三聚氰胺—甲醛(MF)气凝胶的制备及其改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文简要综述了三聚氰胺-甲醛(MF)有机气凝胶的基本特性、制备方法、表征手段和其国内外研究概况;通过系统实验,改进了MF气凝胶制备工艺,探索了具有激光惯性约束聚变(ICF)实验应用前景的改性及掺杂MF气凝胶的制备方法。主要工作及相应结果如下:
     1)采用溶胶-凝胶工艺、溶剂置换和CO_2超临界流体干燥方法制备出性能优良、具有纳米网络结构的MF气凝胶;深入研究了反应物总浓度,凝胶温度变化对凝胶时间的影响,对凝胶过程中粒子及团簇的生长进行了分析,对凝胶化过程的理论分析进行了验证;通过在溶胶中加入碱的方法改进了MF气凝胶的制备工艺,缩短了凝胶时间,降低了凝胶密度;通过Materials-Studio上Dmol3以及半经验的Vamp模块进行模拟计算,得到升高温度可加快凝胶速度的结论,并选用二甲基亚砜(DMSO)代替水进行MF凝胶的制备,极大地缩短了凝胶时间。对不同方法制备的MF气凝胶进行了表征:FT-IR显示三种不同方法制备的MF气凝胶化学结构相差无几,仅是高温溶剂法所制备的气凝胶由于反应温度较高的影响,使得其红外图的C-H键伸缩振动峰较强。采用HRTEM,FESEM和BET法对所制备的气凝胶的多孔性进行了表征,其中常规法所制备的气凝胶骨架结构较一致,且孔径分布较均一,而加碱法和耐高温溶剂法制备的气凝胶效果次之。
     2)通过在溶胶-凝胶过程中向MF溶胶体系中加入间苯二酚-甲醛预聚体的方法结合CO_2超临界流体干燥技术制备出具有纳米网络结构的酚改性MF气凝胶。结果表明此改性MF气凝胶,在凝胶化过程中所需时间较纯MF气凝胶短。用总反应浓度为5%的溶胶,经过溶胶-凝胶过程和超临界流体干燥过程,最终制得密度约为55mg/cm3的酚改性MF气凝胶样品。并通过改变不同的三聚氰胺/间苯二酚(M/R)值,制备出四种不同的改性MF气凝胶。其湿凝胶和气凝胶的光学照片均显示出随M/R值的增大,其颜色越紧接纯MF,透明性也降低。FT-IR法的分析结果表明改性气凝胶化学结构相差无几;采用HRTEM,FESEM和BET的分析结果表明随着M/R值的增加,气凝胶的骨架结构和孔的结构改变:气凝胶的骨架由纳米颗粒堆积成链球状的空间网络结构逐渐变为类似于MF气凝胶的纳米粒子堆积成树枝状分杈型结构,同时孔径也逐渐增大,SBET降低,孔容减少。改性MF气凝胶的TGA图谱分析则显示出,改性MF气凝胶的分解温度较MF气凝胶低,随着体系内三聚氰胺含量的增加,分解温度越紧接MF气凝胶。
     3)采用在溶胶-凝胶过程中向MF溶胶体系中加入钛溶胶的方法结合CO2超临界流体干燥技术制备出具有纳米网络结构的TiO2掺杂MF气凝胶。在凝胶过程中,发现掺入MF体系内且最终可形成稳定凝胶的钛溶胶的量是一定,超过此量将容易使得溶胶内的钛溶胶粒子发生团聚、沉淀,得不到稳定的、分散均匀的掺钛MF凝胶。通过对SEM、TEM照片和BET的图谱分析,掺钛后的MF气凝胶仍具有多孔三维网络状骨架结构。从TEM照片中可以明显看出有晶体存在于骨架上,通过EDS分析,这些晶体就是我们掺入的钛元素形成的氧化物晶体,对TEM照片内的晶体面间距的测量结果显示晶体的面间距与锐钛矿型的(1 0 1)的面间距相差不大。对样品的XRD分析虽然得到与标准锐钛矿型的TiO2所一致的峰,但是由于其与MF体系的三嗪环的峰在相同的位置,所以并不能肯定此晶型就为锐钛矿型。对于MF体系内的掺入的氧化钛的晶型有待进一步分析和表征。
This thesis brief summarized the fundamental properties, preparation methods, characterization techniques and recent achievements of melamine-formaldehyde (MF) aerogels. Based on a series of experiments, the preparation process of MF aerogel was improved, and we also developed the preparation methods of phenol and metal oxide doped MF aerogels which have potential application in inertia constraint fusion (ICF) experiments. The investigation and corresponding results mainly includes:
     MF aerogels with nano network structure were prepared by sol-gel process, solvent exchange and supercritical drying. The effect of reactant concentration and gelation temperature to gelation time has been analyzed. The development of particles or clusters derived from reactants was continuously observed to verify the sol-gel theory. The alkali was added to sol to improve the preparation process of MF aerogel. The results indicated that the gelation time of MF sol was shortened and the density of MF aerogel was decreased. The Dmol3 and semi-empirical Vamp modules of Materials-Studio software were employed to simulate the optimal preparation conditions. The simulation result revealed that the increase of temperature can accelerate the gelation reaction rate and the gelation time can be significantly shortened by the substitution of