AZ91D镁合金微弧氧化—溶胶凝胶复合膜层制备及其耐蚀性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是最轻的金属结构材料之一,在汽车、航空航天以及电子行业中具有广阔的应用前景,但较差的耐腐蚀性能限制了镁合金的应用。微弧氧化技术是近年来公认的最有前途的镁合金表面处理方法之一。它是在普通阳极氧化基础上发展而来的一种表面处理技术,能够在Al、Mg、Ti等阀金属及其合金表面原位形成陶瓷膜层,极大地提高金属的耐蚀、耐磨等性能。但微弧氧化膜的多孔结构也对其防腐蚀作用埋下了隐患。常用的镁合金微弧氧化电解质溶液有两大类,一类为以含Cr(VI)化合物为主要组分的电解质溶液;另一类为以磷酸盐和/或氟化物为主要组分的电解质溶液。这些电解质溶液中均含有对环境有极大危害的物质,因此,开发绿色环保型镁合金微弧氧化电解液体系,深入探讨微弧氧化处理工艺、膜层的结构与性能以及其生长过程是十分必要的。为进一步提高镁合金的耐蚀性,改善微弧氧化膜的结构,于镁合金表面制备复合膜层并系统研究复合膜的组成、结构与性能之间的关系,以及膜层之间的结合机制,对镁合金的广泛应用也具有重要的意义。
     本文首先采用单因素实验和正交实验,系统讨论了微弧氧化电解液中主成膜剂、辅助成膜剂、添加剂等成分及其浓度对微弧氧化过程和膜层性能的影响,开发出了一种绿色环保型的镁合金微弧氧化电解液体系,并分析了各成分在镁合金微弧氧化过程中所起的作用。所开发出的绿色环保型镁合金微弧氧化电解液体系为:铝酸钠30g/dm3,氢氧化钠20g/dm3,蒙脱石3g/dm3,阿拉伯树胶2g/dm3。
     采用田口实验设计方法,研究了工艺参数对微弧氧化膜表面形貌和耐蚀性的影响,优化了微弧氧化过程工艺参数。通过扫描电镜、能谱、X衍射、极化曲线和交流阻抗等测试方法,分析了微弧氧化膜的形貌、组成、结构和耐腐蚀性能。结果表明,最佳微弧氧化工艺条件为:终止电压180V,氧化时间30min,脉冲频率50Hz,占空比30%。优化工艺下所制备的微弧氧化膜为多孔结构,A1、O元素含量较高,膜层主要由MgO.MgAl2O4和Al12Mg17组成,耐腐蚀性能比AZ91D镁合金基体有了一定程度的提高。
     在镁合金微弧氧化的基础上,采用微弧氧化与溶胶凝胶技术相结合,在镁合金微弧氧化膜表面制备出了具有一定厚度的溶胶凝胶层,形成复合膜层。通过扫描电镜、能谱、X衍射、差热-热重、红外光谱、极化曲线、交流阻抗和循环阳极极化曲线等分析测试方法,优化了溶胶制备工艺和溶胶凝胶层沉积工艺,系统研究了复合膜的形貌、组成、结构等特征及其耐蚀性。结果表明,最佳溶胶制备工艺为:Si:Zr摩尔比为2:1,水浴时间30min,水浴温度50℃,pH值为3。最佳溶胶凝胶膜层沉积工艺为:采用凝胶化工艺处理,干燥温度控制在80℃右,干燥时间1h,固化温度150℃,固化时间0.5h,浸涂次数3次。优化工艺下所制备的复合膜为微晶与玻璃态的混合结构,表面微观缺陷较少,结合力和致密性都较好,具有较强的耐蚀性。
     研究了微弧氧化膜的生长过程,分析了处于不同生长阶段氧化膜的形貌、成分和耐蚀性。首次采用Gaussian03分析软件,计算了溶胶凝胶层吸附前后体系中的相关键长、荷电状态和结合能,从分子或原子水平上分析了复合膜层间的结合状态。结果表明,处于不同生长阶段氧化膜的结构形貌与其耐蚀性具有对应关系。溶胶凝胶膜在微弧氧化膜表面的吸附更加稳定,复合膜的层间结合力较好,为在AZ91D镁合金表面制备高性能的防腐蚀涂层提供了一定的理论依据。
     使用极化曲线与交流阻抗技术,深入研究了微弧氧化膜和复合膜在不同腐蚀介质中的腐蚀扩展过程。并针对性的建立了不同的等效电路模型,对微弧氧化膜和复合膜在不同腐蚀介质和不同腐蚀时期的腐蚀行为进行了详细的分析。结果表明,在3.5%氯化钠溶液、3.5%硫酸钠溶液和模拟海水溶液中,微弧氧化膜和复合膜表现出某些相似的腐蚀电化学行为,也出现一些不同的特征。在不同的腐蚀介质以及不同的腐蚀时期,腐蚀控制过程会发生改变。
     最后,在镁合金表面成功制备了有色复合膜层,并采用扫描电镜、能谱、红外光谱、极化曲线和循环阳极极化曲线等分析测试方法,探讨了有色复合膜的结构形貌、耐腐蚀性能和耐蚀机理。结果表明,本文所制备的有色复合膜表面光滑,着色效果较好。其中添加CuSO4·5H2O所制备出的有色复合膜耐腐蚀性能最好。
Magnesium alloy is one of the most light weight metal structure materials. Their potential applied fields include automobile, aerospace and consuming electronics, etc. However, the extensive use of magnesium alloys is limited due to poor corrosion resistance. Micro-arc oxidation (MAO) technique is one of the most favorable method in the surface treatment of magnesium alloys in recent years. It is a surface treatment technique developed from the common anodic oxidation. By use of this technique, a ceramic coating can be in situ formed on Al, Mg, Ti and their alloys. This enhances the corrosion resistance and abrasion resistance of the magnesium alloy. Unfortunately, there exist micropores and microcracks in the MAO coating. Usually, the two types of electrolyte solution apply to the micro-arc oxidation of magnesium alloy. One of the electrolyte contains Cr(VI) compounds, the other of the electrolyte contains phosphate and/or fluoride. Both of them contains the poisonous ingredients, such as chromate, phosphate, fluoride which do harm to environment and