杂萘联苯聚芳醚砜分离膜的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含二氮杂萘酮联苯结构的聚芳醚系列材料是具有优异耐热性的可溶性热塑性树脂,它们具有高的玻璃化转变温度、成膜性、机械强度和化学稳定性。杂萘联苯共聚醚砜(PPBES)除了具有以上材料的共同优点外,还具有良好的韧性,是潜在的超滤膜材料。而本组开发的季铵化杂萘联苯聚醚砜酮(QAPPESK)纳滤膜对高价金属阳离子具有较高的截留率,且该膜具有较高的通量和热稳定性,在某些废水处理领域中具有非常大的应用潜力。
     本文以PPBES为膜材料,水为凝胶剂采用相转化法制备超滤膜。首先采用溶解度参数理论选择了PPBES可能的制膜溶剂。然后考察了几种常见的溶剂如N,N-二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、吡啶(Pyridine)、二甲基亚砜(DMSO)、四氢呋喃(THF)对膜性能的影响。实验发现仅有DMAc、NMP和Pyridine可以用作制膜溶剂。以DMAc为制膜溶剂所成的膜具有较好的综合性能,因此DMAc被选作超滤膜的制膜溶剂。采用浊点滴定法研究了五种有机小分子添加剂与PPBES/DMAc体系的相容性和沉淀能力,并研究了这五种添加剂对超滤膜性能和形貌的影响。结果发现,添加剂的极性和挥发性对膜的性能和形貌影响较大。添加剂的极性越强,与聚合物的亲和性越差,膜断面越倾向于形成海绵状结构,且使得膜通量较高。而挥发性强的添加剂在停留蒸发阶段更容易从膜中逸出,使得膜孔致密且断面膜孔较小,形成的膜通量较低。
     为了得到较优性能的PPBES超滤膜,本文详细考察了聚合物浓度、凝胶浴温度、停留蒸发时间等对超滤膜性能的影响。在优化条件下制备了PPBES超滤膜,在0.1 MPa,20℃条件下,所制的超滤膜纯水通量约430 L/m2h,对PEG10000的截留率在93%以上以EGME作为有机添加剂,LiC1作为无机添加剂制备四元体系铸膜液,制备小孔径超滤膜。最终选定聚合物含量20%、EGME含量8%、LiCl含量2%,成功制备纯水通量为122 L/m2h、对PEG1000截留率达到100%的低截留分子量超滤膜。
     由于PPBES具有良好的机械性能特别是韧性,PPBES超滤膜适合用作复合膜的支撑底膜。本文以PPBES超滤膜为底膜,通过界面聚合的方法在其上表面反应生成超薄的聚哌嗪酰胺功能层来制备纳滤膜。系统地考察了界面聚合的条件,确定了最优的水相单体哌嗪和油相单体均苯三甲酰氯(TMC)浓度、水相浸渍时间、反应时间、烘焙温度和烘焙时间。制备出的纳滤膜具有较高的通量75 L/m2h和对Na2SO4较高的截留率97.5%。其对1g/L的Na2SO4测试结果表明,当操作温度从18℃升至85℃,纳滤膜的通量从61 L/m2h升高至290 L/m2h,而截留率仅下降了3.8%。
     低截留分子量的PPBES超滤膜的对某些染料分子截留率较高,而对无机盐没有截留,可以大大降低处理废水的渗透压。因此可以用于盐和染料分离,适合用于染料工业废水的处理和印染过程中染料的浓缩。本文采用了对PEG1000的截留率为100%的低截留分子量超滤膜对具有代表性的染料模拟废水进行了处理。实验表明,在室温0.2 MPa下,该膜对直接染料刚果红(Congo Red)、硫化染料硫化黑(Sulfur Black B)和阴离子染料龙胆紫(Gentian Violet)的截留率为100%。该膜对活性染料活性黄(C. I. Reactive Yellow 86)、分散染料分散红(C.I. Disperse Red 73)和阳离子染料酸性铬兰(Acid Chrome Blue K)的截留率分别为79%、54%和43%。除分散染料外,其他处理过程中膜的通量都达到87 L/m2h以上,具有较好处理能力。为了进一步提高膜对活性染料、分散染料和阳离子染料的截留率,采用聚哌嗪酰胺/PPBES复合纳滤膜来处理,取得了较好的效果。对超滤膜和纳滤膜的在高温环境中的使用稳定性也进行了相应的考察。结果表明,自制的超滤膜和纳滤膜都具有良好的耐热性。
     选择几种实验室自制的纳滤膜对大连某染料厂的硫化黑废水进行了处理。实验发现,荷负电的界面聚合聚哌嗪酰胺复合纳滤膜和涂覆的磺化复合纳滤膜的通量较低。而荷正电的季铵化纳滤膜(QAPPESK)在使用过程中表现出了较高的通量和较高的染料截留率,可以将染料与废水中无机盐进行分离,大大简化了工艺流程且能降低成本。在废水出水温度60℃的条件下对该废水进行处理时,在0.6 MPa下,膜的通量为14.5L/m2h,对硫化黑染料的截留率为92.3%,而对无机盐的截留率为10%。膜在60℃下使用72 h性能没有下降,因此该膜适合用于将染料和无机盐分离,从而达到工厂回收无机盐和降低污染的要求。
Recently, a series of novel poly (aryl ether sulfone) materials containing phthalazinone moiety are high-performance engineering thermoplastics with reasonable solubility and excellent thermal property. They possess high glass-transition temperature, membrane forming property, mechanical performance and chemical stability. Copoly (phthalazinone ether sulfone) (PPBES) which has good flexibility is a potential material for ultrafiltration (UF) membrane and support membrane of composite membrane. Positively charged QAPPESK nanofiltration membrane made in our laboratory has low rejection of high-valent cations, high flux and good thermal stability which possesses great potential in some wastewater treatment applications.