water with dimethyl sulfoxide (DMSO) as a solvent in gelation process. The results of Fourier transform infrared spectroscopy (FTIR) spectrums showed that there is no obvious difference in chemical structure of MF aerogels prepared by different methods, except the sample prepared in DMSO. Due to the effect of higher temperature, this sample presents a stronger stretching vibration peak of C-H bond. The porosities of the MF aerogels were determined by high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscope (FESEM) and Brunmaner-Emmett-Teller (BET) methods. The results indicated that the aerogel prepared by traditional method was superior to samples prepared by other two methods in structure homogeneity.
     Phenol modified MF aerogels with nano network structure were prepared by adding resorcin to MF sol system, followed by CO_2 supercritical drying process. The results indicated that phenol modified MF aerogels had shorter gelation time than that of pure MF aerogel. Phenol modified MF aerogels with the density of 55mg/cm~3 were obtained from the system with the total reactant concentration of 5%, and the effect of the mole ratio of melamine and resorcin (M/R) was investigated. It was found that the modified MF aerogel changes to opaque as M/R increased, while its apparent color was close to that of pure MF aerogel. The results of FT-IR spectrums showed that the modified aerogels with different mole ratio of M/R had the similar chemical structure. The results of HRTEM, FESEM and BET indicated that the network structure of the modified aerogels depended on the mole ratio of the M/R. As M/R increased, the network structure of modified MF aerogel gradually transformed to branching structure, which increases the pore size and reduces the BET surface area (SBET) and pore volume. The thermogravimeric analysis (TGA) suggested that the thermal stability of the phenol modified MF areogels was improved with M/R increasing.
     Titanium dioxide (TiO_2) doped MF aerogels were prepared by introducing TiO_2 sol to MF sol. It was found that TiO_2 sol had a saturation capacity. Beyond the value, TiO_2 colloid particles were easy to agglomerate, which leads to the formation of unstable and non-uniform TiO_2-doped MF gel. The results of HRTEM, FESEM and BET indicated that TiO_2-doped MF aerogels had a nano three-dimensional network structure. From the HRTEM micrograph, it was obvious that there were tiny crystalline dispersed in MF aerogel framework, and its EDS spectra revealed that the crystalline was TiO_2. The XRD analysis results showed that titanium doped MF aerogel possessed the same diffraction angle of MF. Apparently, only the XRD result can not provide the tangible evidence to confirm the crystal structure of TiO_2, further testing experiment is necessary to characterize this TiO_2-doped MF system.
