热镀锌钢板硅烷基涂层制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌被大量用做钢的防腐蚀保护层。因为钢和锌层之间存在大的电位差,所以锌的溶解速率很高。在潮湿的环境中热镀锌钢板易发生腐蚀,使其表面形成白色的腐蚀产物或变成灰暗色,影响了热镀锌钢板的外观质量和镀层抗腐蚀性。为了降低锌在腐蚀性介质中的溶解速率,对热镀锌钢板广泛采用铬酸盐钝化的处理工艺。然而,六价铬酸盐属于极毒、致癌性物质、具有诱变作用。为满足环境友好型热镀锌表面处理钢板的需求,无铬热镀锌处理钢板的开发和生产逐渐得到重视,并取得了较快发展。本文研制开发以无毒、无污染的双-[γ-(三乙氧基硅)丙基]四硫化物硅烷(BTESPT)、γ-氨丙基三乙氧基硅烷(y-APS)为主要成分,以无机添加剂为辅助的有机/无机复合处理体系。
     通过单因素实验,利用醋酸铅点滴实验、中性盐雾实验等加速腐蚀试验手段对硅烷BTESPT处理液配方进行了设计和筛选,系统研究了硅烷BTESPT处理液的组成成分及用量,确定了硅烷BTESPT处理液的基本组成为:BTESPT5vol.%,水14vol.%,乙酸0.5vol.%,乙醇81vol.%,处理液水解温度为35℃。
     依据中性盐雾实验等级标准,运用对比实验方法对稀土硝酸盐、纳米级氧化物以及缓蚀剂等添加剂的种类、用量进行了研究,确定硅烷BTESPT处理液的改性添加剂及用量分别为硝酸铈O.OOlmol/L,硅溶胶0.005-0.02g/L,苯并三氮唑0.001g/L
     运用对比和正交实验方法对浸渍时间、处理液水解时间、固化时间及固化温度等工艺参数进行了确定,并研究了工艺参数变化对硅烷涂层性能的影响。结果表明,在工艺参数为:处理液水解时间72h,浸渍时间5s,固化温度120℃,固化时间30min时,硅烷BTESPT涂层具有良好的耐蚀性。
     运用Tafel极化曲线和EIS交流阻抗谱的腐蚀电化学方法测试了硅烷涂层的腐蚀性能。结果表明,经过BTESPT硅烷处理后的热镀锌试样的腐蚀极化过程是阳极控制型,自腐蚀电位明显的正移,自腐蚀倾向显著的降低;交流阻抗谱为第一象限两个半径较大的的容抗弧,在低频区未出现斜率为1的直线,腐蚀体系受电化学控制。
     利用傅立叶红外反射光谱FTIR分析了硅烷处理层的结构,结果表明硅烷处理层中含有SiOH、Si-O-Si、Si-O-Zn、CH2、-SiO-等主要有机官能团。利用XPS光电子能谱分析了硅烷BTESPT处理层的元素组成及存在形式。XPS分析结果表明,硅烷BTESPT处理层含有C、O、Si、S、Zn等元素。经Ar+射深度和成膜元素的窄幅扫描结果显示,硅烷BTESPT处理层的最外层可能为SiOH、Si-O-Si、Si-O-等结构,内层可能为Si-O-Si、Si-O-Zn等结构,界面层可能为ZnO、ZnS、ZnSiO3等化合物。硅烷BTESPT处理层的厚度约为200nm。采用电子显微镜、金相显微镜观察了硅烷BTESPT处理层的表面微观形貌。在微观形貌分析中发现硅烷BTESPT处理层的表面均匀、致密、完整、纳米结构,但存在一些微裂纹。通过加入稀土硝酸铈、硅溶胶、苯并三氮唑(BTA)添加剂改性硅烷BTESPT处理液后,弥补并减少了裂纹的进一步产生。由于铈的氧化物或氢氧化物、惰性硅酸盐膜等不溶性物质沉积或填充Si-O-S、Si-O-Zn的网络结构,使硅烷BTESPT涂层更致密,减少了外界O2、H2O、Cl-等腐蚀性物质接触金属锌的机会,抑制了锌的电化学腐蚀反应,因此大大提高了硅烷BTESPT涂层的抗蚀性。
     以1级中性盐雾实验标准为依据,通过对比实验确定了BTESPT/y-APS混合硅烷处理液的组成成分:硅烷BTESPT1-4vol.%,硅烷y-APS2-4vol.%,水量28vol.%,其余为乙醇,pH值4-6。由于硅烷γ-APS结构中含有-NH2亲水基团,促进硅烷BTESPT充分水解的同时,又能抑制硅醇的缩合,从而使耐蚀性显著提高。
Zinc coating is a common material used in corrosion protection of steel. Due to great potential difference between the substrate and the zinc coating, zinc has high dissolution rate. In moist environment, the galvanized plate is easily corroded to form white products or become dark, which can affect the appearance of hot dip galvanized steel and decrease corrosion resistance. Chromate conversion coatings have been used widely to decrease the dissolution rate of zinc. However, the hexavalent chromium salts is a kind of extremely poisonous and carcinogenic material which has the mutafacient function. In order to make pretreatment technology satisfy environment-friendly demand, the chromate(VI)-free pretreatment for galvanized steel has increasingly developed. In this paper, the inorganic/organic compound treating system was prepared, in which nontoxic, nonpolluted bis-[triethoxysilylpropyl]tetrasulfide silane (BTESPT), gamma-aminopropyltriethoxysilane (y-APS) and inorganic additive is used as the main ingredient and the accessorial ingredient, respectively.
     The composition of the BTESPT treating solution was designed and sieved by single factor experiments using the accelerated test methods of lead acetate dropping test, neutral salt spray test and electrochemical corrosion test. The compositions of the treating solution were studied to determine the experimental parameters. The basic compositions of the BTESPT treating solution were as following: BTESPT 5vol.%, deionised water 14vol.%, acetic acid 0.5vol.%, ethanol 81vol%. The temperature for hydrolysis of the BTESPT treating solution is 35℃.