human beings. Therefore, it is essential that environment-friendly electrolyte system was developed and the effects of all kinds of process parameters on the formation and properties of anodic films were investigated. To further enhance the corrosion resistance of magnesium alloys and improve the structure of MAO coating, the composite coatings were prepared on magnesium alloy. The relationship between structure and performance of the composite coatings, and the binding mechanism between the sol-gel layer and MAO layer were studied.
     In this paper, single factor and orthogonal layout experiment were applied. The effects of main film-forming agent, auxiliary film-forming agent, additives and their concentration on MAO process and film properties were discussed in the system. An environment-friendly MAO electrolyte system was developed as following,30g/dm3 NaAl2O4, 20g/dm3 NaOH,3g/dm3 montmorillonite, 2g/dm3 gum arabic. And the function of single electrolyte in MAO process was analyzed.
     The effects of process parameters on surface morphologies and corrosion resistance of MAO coating were systematically investigated using the Taguchi experimental analysis method of four factors with three levels. The optimized parameters were 180V voltage,30min treatment time,50Hz frequency,30%duty cycle. The morphology, components, structure and corrosion resistance of MAO coating were examined by means of SEM, EDS, XRD, potentiodynamic polarization and AC impedance. The results showed that the MAO coating was a uniform distribution of porous structure. The components of aluminium and oxygen were higher, and the microstructure of the coating consisted of MgO、MgAl2O4and Al12Mg17 phases. Compared with the untreated magnesium alloy, the MAO coating exhibited higher corrosion resistance.
     Based on micro-arc oxidation, a process of MAO combined with a sol-gel method was used to prepare composite coatings on magnesium alloy AZ91D. The composite coatings were formed using multi immersion technique to plus a sol-gel layer on the MAO coating. SEM, EDS, XRD, DSC-TGA, FT-IR, potentiodynamic polarization, AC impedance and cyclic anodic polarization curve were used to evaluate the morphologies, components, structure and corrosion resistance of composite coatings. The results showed that the optimum sol preparation process were Si:Zr molar ratio of 2:1, water bath time was 30min, temperature was 50℃, pH value was 3. The optimum sol-gel film deposition conditions were obtained as following, dipping times was 3, drying temperature was controlled about 80℃, drying time was 1h, curing temperature and curing time were 150℃and 0.5h, respectively. The structure of composite coatings was microcrystalline and glass. The composite coatings were more compact and had good adhesion. Few tiny cracks were visible on the surface layer. The corrosion resistance of the composite coatings was enhanced significantly.