     PPBES UF membrane is prepared with phase inversion method and water is used in coagulation bath. The choice of solvent of the casting solution is based on solubility theory. Several solvents such as DMAc, NMP, DMF, Pyridine, DMSO and THF are tried to prepare casting solution. Only DMAc, NMP and Pyridine can be used according the solubility experiment. DMAc is chosen because the membrane formed has good performance. By using turbidity titration to study the effects of additives for the thermodynamic of the casting solution and the compatibility and precipitation capacity of five non-solvent additives on PPBES/DMAc solution are determined. Effect of different additives on membrane performance and morphology are studied. The polarity and volatility of the additive affect the membrane perfprmance and morphology obviously. Higher polarity causes the worse compatability with membrane material PPBES caused sponge-like structure and high flux. Additive with strong volatility is ready to escape and the membrane formed has dense skin, low flux and small pores.
     The influences of polymer concentration, coagulation temperature and evaporation time on UF membranes performance are studied. Under optimized condition, the flux of the membrane is 430 L/m2h and rejection of PEG 10000 is about 93% at 0.1 MPa and 20℃. By using EGME as organic additive, LiCl as inorganic additive, a quaternary-system casting solution was prepared to make PPBES UF membrane with low molecular weight cut-off (MWCO). When the polymer content is 20%, EGME content is 8% and the LiCl content is 8% , the PPBES UF membrane with low MWCO is successfully prepared which has high flux of 122 L/m2h and high PEG1000 rejection rate of 100%.
     Because of the excellent mechanical performance and flexibility of PPBES, PPBES UF membrane is suited to be used as the substrate of PPBES composte NF membrane. In this work, Poly (piperazinamide) NF membrane is prepared on the PPBES UF membrane with interfacial polymerization method. Reaction conditions including monomer concentrations, immersion time in water phase, reaction time, post-treatment temperature and time are optimized. PPBES composite NF membrane prepared has high flux (75 L/m2h) and high rejection of Na2SO4 (97.5%). When tested with 1 g/L Na2SO4 solution, the membrane flux is increased from 61 to 290 L/m2h while the rejection decreases 3.8% only as the operation temperature elevated from 18℃to 85℃。
     PPBES UF membrane with low MWCO has high rejection of organic material but can not reject inorganic salts, which will greatly decline the osmotic pressure. So it is suitable be ultilized in separation of salt and organic material, especially in treatment of dye production and dyeing wastewater. The simulative dye wastewater treatment is taken with the low MWCO PPBES UF membrane. The rejections of direct dye (Congo Red), anion dye (Gentian Violet) and sulfur dye (Sulfur Black B) are all 100%. The rejections of reactive dye (Reactive Yellow 86), disperse dye (Disperse Red 73) and cationic dye (Acid Chrome Blue K) are 79%, 54% and 43% , respectively. All the membrane fluxes are higher than 87 L/m2h except for disperse dye. In order to improve the rejection of Reactive Yellow 86, Disperse Red 73 and Acid Chrome Blue K, poly (piperzinamide) NF membrane is ultiliezd and shows good performance. The thermal stability of PPBES UF membrane and composite NF membrane is studied and the result demonstrates that they possess excellent themal resistance.