     On the basis of neutral salt spray test grading standards, the types and amounts of additives including rare earth nitrate, nano-oxides and corrosion inhibitors were studied using the contrastive experiment methods. The types and amounts of the selected additives of BTESPT treating solution were cerium nitrate 0.001mol/L, Silica Sol 0.005-0.02g/L, BTA 0.001g/L respectively.
     The parallel test method and orthogonal test method were used to determinate the dipping time, the hydrolysis time of the treating solution, the curing time and temperature of the BTESPT treating coating and the effects of experimental parameters on the properties of the treating coating. When the technical parameters change, BTESPT treating coating has a good corrosion resistance in the condition of the treating solution hydrolysis time 72h, dipping time 5s, curing temperature 120℃, curing time 30min.
     The corrosion performance of the BTESPT treating film was evaluated by Tafel polarization cure and electrochemical impedance spectroscopy(EIS). The results showed that the corrosion polarization was controlled by anode process, the self-corrosion potential obviously shifted toward positive direction, the self-corrosion tendency was significantly reduced. The EIS spectrums of the treating film were composed of two capacitive loops in first quadrant. The beeline with the slope is 1 didn't appear in the low frequency domain. The corrosive system was controlled by the electrochemical control.
     The characterization of the silane treating film was analysed by Fourier transform infrared spectroscopy(FTIR). The test results showed that silane treating film consisted mainly of organic functional groups including SiOH, Si-O-Si, Si-O-Zn, CH2,-SiO-. The chemical compositions of the silane treating film were observed by X-ray photoelectron spectroscopy (XPS). The XPS testing results showed that treating film mainly consisted of the elements including C,O, Si, S, Zn. Sputtering depth and narrow scanning results showed that the outer layers of the BTESPT treating film composed of SiOH, Si-O-Si, Si-O-C, the inner layers composed of Si-O-Si, Si-O-Zn, etc, and the interface layers consisted of ZnO, ZnS, ZnSiO3. The thickness of BTESPT treating film was about 200 nm.
     The morphology of the BTESPT treating film was observed with Scanning Electron Microscope and Metallurgical Microscope. It was found the treating film was uniform, dense, integrity, nano-structure, but there were some microcracks on the surface of the treating film. When adding additives including cerium nitrate, silica sol and benzotriazole(BTA) to modify the BTESPT treating solution, the microcracks of treating film were further covered and decreased using the insoluble compounds such as cerium oxide or hydroxide, inert silicate to fill the network structure of Si-O-Si, Si-O-Zn, the treating film of Silane became more denser, reducing corrosive agents including O2,H2O and Cl-to enter the surface of the zinc and improving the corrosion resistance.
     According to 1 grade neutral salt spray test standards, the compositions of the mixed silane treating solution of BTESPT/γ-APS were determined by contrastive Test. The mixed silane treating solution consisted of BTESPT 1-4vol.%,γ-APS 2-4vol.%, deionized water 28vol.%, the rest is ethanol, pH value of 4 to 6. Becauseγ-APS structure contained-NH2 hydrophilic groups, BTESPT was more fully hydrolyzed, and condensation of silanol was inhibited, which significantly improved the corrosion resistance of the mixed silane films.
引文
1.李金桂,吴再思.防腐蚀表面工程技术[M],化学工业出版社,2002,177-208
    2.邸伯林.论钢铁的铝锌合金热浸镀层[J],表面技术,1994,23(1):1-5
    3.朱立群,李雪源,刘晨敏,等.镀锌层光亮黑钝化工艺[J],材料保护,1999,32(11):13-14
    4.陈红星,安成强,郝建军,等.热镀锌钢板钝化工艺对耐蚀性的影响[J],表面术,2004,33(6):48-49
    5.陈锦虹,任艳萍,卢锦堂,等.镀锌层三价铬钝化的研究进展[J],材料保护,2004,37(11):32-35
    6. Tencer M. Electrical conductivity of chromate conversion coating on electrodeposited zinc[J], Applied Surface Science,2006,252(23):8229-8234