引文
[1] L. W. Hrubesh, J. F. Poco. Thin aerogel films for optical, thermal, acoustic and electronic applications[J]. Journal of Non- Crystalline Solids, 1995, 188: 46-53
    [2] S. S. Kisteler. Coherent expanded aerogels[J]. The Journal of Physical Chemistry, 1932, 36: 52- 58
    [3] S. J. Teichner, G. A. Nicolanon, M. A. Vicarini, et al. Inorganic oxide aerogels[J]. Colloid and Interface Science, 1976, 5: 254-273
    [4] B. E. Yoldas, Alumina Sol Preparation from Alkoxides[J]. Ceramic Bulletin, 1975, 54: 289-290
    [5] M. Cantin, M. Casse, L. Koch. Silica aerogels used as cherenkov radiators[J]. Nuclear Instruments and Methods, 1974, 118:177-182
    [6] G. M. Pajonk. Aerogel catalysts[J]. Applied Catalysis, 1991, 72: 217- 266
    [7] X. Luetal, Thermal transport in organic and opacified silica monolithic aerogels[J]. Journal of Non- Crystalline Solids, 1992, 145: 207- 210
    [8] R. W. Pekala.“Aerogel-Based Electronic Devices”[A], Seminar Talk in Wurzburg University, Germany, July 27,1992
    [9] R. L. Guyer, D. E. Koshland. Diamond: glittering prize for materials[J], Science, 1990, 250: 1640- 1643
    [10]沈军,王珏,吴翔.气凝胶--一种结构可控的新型功能材料[J].材料科学与工程,1994,12(3):1- 6
    [11] R. W. Pekala. Low density Resorcinol-Formaldehyde Aerogels: US, 4873218[P]. 1989-10-10
    [12] P. H. Tewari, A. J. Hunt, K. D. Lofftus. Ambient temperature supercritical drying of transparent silica aerogels[J]. Materials letters, 1985, 3(9-10): 363-367
    [13]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术, 2002, 26(6): 466- 469
    [14] R. W. Pekala, C. T. Alviso, J. K. Nielsen, et al. Electrochemical Behavior of Carbon Aerogels Derived from Different Precursors[J]. Materials Research Society Symposium-Proceedings, 1995, 393: 413- 425
    [15] S. T. Mayer, R. W. Pekala, J. L. Kaschmitter. The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device[J]. Journal of the Electrochemical Society, 1993, 140: 446- 451
    [16] D. Trantri, K. Kinoshita. Carbon for Supercapacitors and L-ion batteries in evs [J]. Proceedings of the Electrochemical Society, 1998, 15: 548- 559
    [17] Enomotor, T. Sumiyashi, K. Hayashi, et al. Feasible study of sigle-photon counting using a fine-mesh phototube for an aerogel resadout[J]. Nuclear Instruments and Methods, 1993, 332(A): 129- 133
    [18] R. W. Pekala. Melamine-Formaldehyde Aerogels: US, 5081163[P]. 1992-01-14
    [19]张勇,任洪波,徐嘉靖,等. MF气凝胶的制备和结构表征[J].强激光与粒子束, 2006, 18(12): 1841-1844
    [20] T. Wiognier, J. Phalippou. Mechanical strength of silica aerogels[J]. Journal of Non-Crystalline Solids, 1988, 100: 404-408
    [21] R. Gerlach, O. Kraus, J. Fricke, et al. Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices[J]. Journal of Non- Crystalline Solids, 1992, 145: 227- 232
    [22]高庆福,张长瑞,冯坚,等.氧化硅气凝胶隔热复合材料研究进展[J].材料科学与工程学报, 2009, 27: 302-306
    [23] G. M.Pajonk, A. V. Rao, N. Pinto, et al. Monolithic carbon aerogels for fuel cell electrodes[J]. Studies in Surface Science and Catalysis, 1998, 118: 167- 174
    [24] U. Buchenau, M. Monkenbusch, G. Reichenauer, et al. Inelastic neutron scattering from virgin and densified aerogels[J]. Journal of Non- Crystalline Solids, 1992; 145: 121- 127
    [25] Minh Ha Nguyen, LEH.Dao. Effect of processing variable on melamine-formaldehyde aerogel formation[J]. Journal of Non- Crystalline Solids, 1998, 225: 51- 57
    [26] D. Klvana, J. Chaouki, D. Kusohorsky, et al. Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions[J]. Applied Catalysis, 1988, 42: 121- 130
    [27] G. M. Pajonk. Some catalytic application for environmental purposes[J]. Catalysis Today, 1999, 52: 3- 13
    [28] G. M. Pajonk. Catalytic aerogels[J]. Catalysis Today, 1997, 35(3): 319- 337
    [29] Jangky, KMK. Evaluation of sol-gel processing as a method for fabricating spherical-shell silica aerogel inertial confinement fusion-targets[J]. Journal of Vacuum Science & Technology(A), 1992, 10(4): 1152- 1157.