     The morphology, composition and corrosion resistance of oxide film at different growth stages were studied. Gaussian03 analysis software firstly used to calculate the bond length, charge and binding energy of adsorption system. The bound state of the coatings was analyzed in molecular level. The results showed that the structure characteristics and the corrosion resistance of oxide film at different growth stages had a corresponding relationship. Sol-gel layer of the MAO coating surface in the adsorption was more stable. For the preparation of high-performance anti-corrosion coating on AZ91D magnesium alloy provided a theoretical basis.
     It was researched the corrosion development process of the MAO coating and the composite coatings in various corrosive media by using polarization curves and AC impedance techniques. Then different equivalent circuits were put forward to detailed describe the corrosion behavior of the MAO coating and composite coatings in different corrosive media and different corrosion stages. The results showed that the MAO coating and composite coatings showed some similarity corrosion electrochemical behavior and some different characteristics in 3.5-wt.%NaCl,3.5-wt.%Na2SO4 and simulated sea water solution. Corrosion control process would change in different corrosive media and different corrosion stages.
     Finally, colored composite coatings were successfully prepared on the magnesium alloy. The structure, morphologies, corrosion resistance and corrosion mechanism of colored composite coatings were analyzed by SEM, EDS, FT-IR, polarization curves and cyclic anodic polarization curve. The results showed that the color composite coatings had smooth surface and better appearance. In particular, add CuSO4·5H2O colored composite coatings had the best corrosion resistance.
引文
[1]Froes F H, Eliezer D, Aghion E. The Science, Technology and Application of Magnesium[J].J Mine Metals and Mater Soc,1998,5(9):30-34
    [2]祁庆据,刘永兵,杨晓红.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程,2002,24(2):94-100
    [3]翟春泉,曾小勤,丁文江,等.镁合金的开发与应用[J].机械工程材料,2001,25(1):6-10
    [4]祁庆琚.镁合金的研究进展[J].上海有色金属,2005,26(1):43-48
    [5]杨遇春.有色金属在汽车工业中的应用前景[J].材料导报,1993,6(6):19-23
    [6]Barton T F, Johnson C B. The effect of electrolyte on the anodized finish of a magnesium alloy[J]. Plating and Surface Finishing,1995,82(5):138-140
    [7]罗韦因,刘钧泉.镁及其合金表面处理的现状及发展趋势[J].腐蚀控制与表面工程,2002,1(1):7-10
    [8]赵立信.汽车业与特种铸造及有色合金[J].特种铸造及有色合金,2000,(6):13-16
    [9]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].材料保护,2002,35(4):4-7
    [10]吴炳尧.镁合金压铸技术分析[J].铸造,2000,49(8):443-447
    [11]王渠东.镁合金在电子器材壳体中的应用[J].材料导报,2000,14(6):22-25
    [12]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001:15-26
    [13]陈振华.镁合金[M].北京:化学工业出版社,2004:459-461