    7.刘建军.三价铬钝化技术及其最新进展[J],电镀与环保,2002,22(6):22-23
    8.卢锦堂,宋进兵,陈锦虹,等.无铬钝化的研究进展[J],材料保护,1999,32(3):24-26
    9.吴海江,陈锦虹,卢锦堂.镀锌层无铬钝化耐蚀机理的研究进展[J],材料保护,2004,37(3):43-46
    10.钱余海,戴毅刚,陈红星,等.镀锌(合金)钢板无/低铬钝化技术研究状况[J],腐蚀科学与防护技术,2004,16(4):222-225
    11. Hinton B R W. Corrosion Prevention and Chromates:The End of an Era?[J], Metal Finishing, 1991,89(10):15-20.
    12.于元春,李宁,胡会利,等.无铬钝化与三价铬钝化的研究进展[J],表面技术,2005,34(5):6-9
    13. Roman L., Blidariu M, Cristescu C. Study of Conversion Coatings on Zinc Deposition Obtained from Low Pollution Solutions[J], Trans IMF,1997,75(5):171-174
    14.杜亚南,毕四富,屠振密,等.镀锌层三价铬蓝白钝化工艺的研究[J],电镀与环保2007, 27(1):19-22
    15.胡立新,兰林,朱中兵,等.镀锌层三价铬高耐蚀蓝白钝化工艺研究[J],材料保护,2005,38(7):5-28
    16.刘烈炜,林恒,赵洲.三价铬彩色钝化工艺的研究[J],材料保护,2007,40(10):39-43
    17. Leonard L, Diaddario J, Michael, etc. Trivalent Chromate Conversion Coating[P], US:7029541, 2006-04-18
    18. Promila B. Corrosion Resistant Trivalent Chromium Phosphated Chemical Coversion Coatings[P], US:7018486,2006-03-28
    19.施镇涛.镀锌用三价铬彩虹色钝化剂及其制造方法[P],CN:1584117,2005-02-23
    20.曾振欧,邹锦光,赵国鹏,等.镀锌层三价铬与六价铬钝化膜的性能[J],华南理工大学学报(自然科学版),2007,35(5):104-108
    21. Nabil Z. Trivalent chromate conversion coating for zinc and zinc alloys[J], Metal Finishing,2002, 100(1):492-501
    22.张金生.电镀锌板Cr3+钝化及工艺研究[D],广州:华南理工大学,2004
    23. Shah V D. Compsition and method for treating zinc surfaces[P], US:Pat:3501352,1970-03-17
    24. Bishop C V. Iridescent chromium coatings and method[P], US:Pat:5393354,1995-02-28
    25.刘建平.镀锌层的三价铬钝化[J],电镀与涂饰,2005,24(8):46-48
    26.蒲海丽,王建华.三价铬钝化的探讨[J],电镀与环保,2003,23(2):25-26
    27. Huvar. Trivalent chromium passivate solution and process[P], US:4349392,1982-09-14
    28.张宏祥,王为.电镀工艺学[M],天津:天津科学技术出版社,2002,182-206
    29. Bayes AI.Noncorrosive Antifreeze Liquid[P],US:214739,1939
    30. Robertson W D. Molybdate and tungstate as Corrosion inhibiton and the mechanism of inhibition[J], Journal of the Electrochemical Society,1951,98(3):102-108
    31. Pryor M J, Cohen M. The inhibition of the corrosion of iron some anodic inhibitors[J], Journal of the Electrochemical Society,1953,100(5):79-84
    32. Vukasovich M S. Molybdate in corrosion inhibition[J], Materials Performance,1986,25(5):9-15
    33. Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 3:Anodic Treatment of Zinc[J], Corrosion science,1983,18(3):138-147
    34. Bijimi D. Application of superimposed equilibrium diagrams for the passivity of zinc in aqueous solutions containing chromate, molybdate and tungstate[J], Corrosion science,1990,31:305-311
    35. Wilcox G D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 5:Cathodic Treatment of Zinc[J], Corrosion science,1987,22(4):254-256
    36. Wilcox G D, Gabe D R, Warwick M E. The development of passivation coatings by cathodic reduction in sodium molybdate solutions[J], Corrosion science,1988(28):577-585
    37. Kirihara S, Tsutomu K, Kakogawa O. Method for anticorrosive treatment of galvanized steel[P], US:4385940,1983-5-31
    38. Konno H, Narumi K, Habazaki H. Molybdate/Al(Ⅲ) composite films on steel and zinc-plated steel by chemical conversion[J], Corrosion Science,2002,44(8):1889-1900
    39.李道华,叶向荣,周益明.锌表面Mo(W)-S-Zn簇合物转化膜的XPS和AES研究[J],材料保护,1999,32(4):3-6
    40.肖鑫,龙有前,钟萍.锌镀层钼酸盐-氟化锆体系钝化工艺研究[J],腐蚀科学与防护技术,2005,17(3):184-186
    41.宫丽,卢燕平.热镀锌钢板钼酸盐钝化膜的改性及耐蚀性[J],钢铁研究学报,2007,19(3):88-92
    42. Carey w s, Raab M. Metal surface treatment composition for treating zinc-coated metal surface, galvanized steel or zinc-aluminum alloy steel comprises phosphomethylated polyamine[P], US:2006090818-A1,2006-5-4
    43. Song Y K, Mansfeld F. Development of a molybdate-phosphate-silane-silicate (MPSS) coating process for electrogalvanized steel[J], Corrosion Science,2006,48(1):154-164
    44.郝建军,安成强,邵忠财,等.A3钢镀锌层钼酸盐钝化膜的组成和性能[J],材料研究学报,2006,20(4):427430
    45.肖鑫,钟萍,易翔.一种新型镀锌层无铬钝化工艺[J],腐蚀与防护,2007,28(9):467469
    46.郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究[J],材料保护,2005,38(9):18-22
    47.黄克坤.无铬钝化液[P],CN:1556246A,2004-12-22
    48.周金宝.镀锌层无铬钝化工艺的新进展[J],电镀与环保,1991,11(5):7-10
    49.刘小虹,颜肖慈.镀锌层钼酸盐转化膜及其耐蚀机理[J],电镀与环保,2002,(22)6:17-19
    50.韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究[J],腐蚀科学与防护技术,1997,9(2):67-170
    51.刘文君,张英杰,章江洪,等.工艺因素对硅酸盐无铬钝化中耐蚀性的影响[J],表面技术,2007,36(1):60-62
    52. Hahn J J, McGowan N G, Heimann R L. Modification and characterization of mineralization surface for corrosion protection[J], Surface and Coatings Technology,1998,108-109(1-3): 403-407
    53. Hara M, Ichino R, Okido M. Corrosion protection property of colloidal silicate film on galvanized steel[J], Surface and Coatings Technology,2003,169-170(2):679-681
    54. Veeraraghavan B, Slavkov D, Prabhu S. Synthesis and characterization of a novel non-chrome electrolytic surface treatment process to protect zinc coatings[J], Surface and Coatings Technology, 2003,167(1):41-51
    55. Dalbin S, Maurin G, Nogueira R P. Silica-based coating for corrosion protection of electro-galvanized steel[J], Surface & Coatings Technology,2005,194(2-3):363-371
    56. Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminum corrosion by cerium cations[J], Metals Forum,1984,7(4):211-217.
    57. Hinton B R W, Ryan N E, Arnott D R, etc. The inhibition of aluminum alloy corrosion by rare earth metal cations[J], Corrosion Australas,1985,10(3):12-17.
