]M. Fritz, A.M. Belcher, M. Radmacher, D.A.Walters, P. K. Hansma, G. D. Stucky, D. E. Morse and S. Mann, Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994,374,49-52.
    [6]C. M. Zaremba, A. M. Belcher, M. Fritz, Y. L. Li, S. Mann, P. K. Hansma, D. E. Morse, J. S. Speck, G. D. Stucky, Critical transitions in the biofabrication of abalone shells and flat pearl. Chem. Mater.1996,8,679-690.
    [7]Z. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre. Nature Mater.2003,2,413-418.
    [8]J. J. J. M. Donners, B. R. Heywood, E. W. Meijer, R. J. M. Nolte, N. A. J. M. Sonrmerdijk, Control over calcium carbonate phase formation by dendrimer/ suffactant templates. Chem. Eur. J.2002,8,2561-2567.
    [9]J. Kuther, R. Seshadri, W. Knoll, W. Tremel, Templated growth of calcite. vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiois on gold.J. Mater. Chem.1998,8,641-650.
    [10]T. Kato, T. Suzuki, T. Amamiya, T. Irie, M. Komiyama, H. Yui, Effects of macromoleculers on the crystallization of CaCO3 the formation of organic/inorganic composite. Supramol. Sci.1998,5,411-418.
    [11]T. Kato, A. Sugawara, N. Hosoda, Calcium carbonate-organic composite. Adv. Mater.2002,14,869-877;
    [12]N. Hosoda, T. Kato, Thin-film formation of calcium carbonate crystals:effects of functional groups of polymer matrix. Chem. Mater.2001,13,688-693;
    [13]B. R. Heywood, S. Mann, Template·directed nucleation and growth of inorganic materials. Adv. Mater.1994,6,9-20.
    [14]J. Kuther, R. Seshadri, W. Knoll, W. Tremel, Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiois on gold.J. Mater. Chem.1998,8,641-650.
    [15]S. Raz, S. Weiner, L. Addadi, Formation of high meganesian-calcite via an amorphous precursor phase:Possible biological implacations. Adv. Mater.2000,12, 38.
    [16]K. J. Davis, P. M. Dove, J. J. De Yoreo, The role of Mg2+ as an impurity in calcite growth Science 2000,290,1134-1136.
    [17]B. Hasse, H. Ehrenberg, J. Marxen, W. Becker, M. Epple, Calcium carbonate modifications in the mineralized shell of the freshwater snail biomphalaria glabrata. Chem. Eur. J.2000,6,3679-3685.
    [18]A. Sugawara, T. Kato, Aragonite CaCO3 thin-film formation by the cooperation of Mg2+ and organic polymer matrices. Chem. Commun.2000,487-488.
    [19]A. Sugawara, N. Hosoda T. Kato, Template Effect of Crystalline Poly(vinyl alcohol) for Selective formation of Aragonite and Vaterite CaCO3 Thin Films. Macromolecules.2003,36,6449-6452.
    [20]D. A. Carrino, J. E. Dennis, T. M. Wu, J. L. Arias, M. S. Fernandez, J. P. Rodriguez, D. J. Fink, A. H. Heuer, A. I. Caplan, The avian eggshell extracellular matrix as a model for biomineralization. Connect. Tissue. Res.1996,35,379-385.
    [21]Y. Nys, J. Gautron, M. D. McKee, J. M. Gautron, M. T. Hincke, Biochemical and functional characterisation of eggshell matrix proteins in hens. World. Poultry. Sci. J.2001,57,401-408.
    [22]G. Falini, M. Gazzano, A. Ripamonti, Crystallization of calcium carbonate in presence of magnesium and polyelectrolytes. J. Cryst. Growth.1994,134,577-584.
    [23]N. Kallay, V. Tomasic, Z. S. Suzana, L. Brecevic. Calorimetric investigation of kinetics of solid phase dissolution:Calcium carbonate dissolution in aqueous EDTA solution. Colloids. Surf.1997,188,68-74.
    [24]A. P. Jackson, J. F. V. Vincent, R. M. Turner, The mechanical design of nacre. Proc. Roy. Soc. London. B.1988,234,415-440.
    [25]F. Lippmann, Sedimentary carbonate minerals.1973, Springer, Berlin.
    [26]G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996,271,67-69.
    [27]A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse, Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996,381,56-58.
    [28]G. F. Xu, N. Yao, I. A. Aksay, J. T. Groves, Formation of amorphous calcium carbonate thin films and their role in biomineralization. J. Am. Chem. Soc.1998, 120,11977-11985.
    [29]E. Loste, E. Daz-Mart, A. Zarbakhsh, F. C. Meldrum, Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy. Langmuir.2003,19,2830-2837.