     Several NF membrane made in our laboratory are tried in the treatment of sulfur black dye wastewater of a Dalian factory. The negatively charged poly (piperzinamide)/PPBES NF membrane and SPPES/PPESK NF membrane show very low flux in operation while the positively charged QAPPESK NF membrane shows high flux and high dye rejection. The QAPPESK membrane has low rejection of divalent ions and can be used to separate and reuse dye and salts. At 60℃and 0.6 MPa, the membrane flux is 14.5 L/m2h, rejection of sulfur black dye is 92.3% while salt rejection is only 10%. The membrane performance does not decline in 72 h operation at 60℃. So the membrane is a suitable choice for this wastewater treatment and can accomplish the claim of separation of dye and inorganic salts.
引文
[1]时均,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [2]Mulder M.Basic Principles of membrane technology[M]. The Netherlands, Kluwer academic Publishers,1996
    [3]刘茉娥,陈欢林.新型分离技术基础[M].浙江:浙江大学出版社,1999.
    [4]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003.
    [5]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [6]安树林.膜科学技术实用教程[M].北京:化学工业出版社,2005.
    [7]朱长乐.膜科学技术(第二版)[M].北京:高等教育出版社,2004:10.
    [8]郑领英,王学松.膜技术[M].北京:化学工业出版社,2001.
    [9]徐又一,徐志康等.高分子膜材料[M],北京:化学工业出版社,2005.
    [10]Kesting R E, Synthetic polymeric membranes-A structural perspective, Wiley-Interscience, New York,1985.
    [11]Cheryan M. Ultrafiltration and microfiltration handbook[M], CRC Press,1998.
    [12]Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes, J. Membr. Sci.,1994,91,265
    [13]Hwang J R, Koo Seong-Hoe, Kim Jong-Ho, et al. Effects of casting solution composition on performance of poly (ether sulfone) membrane[J]. J. Appl. Polym. Sci.,1996, 60(9):1343-1348.
    [14]Wang S S, Ling A L, Wu L L, et al. Polysulfonamide as a membrane material, Desalination,1987,68:221-232.
    [15]Wang M, Wu L G, MO J X, et al. The preparation and characterization of novel charged polyacrylonitrile/PES-C blend membranes used for ultrafiltration[J]. J. Membr. Sci. 2006,274(1-2):200-208.
    [16]Dai Y, Jian X G, Liu X, Guiver M D, Synthesis and Characterization of Sulfonated Poly (phthalazinone ether sulfone ketone) for Ultrafiltration and Nanofiltration Membranes[J].J. Appl. Polym. Sci.,2001,79:1685-1692.
    [17]Dai Y,Jian X G, Zhang S H, Michael D, Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) [J].J. Membr. Sci.,2002,207:189-197.
    [18]Jian X G, Dai Y, He G, et al. Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application[J]. J. Membr. Sci.,1991, 161:185-191.
    [19]S. Zhang, X. Jian, Y. Dai, Preparation of sulfonated poly (phthalazinone ether sulfone ketone) composite nanofiltration membrane[J]. J. Membr. Sci.,246 (2005) 121-126.
    [20]Y. Yang, D. Yang, S. Zhang, J. Wang, X. Jian, Preparation and characterization of poly (phthalazinone ether sulfone ketone) hollow fiber ultrafiltration membranes with excellent thermal stability [J]. J. Membr. Sci.,280 (2006) 957-968.
    [21]Y. Yang, X. Jian, D. Yang, S. Zhang, L. Zou, Poly (phthalazinone ether sulfone ketone) (PPESK) hollow fiber asymmetric nanofiltration membranes:Preparation, morphologies and properties, J. Membr. Sci.,161 (1999) 185-191.
    [22]Lin D J, Chang C L, Huang F M,et al. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system[J].Polymer,2003,44:413-422.
    [23]Zhang M G, Nguyenb Q T, Ping Z H, Hydrophilic modification of poly (vinylidene fluoride) microporous membrane[J].J. Membr. Sci.,2009,327:78-86.
    [24]Liu F, Moghareh M R,Li K. Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3[J]. J. Membr. Sci.,2011,366:97-103.
    [25]Cao X C, Ma J, Shi X H, et al. Effect of TiO2 nanoparticle size on the performance of PVDF membrane[J].Appl. Surface Sci.,2006,253:2003-2010.
    [26]OH N W, JEGAL J, LEE K H. Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). Ⅱ. Preparation and Characterization of Polyamide Composite Membranes[J]. J. Appl. Polym. Sci.,2001, 80 (14):2729-2736.
    [27]Du R H, Zhao J S. Properties of poly (N, N-dimethylaminoethyl methacrylate) /polysulfone positively charged composite nanofiltration membrane[J].J. Membr. Sci.,2004,239 (2):183-188.