    58. Arnott D R, Hinton B R W, Ryan N E. Cationic film forming inhibitors for the corrosion protection ofAA7075aluminum alloy in chloride solutions[J], Materials Performance,1987,26(8):42-47
    59.王济奎,方景礼.镀锌层表面混合稀土转化膜的研究[J],中国稀土学报,1997,15(1):31-34
    60.李鸿宾,陈建设,刘辉.热镀锌表面铈盐钝化[J],材料与冶金学报,2002,1(3):203-205
    61. Montemor M F, Simoes A M, Ferreira M G S. Composition and behaviour of cerium films on galvanised steel[J], Progress in Organic Coatings,2001,43(4):274-281
    62. Kobayashi Y, Fujiwara Y. Effect of SO42- on the corrosion behavior of cerium-based conversion coatings on galvanized steel[J], Electrochimica Acta,2006,51(20):4236-4242
    63. Roman L, Blidariu M, Cristescu C. Study of conversion coating on zinc deposition obtained from low pollution solutions[J], Trans IMF,1997,75(5):171-174
    64. Shoji H, Sakashita M. Surface treated metallic materials with corrosion resistance and surface treatment used therefore[P], Japan:WO28291,1996
    65.张校刚,王田芳,夏熙.几种稀土盐对NH4Cl溶液中锌电极腐蚀的影响[J],化学研究与用,1997,9(5):527-530
    66.木冠南,赵天培.铈(Ⅳ)离子和OP对锌的缓蚀协同效应[J],材料保护,1999,32(10):25-26
    67. Sa'nchez M, Alonso M C, Ceci'lio, etc. P. Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media[J], Cement & Concrete Composites,2006,28(33):256-266
    68. Aramaki K. The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5M NaCl[J], Corrosion science,2001,43(8):1573-1588
    69.龙晋明,韩夏云,杨宁.锌和镀锌钢的稀土表面改性[J],稀土,2003,24(5):52-56
    70. Aramaki K. Protection of zinc from corrosion by coverage with a hydrated cerium(Ⅲ) oxide layer and ultrathin polymer films of a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes[J], Corrosion Science,2007,49(4):1963-1980
    71. Aramaki K. Preparation of a 16-hydroxyhexadecanoate ion self-assembled monolayer on a zinc electrode coated with hydrated cerium(Ⅲ) oxide[J], Corrosion Science,2006,48(12):4303-4315
    72. Aramaki K. Prevention of zinc corrosion in oxygenated 0.5M NaCl by treatment in a cerium(Ⅲ) nitrate solution and modification with sodium hexadecanoate[J], Corrosion Science,2006,48(10): 3298-3308
    73. Aramaki K. The effect of modification with hydrogen peroxide on a hydrated cerium(Ⅲ) oxide layer for protection of zinc against corrosion in 0.5M NaCl[J], Corrosion Science,2006,48(3): 766-782
    74. Aramaki K. A self-healing protective film prepared on zinc by treatment in a Ce(NO3)3 solution and modification with Ce(NO3)3[J], Corrosion Science,2005,47(5):1285-1298
    75.杨宁,龙晋明.稀土钝化金属防腐蚀表面处理新技术[J],稀土,2002,23(2):55-62
    76. Bethencourt M, Botana F J, Calvino J J, etc. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminium alloys:a review[J], Corrosion Science,1998,40(11):1803-1819
    77. Hinton B R W, Wilson L. The Corrosion Inhibition of Zinc with Cerous Chlorie[J], Corrosion Science,1989,29(9):967-985
    78. Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 1:Anodic Treatment of Tin[J], British corrosion journal,1983,18(2):88-91
    79. Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 2:Cathodic Treatment of Tin[J], British Corrosion Journal,1983,18(2):93-95
    80. Wilcox G D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 4:Cathodic Redox Reactions and Film Formation[J], British Corrosion Journal,1984,19(4):196-198
    81. Cowieson D R, Scholefield A R. Passivation of Tin-Zinc Alloy Coated Steel[J], Trans MF,1985, 63(2):56-67
    82. Benjamin S Y. Prepaint treatments for aluminum[J], Metal Finishing,1986,84(7):11-14
    83.邹洪庆.铸铝合金锆系非铬化学成膜处理工艺应用[J],材料保护,2001,34(2):29-30
    84. Schram T, Goeminne G, Terryn H, etc. Study of the Composition of Zirconium Free Conversion Layers on Aluminum[J], Trans IMF,1995,73(3):91-98
    85. Deck P D, Reichgott D W. Characterization of Chromium-Feee No Rinse Prepaint Coatings on Aluminum and Galvanized Steel[J], Metal Finishing,1992,90(9):27-32
    86. Gal-Or L, Silberman I, Chain R. Electrolytic ZrO2[J], Electrochemistry Society,1991,138(9): 1939-1945
    87. Fedrizzi L, Deflorian F, Bonorap L. Corrosion behaviour of luotitanate pretreated and painted aluminium sheets[J], Electrochimica Acta,1997,42(6):969-978
    88. Smit M A, Hunter J A, Sharman J D B. Effect of organic additives on the performance of titanium-based conversion coatings[J], Corrosion Science,2003,45(9):1903-1920
    89.葛圣松,杨玉香,邵谦.铸铝表面无铬黑色转化膜的形貌及耐蚀性[J],腐蚀科学与防护技术,2006,18(3):228-230
    90.梁启民,张丽娜.镀锌层单宁酸钝化[J],电镀与精饰,1986(1):31-35
    91.张安富.镀锌系钢板表面处理新工艺[J],表面技术,1991,20(5):29-33
    92. McConkey B H. Tannin-Based Rust Conversion Coatings[J], Corrosion Australas,1995,20(5): 17-26
    93.朱传方,胡腊生.植酸在镀锌钝化中的应用[J],精细化工,1995,12(5):54-55
    94.张洪生.无毒植酸在金属防护中的应用[J],电镀与涂饰,1999,18(4):38-41
    95.胡会利,李宁,程瑾宁.镀锌植酸钝化膜耐蚀性的研究[J],电镀与环保,2005,25(6):21-25
    96.朱传方,李中华,熊云.乙叉基二膦酸在镀锌及无铬钝化中的作用[J],材料保护,1994,27(7):9-10
    97. Susac D, Leung C W, Sun X, etc. Comparison of a chromic acid and a BTSE final rinse applied to phosphated 2024-T3 aluminum alloy[J], Surface and Coatings Technology,2004,187(2-3): 216-224