    [30]X. R. Xu, J. T. Han, K. Cho, Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater.2004,16,1740-1746.
    [1]B. Hasse, H. Ehrenberg, J. Marxen, W. Becker, M. Epple, Calcium carbonate modifications in the mineralized shell of the freshwater snail biomphalaria glabrata. Chem. Eur. J.2000,6,3679-3685.
    [2]S. I. Stupp, P. V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductor. Science 1997,277,1242-1248.
    [3]T. Kato, Polymer/Calcium Carbonate Layered Thin-Film Composites. Advanced Materials.2000,12,1543-1546.
    [4]H. Colfen, S. Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angewandte Chemie-International Edition. 2003,42,2350-2365.
    [5]Z. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre. Nat. Mater.2003,2,413-418.
    [6]S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Freezing as a path to build complex composite. Science 2006,311,515-518.
    [7]E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R.0. Ritchie, Tough, Bio-inspired hybrid materials. Science 2008,322,1516-1520.
    [8]S. W. Wise, Scanning electron microscope study of fine grain size biogenic carbonate particles. Nature 1970,167,1486-1488.
    [9]X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, M. Chang, Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material:The Shell of Red Abalone. Nano. Lett.2004,4,613-617.
    [10]J. J. J. M. Donners, B. R. Heywood, E. W. Meijer, R. J. M. Nolte, N. A. J. M. Sonrmerdijk, Control over calcium carbonate phase formation by dendrimer/ suffactant templates. Chew. Eur. J.2002,8,2561-2567.
    [11]Y. J. Han, J. Aizenberg, J. Face-selective nucleation of calcite on self-assembled monolavers of aikanethiols:Effect of the parity of the alkyl chain. Angew. Chem. Int. Ed.2003,42,3668-3670.
    [12]S. Mann, Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press. NewYork,2001.
    [13]S. Mann, G. A. Ozin, Nature 1996,382,313.
    [14]J. J. J. M. Donners, B. R. Heywood, E. W. Meijer, R. J. M. Nolte, N. A. J. M. Sonrmerdijk, Control over calcium carbonate phase formation by dendrimer/ suffactant templates. Chem. Eur. J.2002,8,2561-2567.
    [15]J. Kuther, R. Seshadri, W. Knoll, W. Tremel, Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiois on gold./Mater. Chem.1998,8,641-650.
    [16]X. Li, Z. H. Xu, R. Z. Wang, In situ observation of nanograin rotation and deformation in nacre. Nano. Lett.2006,6,2301-2304.
    [17]Z. H. Xu, X. D. Li, Deformation Strengthening of Biopolymer in Nacre. Advanced Functional Materials.2011,21,3883-3889.
    [18]Z. H. Xu, Y. C. Yang, Z. W. Huang, X. D. Li, Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Materials Science and Engineering C.2011,31,1852-1856.
    [19]N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. USA.2005,102, 12653-12655.
    [20]X. D. Li, Z. W. Huang, Unveiling the formation mechanism of pseudo-single crystal aragonite platelets in nacre. Phys. Rev. Lett.2009,102,075502 (1-4).
    [21]C. Gunthera, A. Beckerb, G. Wolf a, M. Z. Eppleb, In vitro synthesis and structural characterization of amorphous calcium carbonate. Anorg. Allg. Chem.2005, 631,2830-2835.
    [22]S. Weiner, I. Sagi, L. Addadi, Choose the crystallization path less travelled. Science 2005,309,1027-1028.
    [23]L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006, 12,980-987.
    [24]D. E. Jacob, A. L. Soldati, R. Wirth, J. Huth, U. Wehrmeister, W. Hofmeister, Nanostructure, composition and mechanisms of bivalve shell growth. Geochimica et Cosmochimica Acta.2008,72,5401-5415.
    [25]P. K. Ajikumar, L. G. Wong, G. Subramanyam, R. Lakshminarayanan, S. Valiyaveettil, Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst. Growth & Design.2005,5,1129-1134.
    [26]L. Qiao, Q. L. Feng, S. S. Lu, In Vitro Growth of Nacre-like Tablet Forming: From Amorphous Calcium Carbonate, Nanostacks to Hexagonal Tablets. Cryst. Growth & Design.2008,8,1509-1515.
    [27]T. E. Schaffer, C. I. Zanetti, R. Proksch, M. Fritz, D. A. Waiters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma, Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge? Chem. Mater.1997,9,1731-1740.
    [28]M. Fritz, A. M. Belcher, M. Radmacher, D. A. Walters, P. K. Hansma, G. D. Stucky, D. E. Morse, S. Mann, Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994,39,49-51.