    [28]朱思君,王庆瑞.聚醚砜中空纤维超滤膜的双向拉伸[J].膜科学与技术,2003,23(6):1-3
    [29]胡小忠,柳和生,赖家美.聚丙烯薄膜的双向拉伸工艺研究[J].橡胶技术与装备,2009,30(4):13-18.
    [30]刘冠文,陈天俊.双向拉伸聚丙烯(BPP)薄膜[J].合成材料老化与应用,2001,1:24-29.
    [31]Yanagishita H, Kitamoto D, Haraya K, et al. Separation performance of polyimide composite membrane prepared by dip coating process[J]. J. Membr. Sci.2001, 188(155):165-172.
    [32]Nandi B K,Uppaluri R,Purkait M K. Effects of dip coating parameters on the morphology and transport properties of cellulose acetate-ceramic composite membranes[J]. J. Membr. Sci.,2009,330:246-258.
    [33]Ulbricht M,Belfort G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone[J]. J. Membr.Sci.,1996,111:193-215.
    [34]Ulbricht M, Matuschewski H, Oechel A, et al. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes[J]. J. Membr. Sci.,1996,115:31-47.
    [35]Ulbricht M, Riedel M, Marx U. Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules, J. Membr. Sci.,1996,120:239-259.
    [36]Chai Guo-Yong, Krantz W B, Formation and characterization of polyamide membranes via interfacial polymerization[J]. J. Membr. Sci.,1994,93:175-192.
    [37]Roh I J, Greenberg A R, Khare V P, Synthesis and characterization of interfacially polymerized polyamide thin films[J].Desalination,2006,191:279-290.
    [38]Freger V, Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization[J].Langmuir,2003,19 (11):4791-4797.
    [39]Zhou Y, Yu S C, Liu M H, et al. Preparation and characterization of polyamide-urethane thin-film composite membranes, Desalination,2005,180:189-196.
    [40]Stengaard F F, Characteristics and performance of new types of ultrafiltration membranes with chemically modified surfaces[J]. Desalination,1988,70:207-224.
    [41]Hvida K B, Nielsena P S, Stengaard F F, Preparation and characterization of a new ultrafiltration membrane[J]. J. Membr. Sci.,1990,53:189-202.
    [42]Castellari C, Ottani S. Preparation of reverse osmosis membranes. A numerical analysis of asymmetric membrane formation by solvent evaporation from cellulose acetate casting solutions[J]. J. Membr. Sci.,1981,9:29-41.
    [43]Ataka M, Sasaki K. Gravimetric analysis of membrane casting:I. Cellulose acetate-acetone binary casting solutions[J]. J. Membr. Sci.,1982,11(1):11-25.
    [44]Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane formation via thermally induced phase separation. [J].J.Membr. Sci.,1990,52:239-261.
    [45]Lin Y K, Chen G,Yang W. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method[J]. Desalination,2009,236:8-15.
    [46]J. G. Wi jmans, J. P. B. Baai j,C. A. Smolders. The mechanism of formation of microporous or skinned membranes produced by immersion precipitation[J]. Journal of Membrane Science.Volume 14, Issue 3,1983, Pages 263-274
    [47]Reuvers A J,Smolders C A. Formation of membranes by means of immersion precipitationrPart II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water[J]. J. Membr. Sci.,1987,34(1):67-86.
    [48]Reuvers A J, VandenBerg J, Smolders C A, Formation of membranes by means of immersion precipitation:Part I. A model to describe mass transfer during immersion precipitation [J].J. Membr. Sci.,1987,34:45-65.
    [49]Radovanovic P, Stephen W T, Hwang S. Formation of asymmetric polysulfone membranes by immersion precipitation. Part II. The effects of casting solution and gelation bath compositions on membrane structure and skin formation [J]. J. Membr. Sci. 1992,65:231-246.
    [50]孙俊芬,王庆瑞.关于聚醚砜膜的研究进展[J].合成技术及应用,2006,16(1):19-22.
    [51]Ismail A F, Lai P Y. Eeffets of phase inversion and rheological factors on formation of defect-free and ulrtathin-skinned asymmetric Polysulfone membrane for gas separation[J]. Sep. Purif. Tcehnol.,2003,33:127-130.
    [52]Pesek S. C., Koros W. J., Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation[J]. J.Membr. Sci.,1993,81:71-75.
    [53]Wang D L, Teo W K, Li K. Preparation and characterization of high flux polysulfone hollow fibre gas separation membranes[J]. J. Membr. sci.,2002,204:247-252.