    98. Palomino L M, Suegama P H, Aoki I V, etc. Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3[J], Corrosion Science,2008,50(5):1258-1266
    99. Subramanian V, Ooij W J. Silane based metal pretreatments as alternatives to chromating[J], Surface Engineering,1999,15(2):168-172
    100. Pan G R, Schaefer D W, Ooij W J, etc. Morphology and water resistance of mixed silane filmsof bis[3-(triethoxysilyl)propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine[J], Thin Solid Films, 2006,515(4):2771-2780
    101.Zhu D Q, Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane[J], Progress in Organic Coatings,2004, 49(1):42-53
    102. Ferreira M G S, Duarte R G, Montemor M F. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel[J], Electrochimical Acta,2004,49(17-18):2927-2935
    103. Montemor M F, Cabral A M., Zheludkevich M L. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica[J], Surface & Coatings Technology,2006,200(9):2875-2885
    104. Trabelsi W, Cecilio P, Ferreira M G S. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates[J], Progress in Organic Coatings,2005,54(4):276-284
    105. Yuan W, Ooij W J. Characterization of Organofunctional Silane Films on Zinc Substrates[J], Journal of Colloid and Interface Science,1997,185(1):197-209
    106. Abel M, Watts J F, Digby R P. The adsorption of alkoxysilanes on oxidized aluminium substrates[J], International Journal of Adhesion and Adhesives,1998,18(3):179-192
    107. Ooij W J, Zhu D, Prasad G. Silane based chromate replacements for corrosion control, paint adhesion and rubber bonding[J], Surface Engineering,2000,16(5):386-396
    108.吴海江,卢锦堂,陈锦虹.热镀锌钢表面硅烷膜耐蚀性能的初步研究[J],腐蚀与防护,2006,27(1):14-17
    109. Tang N, Ooij W J, Grecki G. Comparative EIS study of pretreatment performance in coated metals[J], Progress in Organic Coatings,1997,30(4):255-263
    110.Harun M K, Lyon S B, Marsh J A. Surface analytical study of functionalised mild steel for adhesion promotion of organic coatings[J], Progress in Organic Coatings,2003,46(1):21-27
    111.张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能[J],金属学报,2006,42(3):295-298
    112.胡吉明,刘惊,张鉴清,等.LY12铝合金表面电化学沉积制备DTMS硅烷膜及其耐蚀性研究[J],高等学校化学学报,2006,26(6):1121-125
    113. Zhu D Q, Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane[J], Progress in Organic Coatings,2004, 49(1):42-53
    114. Montemor M F, Simoes A M, Ferreira M G S. The corrosion performance of organo silane based pre-treatments for coatings on galvanised steel[J], Progress in Organic Coatings,2000,38(1): 17-26
    115. Ferreira M G S, Duarte R G, Montemor M F. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel[J], Electrochimica Acta,2004,49(17-18):2927-2935
    116. Montemor M F, Rosqvist A, Fagerholm H. The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2-(triethoxysiryl)ethane[J], Progress in Organic Coatings,2004,51(3): 188-194
    117.Conde A, Duran A, Damborenea J J. Polymeric sol-gel coatings as protective layers of aluminium alloys[J], Progress in Organic Coatings,2003,46(4):288-296
    118. Zhu D, Ooij W J. Enhanced corrosion resistance of AA2024-T3 and hot-dip galvanized steel using a mixture of bis-[tri2ethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl] amine[J], Electrochimica Acta,2004,49(7):1113-1125
    119.Shacham R, Avnir D, Mandler D. Electrodeposition of methylated sol-gel films on conducting surfaces[J], Advanced Materials,1999,11(5):384-388
    120.Sheffer M, Groysman A, Mandler D. Electrodeposition of sol-gel films on Al for corrosion protection[J], Corrosion Science,2003,45(12):2893-2904
    121. Subramanian V, Ooij W J. Effect of amine functional group on corrosion rate of iron coated with films of organofunctional silanes[J], Corrosion,1998,54(3):204-215
    122.Kozerski G E, Gallavan R H, Ziemelis M J. Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling[J], Analytica Chimica Acta,2003,489(1):103-114
    123.Satoshi O, Naokatsu F. Theoretical study of hydrolysis and condensation of silicon alkoxides[J], The Journal of Physical Chemistry A,1998,102(22):3991-3998
    124. Subramanian V, Ooij W J. Silane based metal pretreatments as alternatives to chromating[J], Surface Engineering,1999,15(2):168-172
    125.Franquet A, Laet J, Schram T. Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopicellipsometry[J], Thin Solid Films,2001,384(1):37-42
    126. Zhu D, Ooij W J. Corrosion protection of AA2024-T3by bis-[3-(triethoxysilyl) propyl]-tetrasulfide in neutral sodium chloride solution.Partl:corrosion of AA2024-T3[J], Corrosion Science,2003,45(10):2177-2197
    127.Franquet A, Terryn H, Vereecken J. Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry[J], Thin Solid Films,2003,441(1-2):76-84
    128.胡吉明,刘惊,张金涛.铝合金表面BTSE硅烷化处理研究[J],金属学报,2004,40(11):1189-1194
    129.Franquet A, Pen C, Terryn H. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium[J], Electrochimica Acta,2003,48(9): 1245-1255
    130.Bertelsen C M, Boerio F J. Linking mechanical properties of silanes to their chemical structure:an analytical study of y-APS solutions and films[J], Progress in Organic Coatings,2001,41(4): 239-246