    [14]韩夏云,龙晋明.镁及镁合金应用与表面处理现状及发展[J].轻金属,2003,2:48-51
    [15]李卫平,朱立群.镁及其合金表面防护涂层国外研究进展[J].材料保护,2005,38(2):41-46
    [16]刘耀辉,李颂.微弧氧化技术国外研究进展[J].材料保护,2005,38(6):36-40
    [17]Makar G L, Kruger J. Corrosion of magnesium[J]. International Materials Reviews,1993,38(3):138-153
    [18]李颂.镁合金微弧氧化膜的制备、表征及其性能研究:[博士学位论文].长春:吉林大学,2007
    [19]徐佰明.工艺参数对镁合金微弧氧化膜层微观组织和性能的影响:[博士学位论文].长春:吉林大学,2007
    [20]林高用,彭大暑.AZ91D镁合金锭耐腐蚀性能研究[J].矿冶工程,2001, 21(3):79-81
    [21]罗韦因,刘钧泉.镁及其合金表面处理的现状及发展趋势[J].腐蚀控制与表面工程,2002,1(1):7-10
    [22]刘新宽,向阳辉,王渠东,等.Mg合金的防蚀处理[J].腐蚀科学与防护技术,2001,13(4):211-213
    [23]Ardelean H, Fiaud C, Marcus P. Enhanced corrosion resistance of magnesium and its alloys through the formation of cerium (and aluminium) oxide surface films[J]. Materials and Corrosion,2001,52(12):889-892
    [24]Rudd A L, Breslin C B, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J]. Corrosion Science,2000, 42(2):275-280
    [25]Dabala M, Brunelli K, Napolitani E, et al. Cerium-based chemical conversion coating on AZ63magnesium alloy[J]. Surface and Coatings Technology,2003, 172(2-3):227-232
    [26]常立民,刘丹.氨基乙酸含量对镁合金阳极氧化膜形貌及性能的影响[J].材料保护,2010,43(2):50-52
    [27]张丁非,申颖娉,刘渝萍,等.镁合金阳极氧化电解液组分的优化探讨[J].材料保护,2009,42(2):52-54
    [28]Wang H Y, Jiang Q L, Li X L, et al. Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium[J]. Journal of Alloys and Compounds,2004,366:9-12
    [29]王维青,潘复生,左汝林.镁合金腐蚀及防腐研究新进展[J].兵器材料科学与工程,2006,29(2):73-77
    [30]Majumdar J D, Galun R, Mordike B L, et al. Effect of laser surface melting on corrosion andwear resistance of a commercial magnesium alloy [J]. Materials Science and Engineering A,2003,361(1-2):119-123
    [31]陈长军,王茂才,刘一鸣.镁合金表面改性新技术[J].腐蚀科学与防护技术,2004,16(4):215-218
    [32]Frank H, Renate W, Jana S. Charaeteristies of PVD-coatings on AZ31 magnesium alloys[J]. Surface and Coatings Technology,2003, 162(2-3):261-268
    [33]钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向[J].电镀与涂饰,2005,24(6):47-50
    [34]张文华,胡正前,马晋.俄罗斯微弧氧化技术的研究进展[J].世界有色金属, 2004, (1):43-46
    [35]Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology[J]. Surface and Coatings Technology,2003,167(2-3):269-277
    [36]Krishna L R, Somaraju K R C, Sundararajan G. The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation[J]. Surface and Coatings Technology,2003,163-164:484-490
    [37]Butyagin P I, Khokhryakov Y V, Mamaev A I. Microplasma systems for creating coatings on aluminium alloys[J]. Materials Letters,2003, 60(13-14):1748-1752
    [38]Hoche H, Scheerer H, Probst D, et al. Development of a plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance[J]. Surface and Coatings Technology,2003,174-175:1018-1023
    [39]Yerokhin A L, Shatrov A, Samsonov V, et al. Fatigue properties of Keronite coatings on a magnesium alloy [J]. Surface and Coatings Technology,2004, 182(1):78-82