    [54]Bottino A, Capannelli G, Munari S, et al.High performance ultraf iltration membranes cast from LiCl doped solutions[J]. Desalination,1988,68:167-177.
    [55]Kima S R, Leeb K H, Jhon M S. The effect of ZnCl2 on the formation of polysulfone membrane[J]. J.Membr. Sci.,1996,119:59-64.
    [56]Rahimpoura A, Madaeni S S, Mansourpanah Y. The effect of anionic,non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration[J]. J. Membr. Sci.,2007, 296:110-121
    [57]Xu Z L, Qusay F A. Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution [J]. J. Membr. Sci.,2004,233:101-111.
    [58]Qin J J, Wong F S, Li F, et al. A high flux ultraf iltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol[J]. J. Membr. Sci.,2003,211:139-147.
    [59]Qin J J, Cao Y M, Li Y Q, et al. Hollow fiber ultraf iltration membranes made from blends of PAN and PVP[J]. Sep.Purif. Technol.,2004,36:149-155.
    [60]Qin J J, Li M, Lee L S. Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water[J]. J. Membr. Sci.,2003,213:173-183.
    [61]Miyama H, Tanaka K, Nosaka Y, et al. Charged ultraf iltration membrane for permeation of proteins, [J]. J. Appl. Polym. Sci.,1988,36:925-933.
    [62]Idris A, Zain N M, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone(PES)ultrafiltration membranes with polyethylene glycol of different molecular weights as additives[J]. Desalination,2007,207: 324-339.
    [63]Fan S, Wang Y, Li C, et al. Effect of coagulation media on membrane formation and vapor permeation performance of novel aromatic polyamide membrane[J]. J.Membr. Sci. 2002,204:67-79.
    [64]Gholami M, Nasseri S, Feng C Y, et al.The effect of heat-treatment on the ultrafiltration performance of polyethersulfone (PES) hollow-fiber membranes [J]. Desalination,2003,155:293-301.
    [65]Marshall A D, Munro P A, Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity:A literature review [J]. Desalination,1993,91:65-108.
    [66]Tang D S, Yin G M, He Y Z, et al. Recovery of protein from brewer's spent grain by ultrafiltration[J]. Bio. Eng. J.,2009,48:1-5.
    [67]Makardij A, Chen X D, Far id M M. Microfiltration and Ultrafiltration of Milk:Some Aspects of Fouling and Cleaning[J]. Food and Bioproducts Processing,1999, 77:107-113.
    [68]Cadotte J E, Petersen R J, Larson R E, et al. A new thin-film composite seawater reverse osmosis membrane[J]. Desalination,1980,32:25-31.
    [69]Larson R E, Cadotte J E, Petersen R J, The FT-30 seawater reverse osmosis membrane-element test results[J]. Desalination,1981,38:473-483.
    [70]Lonsdale H K. The growth of membrane technology [J]. J. Membr. Sci.,1982,10:81-181.
    [71]Petersen R J. Composite reverse osmosis and nanofiltrat ion membranes [J]. J. Membr. Sci.,1993,83:81-150.
    [72]Glater J, Hong S K, Elimelech M. The search for a chlorine-resistant reverse osmosis membrane[J]. Desalination,1994,95:325-345.
    [73]Jenkins M, Tanner M B. Operational experience with a new fouling resistant reverse osmosis membrane[J]. Desalination,1998,119:243-249.
    [74]Saltonstall C W.Progress in membrane development for reverse Osmosis [J]. Desalination,1977,22:229-234.
    [75]Singh R. Characteristics of a chlorine-resistant reverse osmosis membrane[J]. Desalination,1994,95:27-37.
    [76]Iborra M I, Lora J, Alcaina M I, et al. Effect of oxidation agents on reverse osmosis membrane performance to brackish water [J]. Desalination,1997,108:83-89.
    [77]Kim S, Hoek E M V, Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Desalination,2007,202:333-342.
    [78]Riley R L, Lonsdale H K, Lyons C R, et al. Preparation of ultrathin reverse osmosis membranes and the attainment of theoretical salt reject[J]. J. Appl. Polym.Sci. 1967,11:2143-2158.
    [79]Lang K,Sourirajan S, Matsuura T, et al.A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing [J]. Desalination,1996,104:185-196.
    [80]Lang K,Chowdhury G, Matsuura T, et al. Reverse Osmosis Performance of Modified Polyvinyl Alcohol Thin-Film Composite Membranes[J]. J. Colloid Interface Sci., 1994,166:239-244.
    [81]Kesting R E. The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes[J]. J. Appl. Polym. Sci.,1990,41:2739-2752.