    131.徐溢,唐守渊,张晓凤.金属表面硅烷试剂膜结构及性能表征方法[J],光谱学与光谱分析,2004,24(4):495-498
    132.Franquet A, Terryn H, Bertrand P. Use of optical methods to characterize thin silane films coated on aluminium[J], Surface and Interface Analysis,2002,34(1):25-29
    133. Abel M, Watts J F, Digby R P. The adsorption of alkoxysilanes on Oxidized aluminium substrates[J], International Journal ofAdhesion and Adhesives,1998,18(3):179-192
    134.Ooij W J, Zhu D. Electrochemical impedance spectroscopy of bis-[triethoxysilyl propyl]-tetrasulfide on Al 2024-T3 substrates[J], Corrosion,2001,57(5):413-427
    135.Lefk J, Rankin S E, Kirchner S J. Esterfication condensation and deprotonation equilibria of trimethylsilanol[J], Journal of Non-Crystalline Solids,1999,258(1-3):187-197
    136.陈旭俊.乙酸胺钼酸盐的缓蚀作用与机理[J],中国腐蚀与防护学报,1995,15(4):279-284
    137.方景礼,韩克平,王济奎.镀锌层表面H4PM011VO40杂多酸转化膜的研究[J],表面技术,1996,25(4):15-18
    138.龚洁,徐端芬,陈旭俊,等.有机钼酸盐MDTA对碳钢的缓蚀作用和机理[J],腐蚀与防护,1999,20(2):62-66
    139.郝建军,安成强,刘常升.磷钼杂多酸钝化工艺研究[J],材料保护,2005,38(7):28-31
    140.王济奎,方景礼.镀锌层表面有机膦合钼聚多酸盐转化膜的研究[J],应用化学,1996,13(5):73-75
    141. Carey W S, Raab M. Metal surface treatment composition for treating zinc-coated metal surface,galvanized steel or zinc-aluminum alloy steel comprises phosphomethylated polyamine[P], US:2006090818-A1,2006-5-4
    142. Buxton D P, Riley P J. Anti-corrosion treatment for galvanised steel- using aq. soln. of complex of metal oxo ion in conjunction with hetero ion, and film-forming, acid-tolerant resin[P], WO:9514117-A1,1995-5-26
    143.陈锦虹,卢锦堂,许乔瑜.镀锌层上有机物无铬钝化涂层的耐蚀性[J],材料保护,2002,35(8):29-31
    144. Gonzalez S, Gil M A, Hernandez J O, etc. Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating[J], Progress in Organic Coatings,2001,41(1-3):167-170
    145.宫丽,卢燕平.纳米硅溶胶/丙烯酸复合防蚀薄膜的研究[J],材料保护,2005,38(1):17-21
    146. Sohi J, Mcgee J D, Donaldson G T. Passivating composition useful for passivating metal surface, comprises non-ionic or non-ionically stabilized resin in dispersed form, resin consisting of acrylic, polyurethane, vinyl, and polyester resins, or their mixtures[P], US:2006169363-Al,2006-8-3
    147.Kolberg T, Walter M, Schubach P. Anticorrosion composition for coating metallic surfaces includes a silane, silanol, siloxane or polysiloxane and a titanium, hafnium, zirconium, aluminum or boron compound[P], WO:2006050915-A2,2006-5-18
    148.海野茂,多田千代子,尾形浩行.表面处理镀锌系钢板[P],CN:1338988A,2002-3-2
    149. Keys A, Meizer J I, Raab M T. Formation of conversion or passivation coating on a metal surface by contacting the metal surface with an aqueous treatment composition comprising film forming latex polymer, fluoacid, phosphoric acid, and non-ionic polymeric surfactant[P], US:2006042726-A1,2006-3-2
    1. Almeida E, Fedrizzi L, Diamantinio T C. Oxidising alternative species to chromium VI in zinc-galvanised steel surface treatment. Part 2:An electrochemical study[J], Surface and Coatings Technology,1998,105(1-2):97-101
    2. Zin I M, Lyon S B, Hussain A. Under-film corrosion of epoxy-coated galvanised steel An EIS and SVET study of the effect of inhibition at defects[J], Progress in Organic Coatings,2005,52(2): 126-135
    3. Baghnia I M, Lyonb S B, Ding B F. The effect of strontium and chromate ions on the inhibition of zinc[J], Surface & Coatings Technology,2004,185(2-3):194-198
    4.刘燕平,段晓楠.镀锌低铬军绿色钝化膜的研究[J],腐蚀与防护,1998,19(3):125-126
    5. Perrin F X, Gigandet M P, Wery M. Chromium phosphate conversion coatings on zinc electroplates:cathodic formation and characterisation[J], Surface and Coatings Technology,1998, 105(1-2):135-140
    6. Brown K, Bines E B, Song J, etc. Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture[P], US:6596835B1,2003-7-22
    7. Trabelsi W, Dhouibi L, Ferreira M G S, etc. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J], Surface & Coatings Technology,2005,192(2-3):284-290
    8. Pan Q Schaefer D W, Ooij W J, etc. Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]-amine[J], Thin Solid Films,2006,515(4):2771-2780
    9.GB/T10125-1997,金属覆盖层盐雾腐蚀实验方法
    10.GB9791-2003,锌和镉上铬酸盐转化膜试验方法
    11.GB/T2423.3-93,交变湿热试验方法
    12.虞莹莹.预涂卷材涂料的测试方法[J],涂料工业,2004,4(4):45-49
    1.徐溢,唐守渊,滕毅,等.金属表面处理用硅烷试剂的水解与缩聚[J],重庆大学学报,2002,25(10):72-74
    2. Cabral A, Duarte R G, Montemor M F, etc. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pretreated AA2024-T3[J], Corrosion Science,2005,47(3): 869-881
    3.王楠,徐溢,杨立华,等.硅烷试剂防腐蚀工艺研究[J],材料保护,2001,34(11):32-34
    4.徐溢,腾毅,唐守渊.电导率法和红外光谱法分析硅烷试剂水解过程[A],中南、西南分析化学学术会议论文专集,2000,28-29
    5.田丹碧.仪器分析[M],北京:化学工业出版社,2004,176-218
    6.陈明安,谢玄,戚海英,等.2Al12-T6铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性[J],物理化学学报,2006,22(8):1025-1029
    7. Trabelsi W, Triki E, Dhouibi L, etc, The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates[J], Surface & Coatings Technology, 2006,200(14-15):4240-4250
    8. Zhu D Q, Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylprop yl]amine[J], Electrochimica Acta,2004,49(7):1113-1125
    9.GB9791-2003,锌和镉上铬酸盐转化膜试验方法.