    [40]王立世,蔡启舟,魏伯康,等.国外镁合金微弧氧化研究现状[J].材料保护,2004,37(7):61-63
    [41]魏同波,田军,压达元.LY12铝合金微弧氧化陶瓷层的结构和性能[J].材料研究学报,2004,18(2):161-166
    [42]段关文,高晓菊,满红,等.微弧氧化研究进展[J].兵器材料科学与工程,2010,33(5):102-106
    [43]张勇,张泰峰,赵维义,等.镁合金表面处理技术现状和发展趋势[J].青岛理工大学学报,2010,31(4):111-116
    [44]侯亚丽,刘忠德.微弧氧化技术的研究现状[J].电镀与精饰,2005,(3):24-28
    [45]陈跃良,徐丽.LY12CZ材料微弧氧化后抗腐蚀及抗疲劳特性研究[J].新技术新工艺,2006,(11):60-62
    [46]Jerry L Patel, Nannaji Saka. Microarc Oxidation(MAO) Process[Z]. Metalast Technical Bulletin,2000
    [47]候伟鹜.触变成形AZ91D镁合金表面预处理、电参数对微弧氧化膜的影响及化学镀工艺的研究:[硕士学位论文],兰州:兰州理工大学,2006
    [48]Ikonopisov. S. Theory of electrical breakdown during information of barrier anodic films[J]. Electrochem. Acta,1997, (22):1077-1082
    [49]Eauvir J, Gersion M. The Al Ti Mg Proeess Enables New Application for Aluminium[J]. Galvan organo-Traitement de Surface,2001,67(173-175): 710-714
    [50]Lawrence H, Dumey J. Electroplating Engineering Handbook 4th Edition[C], Wokingham Berkshire:Van Nostrand Reinhold,1984:410-411
    [51]黄京浩,张永君.镁合金微弧氧化新型电解液配方研究[J].材料保护,2007,40(2):30-37
    [52]梁永政.镁合金表面微弧氧化工艺的研究:[博士学位论文].兰州:兰州理工大学,2004
    [53]薛文斌,邓志威.铝合金微弧氧化膜的形成过程及其特性[J].电镀与精饰,1996,18(5):3-4
    [54]刘文亮.铝合金在不同溶液中的微弧氧化膜层性能研究[J].电镀与精饰,1999,21(4):9-12
    [55]Vladimir M. Mikrolichtbogen oxidation [J]. Oberflchentechnik,1995,49 (8): 606-607
    [56]石玉龙.等离子体微弧氧化技术及其应用[J].青岛化工学院学报,2002,23(1):70-73
    [57]Kurze P, Krysmann G A. Magnesium legierungen electrochemisch beschichten [J]. Metal-loberflache,1994,48(2):104-105
    [58]蒋百灵,向力静,蒋永锋,等.铝合金微弧氧化技术[J].西安理工大学学报,2000,16(2):138-142
    [59]闫风英,石玉龙,周璇.微弧氧化电解液配方改良的初步研究[J].电镀与涂饰,2003,(1):5-7
    [60]蒋永锋.铝合金微弧氧化陶瓷层的制备工艺及陶瓷层生长过程的研究:[博士学位论文].西安理工大学,2001
    [61]朱静.铝合金微弧氧化陶瓷层生长过程及耐磨性能的研究:[博士学位论文].西安理工大学,2004
    [62]辛铁柱.铝合金表面微弧氧化陶瓷膜生成及机理的研究:[博士学位论文].哈尔滨工业大学,2006
    [63]辛铁柱,赵万生,刘晋春.电源参数对铝合金表面微弧氧化陶瓷膜的影响研究[C].2005年中国机械工程学会年会论文集,2005,486-489
    [64]严志军,朱新河,程东,等.影响铝合金微弧氧化成膜效率的因素分析[J].大连海事大学学报,2007,33(4):113-117
    [65]Voevodin N N, Balbyshev V N, Khobaib M, et al. Nanostructured Coatings Approach for Corrosion Pro-tection[J]. Progress in Organic Coatings,2003,47 (3-4):416-423
    [66]Liu Y H, Guo Z X, Yang Y, et al. Laser (a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al2O3 powders[J]. Applied Surface Science, 2006,407(1-2):201-207
    [67]潘建平,彭开萍,陈文哲.溶胶-凝胶法制备薄膜涂层的技术与应用[J].腐蚀与防护,2001,22(8):339-342
    [68]洪新华,李保国.溶胶-凝胶(Sol-gel)方法的原理与应用[J].天津师范大学学报(自然科学版),2001,21(1):5-8
    [69]李国英.材料及其制品表面加工技术[M].长沙:中南大学出版社,2003,456-466
    [70]Vasconcelos D C L, Carvalho J A N, Mantel M, et al. Corrosion Resistance of Stainless Steel Coated with Sol-gel Silica[J]. Journal of Non-Crystalline Solids, 2000,273(1-3):135-139