    [82]Lu X F,Bian X K, Shi LQ. Preparation and characterization of NF composite membrane[J]. J.Membr. Sci.,2002,210:3-11.
    [83]Taketani Y, Matsuura T, Sourirajan S, Predictability of RO/UF performance from surface force parameters and data on average pore size and pore size distribution on membrane surface[J]. Desalination,1983,46:455-466.
    [84]Vasarhelyil K, Ronner J A, Mulder M H V, et al. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend[J]. Desalination,1987,61:211-235.
    [85]Bowen W R, Cheng S Y, Doneva T A, et al. Manufacture and characterisation of polyetherimide/sulfonated poly(ether ether ketone) blend membranes[J]. J. Membr. Sci.,2005,250:1-10.
    [86]Bowen W R, Doneva T A, Yin H B. The effect of sulfonated poly(ether ether ketone) additives on membrane formation and performance[J]. Desalination,2002,145:39-45.
    [87]Mikhailenko S D, Zaidi S M J, Kaliaguine S. Sulfonated polyether ether ketone based composite polymer electrolyte membranes[J]. Catalysis Today,2001,67:225-236.
    [88]Nagarale R K, Gohil G S, Shahi V K. Sulfonated poly (ether ether ketone)/polyaniline composite proton-exchange membrane[J]. J. Membr. Sci.,2006,280:389-396.
    [89]Zimmerman C M, Singh A, Koros W J. Tailoring mixed matrix composite membranes for gas separations[J]. J.Membr. Sci.,1997,137:145-154.
    [90]Miller S J, Koros W J, Vu D Q. Mixed matrix membrane technology:enhancing gas separations with polymer/molecular sieve composites [J]. Studies in Surface Science and Catalysis,2007,170:1590-1596.
    [91]Li L C, Wang B G, Tan H M, et al. A novel nanof iltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultraf iltration membrane [J]. J. Membr. Sci.,2006,269:84-93.
    [92]Li L,Zhang S B, Zhang X S, et al. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3',5,5'-biphenyl tetraacyl chloride and piperazine[J]. J. Membr. Sci.,2009,335:133-139.
    [93]Mansourpanah Y, Madaeni S S, Rahimpour A. Preparation and investigation of separation properties of polyethersulfone supported poly(piperazineamide) nanofiltration membrane using microwave-assisted polymerization[J]. Sep. Purif. Technol.,2009,69:34-242.
    [94]Jegal J,Min S G, Lee K H, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes[J]. J. Appl. Polym. Sci.,2002,86:2781-2787.
    [95]文会超,舒莉,邢卫红,等.无机陶瓷膜在脱脂液废水处理中的应用[J].水处理技术,2007,33(3):42-44.
    [96]Tsuru T, Miyawaki M, Kondo H. Inorganic porous membranes for nanofiltration of nonaqueous solutions [J]. Sep. Purif. Technol.,2003,32:105-109.
    [97]Lajimi R H, Abdallah A B, Ferjani E, et al. Change of the performance properties of nanofiltration cellulose acetatemembranes by surface adsorption of polyelectrolyte [J]. Desalination,2004,163:193-202.
    [98]周勇,俞三传,高从堦.反渗透复合膜:(I)结构与性能[J].化工学报,2006,57(3):1370-1373.
    [99]Mandal M K, Bhattacharya P K. Poly(vinylacetal) membrane for pervaporation of benzene-iso octane solution[J]. Sep. Purif. Technol.,2008,61:332-340.
    [100]Buonomenna M G, Lopez L C, Favia P. New PVDF membranes:The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds[J]. Water Research,2007,41:4309-4316.
    [101]Bowen W R, Doneva T A, Yin H. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes[J]. J. Membr. Sci.,2002,206(1-2):417-429.
    [102]吴骏,杨亚楠.磺化聚砜的制备研究[J].化学工程与装备,2009,18-19.
    [103]He T, Mulder M H V, Strathmann H. Preparation of composite hollow fiber membranes:co-extrusion of hydrophilic coatings onto porous hydrophobic support structures [J]. J. Membr. Sci.,2002,207(1):143-156.
    [104]Jegal J, Sung G M, Lee K-H. Factors affecting the Interfacial Polymerization of Polyamide Active Layers for the Formation of Polyamide Composite Membranes[J].J. Appl.Polym.Sci,2002,86(11):2781-2787
    [105]Huang R H,Chen G H, Sun M K. Preparation andcharacteristics of quaternized chitosan/poly(acrylonitrile)com-posite nanofiltration membrane from epichlorohydrin cross-linking[J]. Carbohydrate Polym.,2007,70:318-323.