    10.GB/T10125-1997,金属覆盖层盐雾腐蚀实验方法
    11. Brown K, Bines E B, Song J, etc. Method of treating metals using amino silanes and multi-silyl-functonal silanes in admixture[P], US:6596835B1,2003-7-22
    12. Franquet A, Pen C L, Terryn H, etc. Effect of bath concentration and curing time on the structure of nonfunctional thin organosilane layers on aluminium[J], Electrochimica Acta,2004,48(9): 1245-1255
    13.黄伟,黄英,余云照.原硅酸乙酯的水解缩聚[J],有机硅材料及应用,1999(3):10-13
    14. Mcbeil K J, Dicaprio J A, Walsh D A. Kinetics and Mechanism of Hydrolysis of a Silicate Triester,Tris(2-methoxyethoxy)phenylsilane[J], Journal of the American Chemical Society,1980, 102(6):1859-1864.
    15.王雪明,李爱菊,李国丽,等.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J],材料科学与工程学报,2005,23(1):146-150
    16. Ooij W J, Child T. Protecting metals with silane coupling agents[J], Chemical Technology,1998, 28(2):26-35
    17.胡吉明,刘惊,张金涛,等.铝合金表面BTSE硅烷化处理研究[J],金属学报,2004,40(11):1189-1194
    18.杜作栋,陈剑华.有机硅化学[M],北京:高等教育出版社,1990,237-239.
    19. Beccaria A M, Chiaruttini L. The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminium corrosion in NaCl solutions[J], Corrosion Science,1999,41(5):885-899
    20. Zhu D Q, Ooij W J. Structural characterization of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl]amine silanes by Fourier transformation infrared spectroscopy and electrochemical impedance spectroscopy[J], Adhesion Science Technology,2002,16(26): 235-1260
    21. Trabelsi W, Dhouibi L, Triki E, etc. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J], Surface & Coatings Technology,2005,192(2-3):284-290
    22.齐国超,贡雪南,孙德恩,等.镀锡钢板铬酸盐钝化膜的X射线光电子谱分析[J],东北大学学报(自然科学版),2006,27(8):875-878
    23. Montemor M F, Simoes A M, Ferreira M G S, etc. The corrosion performance of organosilane based pre-treatments for coatings on galvanised steel[J], Progress in Organic Coatings,2000,38(1): 17-26
    24.郝建军,安成强,邵中财,等.A3钢镀锌层钼酸盐钝化膜的组成和性能[J],材料研究学报,2006,20(4):427-430
    1.胡传忻.表面处理技术手册[M],北京:北京工业大学出版社,2001:842-847
    2. Ferreira M G S, Duarte R Q Montemor M F. Silanes and rare earth salts as chromate replacers for pretreatments on galvanised steel[J], Electrochimica Acta,2004,49(17-18):2927-2935
    3. Montemor M F, Cabral A M, Zheludkevich M L. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica[J], Surface & Coatings Technology,2006,200(9):2875-2885
    4. Aramaki K. The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5M NaCl[J], Corrosion science,2001,43(8):1573-1588
    5. Trabelsi W, Cecilio P, Ferreira M G S, etc. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates[J], Progress in Organic Coatings,2005,54(4):276-284
    6. Montemor M F, Trabelsi W, Zheludevich M, etc. Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates[J], Progress in Organic Coatings,2006,57(1):67-77
    7.GB9791-2003,锌和镉上铬酸盐转化膜试验方法.