    [29]F. Nudelman, E. Shimoni, E. Klein, M. Rousseau, X. Bourrat, E. Lopez, L. Addadi, S. Weiner, Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera:An environmental-and cryo-scanning electron microscopy study.J. Struct. Biol.2008,162,290-300.
    [30]G. Bevelander, H. Nakahara, J. M. Nefr, Ultrastructure of the outer epithelium of the mantle in the clam mercenaria mercenaria in relation to calcification of turtle shell. Tissue & Cell.1972,4,591-600.
    [31]L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder:amorphous calcium carbonate and its roles in biomineralization. Advanced Materials.2003,12,959-970.
    [32]I. M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc Larval Shell Formation: Amorphous Calcium Carbonate Is a Precursor Phase for Aragonite. Journal of Experimental Zoology.2002,293,478-491.
    [1]I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, S. M. Gruner, Biomimetic pathways for assembling inorganic thin films. Science 1996,273,892-898.
    [2]A. Sellinger, P. M. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, C. J. Brinker, Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 1998,394,256-260.
    [3]B. L. Smith, T. E. Schaeffer, M. V. James, B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, P. K. Hansma, Molecularmechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999,399, 761-763.
    [4]G. Decher, Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. Science 1997,277,1232-1237.
    [5]S. Mann, G. A. Ozin, Synthesis of inorganic materials with complex form. Nature 1996,382,313-316.
    [6]L. Addadi, S. Weiner, Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Engl.1992,31,153-169.
    [7]X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, M. Chang, Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material:The Shell of Red Abalone. Nano. Lett.2004,4,613-617.
    [8]J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl, Skeleton of Euplectella sp.:structural hierarchy from the nanoscale to the macroscale. Science 2005,309,275-278.
    [9]K. J. Koester, J. W. Ager, R.0. Ritchie, The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater.2008,7,672-677.
    [10]G. Mayer, Rigid Biological Systems as Models for Synthetic Composites. Science 2005,310,1144-1147.
    [11]S. I. Stupp, P. V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors. Science 1997,277,1242-1248.
    [12]T. Kato, Polymer/calcium carbonate layered thin-film composites. Adv. Mater. 2000,12,1543-1546.
    [13]H. Colfen, S. Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chew. Int. Ed.2003,42,2350-2365.
    [14]J. J. J. M. Donners, B. R. Heywood, E. W. Meijer, R. J. M. Nolte, N. A. J. M. Sonrmerdijk, Control over calcium carbonate phase formation by dendrimer/ suffactant templates. Chem. Eur. J.2002,8,2561-2567.
    [15]S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Freezing as a path to build complex composites. Science 2006,311,515-518.
    [16]Z. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre. Nat. Mater.2003,2,413-418.
    [17]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Ultrastrong and stiff layered polymer nanocomposites. Science 2007,318,80-83.
    [18]E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R.0. Ritchie, Bioinspired hybrid materials. Science 2008,322,1516-1520.
    [19]Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, J. Bill, Toughing through nature-adapted nanoscale design. Nano Lett.2009,9,4103-4108.
    [20]L. J. Bonderer, A. R. Studart, L. J. Gauckler, Bioinspired desigh and assembly of plate reinforced polymer films. Science 2008,319,1069-1073.
    [21]L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder, Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater.2003,15,959-965.
    [22]N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. USA.2005,102, 12653-12655.
    [23]Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. Science 2004,306, 1161-1164.
    [24]X. D. Li, Z. W. Huang, Unveiling the formation mechanism of pseudo-single crystal aragonite platelets in nacre. Phys. Rev. Lett.2009,102,075502 (1-4).
    [25]H. Colfen, M. Antonietti, Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005,44,5576-5591.
    [26]F. Song, X. H. Zhang, Y. L. Bai, Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res.2002,17,1567-1570.
    [27]W. C. Oliver, G. M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res.1992,7,1564-1566.
    [28]G. M. Bond, R. H. Richman, W. P. McNaughton, Mimicry of natural material designs and processes.J. Mater. Eng. Perform.1995,4,334-345.
    [29]B. J. F. Bruet, H. J. Qi, M. C. Boyce, Panas, K. Tai, L. Frick, C. Ortiz, Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res.2005,20,2400-2419.
    [30]The influence of internal length scales on mechanical properties in natural nanocomposites:A comparative study on inner layers of seashells. D. Franziska, Fleischli, D. Marianne, B. Cesare, S. Ralph, ActaBiomaterialia.2008,4,1694-1706.
    [31]J. Aizenberg, J. Hanson, T. F. Koztzle, S. Weiner, L. Addadi. Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals. J. Am. Chem. Soc.1997,119,881-886.
    [32]Z. H. Xu, X. D. Li, Deformation Strengthening of Biopolymer in Nacre. Advanced Functional Materials.2011,21,3883-3889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700