    [106]Dai Y, Jian X G, Zhang S H, et al. Thermostable ultraf iltration and nanof iltration membranes from sulfonated poly(phthalazinone ether sulfone ketone) [J]. J.Membr. Sci.,2001,188(2):195-203.
    [107]Dai Y,Jian X G, Zhang S H, Guiver M D, Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK)[J]. J. Membr. Sci.,2002,207:189-197
    [108]Zhang S H, Jian X G, Dai Y, Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane[J]. J. Membr. Sci.,2005, 246:121-126.
    [109]Yang F J, Zhang S H, Yang D L, et al.,Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane[J]. J. Membr. Sci.,2007,301:85-92.
    [110]Su Y,Jian X G, Zhang S H, et al. Preparation and characterization of quaternized poly (phthalazinone ether sulfone ketone)NF membranes, J. Membr. Sci.,2004,241: 225-233.
    [ill]Wei J,Jian X G, Wu C R, et al. Influence of polymer structure on thermal stability of composite membranes[J]. J. Membr.Sci.,2005,256:116-121.
    [112]Wu C R, Zhang S H, Yang D L, et al. Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane[J]. J. Membr. Sci.,2006,279:238-245.
    [113]Bowen W R, Mukhtar H, Characterization and prediction of separation performance of nanofiltration membranes[J]. J. Membr. Sci.1996,112:263-274.
    [114]Bowen W R, Mohammad A W, Hilal N. Characterization of nanof itration membranes for predictive purposes:use of salts, uncharged solutes and atomic force microscopy [J]. J. Membr. Sci.,1997,126:91-105.
    [115]Wang X L, Tsuru T, Nakao S, et al. The electrostatic and steric hindrance model for the transport of charged solutes through nanofiltration membrane [J]. J. Membr. Sci.,1997,126(1):91-105.
    [116]Wang X L, Tsuru T, S. Kimura. Electrolyte transport through nanofiltration membranes by space-charge model and the comparison with Teorell-Meyer-Sievers model[J]. J. Membr. Sci.,1995,103:117-124.
    [117]Wolters R, Wendler B, Schmidt B, et al. Rinsing water recovery in the steel industry acombined UF/NF treatment [J]. Desalination,2008,224:209-214.
    [118]Gozalvez-Zafrilla J M, Sanz-Escribano D, Lora-Gorcia J. Nanofiltration of secondary effluent for wastewater reuse in the textile industry[J]. Desalination 2008,222:272-279.
    [119]Kim T, Park C, Kim S. Water recycling from desalination and purification process of reactive dyemanufacturing industry by combined membrane filtration [J]. J. Cleaner Production,2005,13(8):779-786.
    [120]Kamada T, Nakajima M, Nabetani H, et al., Availability of membrane technology for purifying and concentrating oligosaccharides[J]. European Food Res. Technoly, 2002,214:435-440.
    [121]Manjula, Nabetani H, Subramanian R. Flux behavior in a hydrophobic dense membrane with undiluted and hexane-diluted vegetable oils[J]. J. Membr. Sci.,2011,366:43-47.
    [122]Yoon Y, Westerhoff P, Snyder S A, et al. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products[J]. J. Membr. Sci.,2006,270:88-100.
    [123]Rhind S M. Endocrine disrupting compounds and farm animals:their properties, actions and routes of exposure [J]. Domestic Animal Endocrinology,2002,23:179-187.
    [124]Xu J,Wu L S,Chen W P, et al. Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography-mass spectrometry[J]. J. Chromatography A,2008,1202:189-195.
    [125]Rahman M F, Yanful E K, Jasim S Y. Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water:Challenges in the context of the developing world [J]. Desalination,2009,248: 578-585.
    [126]Tan B H, Teng T T, Omar A K M. Removal of dyes and industrial dye wastes by magnesium chloride[J]. Water Research,2000,34:597-601.
    [127]Shi B Y, Li GH, Wang DS, et al. Removal of direct dyes by coagulation:The performance of preformed polymeric aluminum species. J. Hazardous Materials,2007,143:567-574.
    [128]Lunar L, Sicilia D, Rubio S, et al. Degradation of photographic developers by Fenton's reagent:condition optimization and kinetics for metol oxidation[J]. Water Research,2000,34:1791-1802.
    [129]Lucas M S, Peres J A. Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study[J]. J. Hazardous Materials,2009,168:1253-1259.
    [130]Kuoa W G. Decolorizing dye wastewater with Fenton's reagent[J]. Water Research, 1992,26(7):881-886.