    [30] T. M. Tillotson, L. W. Hrubesh. Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process[J]. Journal of Non- Crystalline Solids, 1992, 145: 44- 50
    [31]倪星元,程银兵,马建华,等. SiO2气凝胶柔性保温隔热薄膜[J].功能材料, 2003, 6(34): 725- 727
    [32] D. W. Schaefer. Polymers, Fractals, and Ceramic Materials[J] Science, 1989, 243: 1023- 1027
    [33] L. Larry, Hench, Jon K West. The sol-gel process[J]. Chemical Reviews, 1990, 90(1): 33- 72
    [34] R. W. Pekala. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures: US, 5476878[P]. 1995-10-19
    [35] G. Biemans, A. Mertens, L. Duffours, et al. Polyurenthane-based organic aerogel and their transfornation into carbon aerogel[J]. Journal of Non- Crystalline Solids, 1998, 25: 64- 68
    [36] G. Biemans, D. Randall, E. Francais, et al. Polyurenthane-based organic aerogel’s themal performance[J]. Journal of Non- Crystalline Solids, 1998, 25: 36- 40
    [37] Zhang Rui, Lu Yonggen, Zhan liang, et al. Monolithic Carbon aerogel from sol-gel polymerization of phenolic resoles and methylolated melamine[J].Carbon, 2002,41:1660-1663
    [38] Li Wen-cui, Guo shu-cai. Preparation of Low-density carbon aerogels from a cresol/formaldehyde mixture[J]. Carbon, 2000, 38: 1499- 1524
    [39]李文翠,郭树才.混甲酚-甲醛气凝胶的制备及表征[J].燃料化学学报,2000, 28(1): 33- 35
    [40]吴志超,张曼维,张志成,等.辐射法合成聚N-羟甲基丙烯酰胺-间苯二份气凝胶[J].辐射研究与辐射工艺学报, 1996, 14(1): 7- 12
    [41]吴志超,张志成,张曼维,等.聚N-羟甲基丙烯酰胺-间苯二份气凝胶与其对应液体凝胶的SAXS研究[J].化学物理学报, 1996, 9(2):180- 186
    [42] K. Barrl. Low-density organic aerogels by double-catalysed synthesis[J]. Journal of Non- Crystalline Solids, 1998, 225: 46- 50
    [43]胡惠康,甘礼华,李光明,等.超临界干燥技术[J].实验室研究与探索, 2000, 2: 33- 35
    [44]詹国武,王宏涛.应用超临界流体干燥技术制备气凝胶的研究进展[J].干燥技术与设备,2008, 6(4): 171- 175
    [45]甄聪棉,刘雪芹,何志巍,等.超低介电常数纳米多孔SiO2薄膜制备技术进展[J].硅酸盐学报, 2003, 31(9): 878- 882
    [46] M. Prassas, J. Phalippou. J. Zaraycki, et al. Synthesis of monolithic silica-gel by hypercritical solvent evacuation[J]. Journal of Matierals Science, 1984, 19(5): 1656- 1665
    [47] Qin Guo-tong, Guo Shu-cai. Drying of RF gels supercritical acetone [J].Carbon, 1999, 37: 1168- 1169
    [48] Liang Chang-hai, Sha guang-yan, Guo Shu-cai. Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying[J]. Journal of Non- Crystalline Solids, 2000, 271: 167- 170
    [49] Zhang Rui, Zhang Liang, Meng Qing-han, et al. A comparative study of supercritical Petroleum ether and carbon dioxide drying in the preparation of carbon aerogels[J]. New Carbon Materials, 004, 19(1): 7- 10
    [50] D. Klvana, J. Chaouki, M. Repellinlacroix, et al. A new method of pteparation of aerogel-like materials using a freeze-drying process[J], Journal de Physique, 1989, 50(C4): C429-C432
    [51] B. Mathieu, S. Blacher, J. P. Pirard, et al. Freeze-dried resorcinol-formaldehyde gel[J], Journal of Non- Crystalline Solids, 1997, 212: 250-261
    [52] H. Tamon, H. Ishizaka, T. Yamamoto, et al. Influence of freeze drying condition on the mesoporosity of organic gels as carbon precursors[J], Carbon, 2000, 38: 1009-1015
    [53] S. Hareid, M. Dahle, S. Lima, et al. Preparation and properties of monolithic silica xerogel fromTEOS-based alcogels aged in silane solution[J], Journal of Non- Crystalline Solids, 1995, 186: 104-112