    8.GB/T10125-1997,金属覆盖层盐雾腐蚀实验方法
    9. Hinton B R W. Corrosion inhibition with rare earth metal salts[J], Journal of Alloys and Compounds,1992,180(1-2):15-25
    10. Bethencourt M, Botana F J, Calvino J J, etc. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminium alloys:a review[J], Corrosion Science,1998,40(11):1803-1819
    11. Arenas M A, Bethencourt M, Botana F J, etc. Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts[J], Corrosion Science,2001,43(1):157-170
    12. Aballe A, Bethencourt M, Botana F J, etc. CeCl3 and Lal3 binary solutions as environment-friendly corrosion inhibitors of AA5083 Al-Mg alloy in NaCl solutions[J], Journal of Alloys and Compounds,2001,323-324(12):855-858
    13. Beccaria A M, Chiaruttini L, The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminium corrosion in NaCl solutions[J], Corrosion Science,1999,41(5):885-899
    14.张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能[J],金属学报,2006,42(3):295-298
    15.左演声,陈文哲,梁伟.材料现代分析方法[M],北京:北京工业大学出版社,2003:223-234
    16. Arenas M A, Damborenea J J. Growth mechanisms of cerium layers on galvanised steel[J], Electrochimica Acta,2003,48(24):3693-3698
    17. Palanivel V, Zhu D Q, Ooij W J. Nanoparticle-filled silane film as chromate replacements for aluminum alloys[J], Progress in Organic Coatings,2003,47(3-4):384-392
    18.郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J],无机盐工业,2000,32(1):8-21
    19.普契洛娃.金属的缓蚀剂[M],北京:化学工业出版社,1959:11-20
    20.杨雪莲,常青.缓蚀剂的研究与进展[J],甘肃科技,2004,20(1):79-81
    21.王昕,张春丽.钼酸钠和三乙醇胺对铜的缓蚀作用[J],腐蚀科学与防护术,2004,16(1):44-46
    22. Brochier Salon M C, Bayle P A, Abdelmouleh M, etc. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy[J], Colloids and Surfaces A:Physicochem. Eng. Aspects, 2008,312(2-3):83-91
    1.徐溢,徐铭熙,王楠,等.金属表面硅烷试剂防腐涂层性能测试[J],应用化学,2000,17(3):331-333
    2.GB9791-2003,锌和镉上铬酸盐转化膜试验方法
    3.GB/T10125-1997,金属覆盖层盐雾腐蚀实验方法
    4. Brochier Salon M C, Bayle P A, Abdelmouleh M, ect. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy [J], Colloids and Surfaces:Physicochem. Eng. Aspects,2008,312(2-3):83-91
    5.王雪明,李爱菊,李国丽,等.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J],材料科学与工程学报,2005,23(1):146-150
    6.徐溢,唐守渊,陈立军.铁表面硅烷试剂膜的反射吸收红外光谱[J],分析测试学报,2002,21(2):72-74
    7. Franquet A, Le Pen C, Terryn H, ect. Effect of bath concentration and curing time on the structure of nonfunctional thin organosilane layers on aluminium[J], Electrochimica Acta,2003,48(9): 1245-1255
    8.胡吉明,刘倞,张金涛.铝合金表面BTSE硅烷化处理研究[J],金属学报,2004,40(11):1189-1194
    9. Pan G, Schaefer D W, Ilavsky J. Morphology and water barrier properties of organo silane films:The effect of curing temperature[J], Journal of Colloid and Interface Science,2006,302(1): 287-293
    10.虞莹莹.预涂卷材涂料的测试方法[J],涂料工业,2004,34(4):45-49
    1.赵卖群,雷阿丽.金属的腐蚀与防护[M],北京:国防工业出版社,2002,79-83
    2.吴森纪.有机硅及其应用[M],北京:科学技术文献出版社,1990,282-291
    3.王雪明,李爱菊,李国丽,等.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J],材料科学与工程学报,2005,23(1):146-150
    4. Zhu D Q, Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilyl-propyl]amine[J], Electrochimica Acta,2004,49(7):1113-1125
    5.何敏婷.偶联剂在涂料及复合材料中的应用[J],现代涂料与涂装,2002,2:32-34
    6.刘秀晨,安成强.金属腐蚀学[M],北京:国防工业出版社,2002,84-82
    7.林碧兰,卢锦堂,孔纲,等.钼酸钠对热镀锌钢板表面磷化膜电化学行为的影响[J],材料保护,2006,39(10):5-9
    8.郝建军,安成强,刘常升.不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响[J],材料保护,2006,39(10):23-26
    9. Barranco V, Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 1:directly exposed coatings[J], Corrosion Science,2004,46(9): 2203-2220
    10. Barranco V, Feliu S J, Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 2:coatings covered with an inhibitor-containing lacquer[J], Corrosion Science,2004,46(9):2221-2240.
    11.陈明安,谢玄,戚海英,等.2A12-T6铝合金表面双—(γ—三乙氧基硅丙基)四硫化物薄膜的特性[J],物理化学学报,2006,22(8):125-1029
    12. Beccaria A M, Chiaruttini L. The inhibitive action of MetacryloxypropylMethoxy silane(MAOS) on aluminium corrosion in NaCl solutions[J], Corrosion Science,1999,41(5):885-899
    13. Trabelsi W, Dhouibi L, Triki E, etc. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J], Surface & Coatings Technology,2005,192(2-3):284-290
    14. Aramaki K. XPS and EPMA studies on self-healing mechanism of a protective film composed of hydrated cerium(Ⅲ) oxide and sodium phosphate on zinc[J], Corrosion Science,2003,45(1): 199-210
    15. Montemor M F, Ferreira M G S. Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates[J], Progress in Organic Coatings,2008
    16. Montemor M F, Cabral A M, Zheludkevich M L, etc. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica[J], Surface & Coatings Technology,2006,200(9):2875-2885
    1.胡传忻.表面处理技术手册[M],北京:北京工业大学出版社,2001,845-850
    2. Zhu D, Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilyl propyl]amine[J], Electrochimica Acta,2004,49(7):1113-1125
    3. Brown K, Bines E B, Song J, ect. Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture[P], US:6596835B1,2003-7-22
    4.GB9791-2003,锌和镉上铬酸盐转化膜试验方法
    5.GB/T10125-1997,金属覆盖层盐雾腐蚀实验方法
    6. Pan G, Schaefer D W, Ooij W J, etc. Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl]tetrasulfide and bis[trimethoxysilylpropyl]amine[J], Thin Solid Films, 2006,515(4):2771-2780
    7.胡吉明,刘惊,张金涛,等.铝合金表面BTSE硅烷化处理研究[J],金属学报,2004,40(11):1189-1194
    8.胡吉明,刘惊,张鉴清,等.LY12铝合金表面电化学沉积制备DTMS硅烷膜及其耐蚀性研究[J],高等学校化学学报,2006,26(6):1121-1125
    9. Yuan W, Ooi W J. Characterization of Organofunctional Silane Films on Zinc Substrates[J], Journal of Colloid and Interface Science,1997,185(1):197-209
    10.徐斌,满瑞林,彭天兰,等.镀锌钢板的硅烷复合膜表面改性[J],腐蚀科学与防护技术,2008,20(2):135-139
    11.齐国超,贡雪南,孙德恩,等.镀锡钢板铬酸盐钝化膜的X射线光电子谱分析[J],东北大学学报(自然科学版),2006,27(8):875-878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700