    [131]Walker G M, Weatherley L R, Adsorption of acid dyes on to granular activated carbon in fixed beds[J]. Water Research,1997,31(8):2093-2101.
    [132]Walker G M, Weatherley L R, Fixed bed adsorption of acid dyes onto activated carbon, Environmental Pollution,1998,99(1):133-136.
    [133]Garg V K, Gupta R, Yadav A B, et al. Dye removal from aqueous solution by adsorption on treated sawdust[J].Bioresource Technology,2003,89(2):121-124.
    [134]Woei-Jye Lau, A. F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment:Preparation, performance evaluation, transport modelling, and fouling control-a review[J]. Desalination,2009,245:321-348.
    [135]蔡惠如,高从增,膜分离技术在染料行业中的应用[J].膜科学与技术,2002,22:37-39.
    [136]刘梅红,纳滤膜技术处理印染废水实验研究[J].水处理技术,2002,28:42-44.
    [137]Krevelen D W. The Properties of Polymer:Their Estimation and Correlation with Chemical Structure[M].4th ed. New York:Elsevier,1991.
    [138]蹇锡高,王珺,张守海等.杂萘联苯聚醚砜及其磺化物溶解度参数[J].大连理工大学学报,2009,3,322-326.
    [139]Boom R M, Boomgaard T, Berg J, et al., Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent[J]. polymer,1993,34(11):2348-2356.
    [140]李战胜.聚合物膜形成机理的研究--非溶剂添加剂效应[D].大连:中国科学院大连化学物理研究所,2000.
    [141]何涛,江成璋,聚醚砜微孔膜制备中非溶剂添加剂作用研究[J].膜科学与技术,1998,18(3):43-48.
    [142]Maximous N, Nakhla G, Wan W, et al., Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration [J]. J. Membr. Sci.,2009,341:67-75.
    [143]Ge Q Q, Wang Z B, Yan Y S, High-Performance Zeolite NaA Membranes on Polymer Zeolite Composite Hollow Fiber Supports[J]. J. Am. Chem. Soc.,2009,131:17056-17057.
    [144]Kim I C, Kim J H, Lee K H, et al. Preparation of soluble polyimides and ultrafiltration membrane performances[J]. J. Appl. Polym. Sci.,2009,75:1-9.
    [145]Kim Y, Rana D, Matsuura T, et al, Influence of surface modifying macromolecules on the surface properties of poly(ether sulfone) ultra-filtration membranes[J]. J. Membr. Sci.,2009,338:84-91.
    [146]Curcio E, Fontananova E, Di Profio G, et al. Influence of the structural properties of poly (vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals[J]. J. Phys. Chem. B,2006,110:12438-12445.
    [147]Shi L, Wang R, Cao Y M, et al. Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluro propylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes[J].J. Membr.Sci.,2008,315:195-204.
    [148]Lin H L, Chen V C, Li C C, et al. Preparation of PBI/PTFE composite membranes from PBI in N, N'-dimethyl acetamide solutions with various concentrations of LiCl[J].J. Power Sources,2008,181:228-36.
    [149]王庐岩,聚偏氟乙烯共混相容性及成膜机理研究[D],北京工业大学,2002.
    [150]Petersen R J, Composite reverse osmosis and nanofiltration membranes[J]. J. Membrane Sci.1993,83:81-150.
    [151]A. P. Rao, N. V. Desai, R. Rangarajan, Interfacially synthesized thin film composite RO membranes for seawater desalination, J. Membrane Sci.124 (1997) 263-272.
    [152]A. K. Ghosh, B. Jeong, X. F. Huang, E. M. V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, J. Membr. Sci.311 (2008) 34-45.
    [153]I. Kim, J. Jegal, K. Lee, Effect of aqueous and organic solutions on the performance of polyamide thin-film-composite nanofiltration membranes, J. Polym. Sci. Pol. Phys.40 (2002) 2151-2163.
    [154]L. Li, S. B. Zhang, X. S. Zhang, Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3',5,5'-biphenyl tetraacyl chloride and piperazine, J. Membrane Sci.33 (2009) 133-139.
    [155]S. C. Yu, K. Y. Jin, Q. M. Pan, C. J. Gao, Study on polypiperazine-amide composite nanofiltration membrane, Membr. Sci. Technol.21 (2001) 1-4.
    [156]Y. J. Song, F. A. Liu, B. H. Sun, Preparation, Characterization, and Application of Thin Film Composite Nanofiltration Membranes, J. Appl. Polym. Sci.95 (2005) 1251-1261.
    [157]Asim K. Ghosh, Eric M. V. Hoek, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes, J. Membrane Sci.336 (2009) 140-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700