    [54] D. M. Smith, D. Stein, J. M. Anderson, et al. Preparation of low-density xerogels at ambient pressure[J]. Journal of Non- Crystalline Solids, 1995, 186: 104- 112
    [55]郭艳芝,沈军,王珏.常压干燥法制备炭气凝胶[J].新型炭材料,2001, 16(3): 55- 57
    [56]沈军,王珏,吴翔.硅气凝胶和它的分形结构[J].物理学报, 23(8): 483- 487
    [57] H. Tamon, H. Ishizaka. Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol-formaldehyde aerogels[J]. Journal of Colloid and Interface Science, 2000, 223: 305-307
    [58]李文翠,郭树才,王振林.老化过程参数对新型纳米材料有机凝胶特性结构的影响研究[J].材料科学与工程, 2000, 18(2): 25- 27
    [59] H. Tamon, H. Ishizaka, T. Araki, et al. Control of mesoporous structure of organic and carbon aerogels[J]. Carbon, 1998, 36(9): 1257- 1262
    [60] V. Bock, A. Emmerling, Fricke J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure[J]. Journal of Non- Crystalline Solids,1998, 225(1): 69- 73
    [61]李文翠,朱盛维,郭树才.催化剂种类对间苯二酚甲醛气凝胶结构的影响[J].大连理工大学学报, 2000, 40(4): 417- 419
    [62] R. W. Pekala. Organic aerogels from the pplyconcensation of resorcionl with formaldehyde[J], Journal of Matierals Science, 1989, 24: 3221-3227
    [63] R. W. Pekala, C. J. Alviso, F. M. Kong, et al. Aerogels derived from multifunction organic monmers [J], J Non-crystal Solids, 1992, 145: 90-98
    [64] A. Emmerling, J. Fricke. Scaling Properties and Structure of Aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8: 781-788
    [65] G. Reichenauer, C. Stumpf, J. Fricke. Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion[J]. Journal of Non- Crystalline Solids, 1995, 186: 334- 341
    [66] L. M. Hair, R. W. Pekala, R. E. Stone, et al. Low-density resoreinol-formaldehyde aerogels for dircet-drive laser inertial confinement targets[J]. Journal of Vacuum Science & Technology (A), 1998, 6(4): 2559- 2563
    [67] M. G. Schwab, B. Fassbender, H. W. Spiess, et al. Catalyst-free Preparation of Melamine-Based Microporous Polymer Networks through Schiff Base Chemistry[J]. Journal of the American Chemical Society. 2009, 131: 7216-7217
    [68]张勇,任洪波,张林,等.三聚氰胺-甲醛系凝胶老化过程中体积收缩影响因素[J].强激光与粒子束, 2007, 19(8) : 1299- 1302
    [69] Y. H. Lee, C. A. Kim, W. H. Jang, et al. Synyhesis and electrorheological characteristics of microencapsulated polyanilion particles with melamine-formaldehyde resins[J]. Polymer, 2001, 42: 8277-8283
    [70] S. W. Haan, M. C. Herrmann, P. A. Amendt, et al. Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget[J]. Fusion Science and Technology, 2006, 49(4): 553-557
    [71]许琰,赖东显,李双贵,等.辐射在填充介质管中输运的理论[J].中国科学(G辑), 2004, 34(5): 525-539
    [72]彭述明,周晓松.含氧贮氢合金的研究现状[J].原子能科学与技术, 2005, 39(2): 164- 172
    [73] A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238 :37-38
    [74] G. M. Pajonk. Some catalytic applications of aerogels for environmental purposes[J]. Catalysis Today, 1999, 52: 3-13
    [75] S. Yoda, Y. Tasaka, K. Uchida, et al. TiO2-impregnated SiO2 aerogels by alcohol supercritical drying with zeolite[J]. Journal of Non-Crystalline Solids, 1998, 225: 105-110
    [76]邓忠生,张哲,翁志农,等. TiO2-SiO2复合半导体气凝胶制备及光催化活性研究[J].功能材料与器件学报, 2000, 6(1): 7-12
    [77]肖明艳,陈建敏.有机-无机杂化材料研究进展[J],高分子材料科学与工程, 2001, 17(5): 6-9
    [78]吴崇浩,王世敏,赵雷等.溶胶-凝胶法制备无机/有机聚合物杂化材料的进展[J].胶体与聚合物, 2003, 1(21): 39-42
    [79]毕于铁,任洪波,张林等.块状PMMA/ TiO2有机-无机杂化材料的制备与表征[J].材料导报, 2009, 23(4): 95-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700