    [71]Thim G P, OliveiraM A S, Oliveira E D A, et al. Sol-GelSilica Film Preparation from Aqueous Solutions for Corrosion Protection[J]. Journal of Non-Crystalline Solids,2000,273(1-3):124-128
    [72]Voevodin N, Jeffcoate C, Simon L, et al. Characterization of Pitting Corrosion in Bare and Sol-Gel Coated Aluminum 2024-T3 Alloy[J]. Surface and Coatings Technology,2001,140 (1):29-34
    [73]Khramov A N, Voevodin N N, Balbyshev V N, et al. Hybrid Organo-Ceramic Corrosion Protection Enatings with Encapsulated Organic Corrosion Inhibitors[J]. Thin Solid Films,2004,447-448:549-557
    [74]李玉亭,张尼尼,王芳,等.改性二氧化硅溶胶的制备及成膜过程[J].稀有金属材料与工程,2008,37(SP2):107-110
    [75]Masalski J, Gluszek J, Zabrzeski J, et al. Improvement in Corrosion Resistance of the 316L Stainless Steel by Means of Al2O3 Coatings Deposited by the Sol-Gel Method[J]. Thin Solid Films,1999,349 (1-2):186-190
    [76]高跃红,周虎强.低碳钢表面改性用耐磨无机涂层的研究[J].湖南有色金属,2009,25(6):39-41
    [77]李海滨,梁开明,梅乐夫,等.溶胶-凝胶法制备的Zr02涂层对低碳钢腐蚀的防护[J].腐蚀科学与防护技术,2002,14(2):92-94
    [78]Voevodin N N, Grebasch N T, Soto W S, et al. An Organically Modified Zirconate Film as a Corrosion-Resistant Treatment for Aluminum 2024-T3[J]. Progress in Organic Coatings,2001,41(4):287-293
    [79]朱立群,刘晨敏,李雪源.不锈钢表面溶胶-凝胶/微胶囊复合膜层的研究[J].北京航空航天大学学报,2001,27(2):133-136
    [80]陈云霞,刘维民.溶胶-凝胶法制备的Zr02薄膜的摩擦学性能研究[J].摩擦学学报,2001,21(4):274-278
    [81]闫海乐,茹红强,喻亮,等.溶胶-凝胶法陶瓷表面氧化锆薄膜的制备、性能及影响机制[J].材料保护,2010,43(2):9-12
    [82]钟显康.镁合金表面耐蚀性溶胶-凝胶膜层的制备与修复研究:[硕士学位论文].西南大学,2010
    [83]Kasten L S, Grant J T, Grebasch N, et al. An XPS Study of Cerium Dopants in Sol-Gel Coatings for Aluminum 2024-T3[J]. Surface and Coatings Technology,2001,140 (1):11-15
    [84]彭定敏,杜雪岩,刘振祥,等.Ce02薄膜的制备和表征[J].真空科学与技术,1998,18(4):247-251
    [85]纪红,许越,周德瑞,等.铈纳米膜对LY12铝合金表面耐蚀性能的影响[J].中国稀土学报,2003,21(3):303-306
    [86]靳惠明,周小卫,张林楠.溶胶-凝胶法涂覆氧化铈对铬表面氧化膜生长机制的影响[J].纳米技术与精密工程,2009,7(1):10-14
    [87]贾希光,陈善华,陶乔,等.镁合金表面二氧化铈薄膜的制备及其性能[J].材料保护,2009,42(4):47-50
    [88]唐正姣,欧阳贻德,陈中,等.Ti02涂层耐蚀性能和抗高温氧化性能[J].电镀与涂饰,2003,22(1):45-47
    [89]陈丽娟,田进涛,刘学忠,等.二氧化钛纳米薄膜溶胶-凝胶法制备研究[J].现代技术陶瓷,2008,(3):4-7
    [90]Maggio R D, Fedrizzi L, Rossi S, et al. Dry and Wet Corrosion Behavior of All 304 Stainless Steel Coated by Sol-Gel ZrO2-CeO2Films[J]. Thin Solid Films, 1996,286(1-2):127-135
    [91]Boysen W, Frattini A, Pellegri N, et al. Protective Coatings on Copper Prepared by Sol-Gel for Industrial Applications [J]. Surface and Coatings Technology, 1999,122(1):14-17
    [92]Song Y S, Lee D Y, Kim B Y. Effect of Glass Frit Addition on Corrosion Resistance of Ti/TiO2/IrO2-RuO2 Films[J]. Material Letters,2004,58(6): 817-823
    [93]王栋.溶胶-凝胶法Si02封孔涂层的制备及性能研究:[硕士学位论文].武汉:华中科技大学,2006
    [94]Floch H G, Belleville F, Priotton J J. Sol-gel Optical Coatings for Laser[J]. Am. Ceram. Soc. Bull.,1995,74(1):60-63
    [95]李澄,周一扬,黄明珠SiO2-TiO2-ZrO2涂层的制备及其特性[J].材料保护,2002,35(5):7-9
    [96]杨昱,李英杰,许越.用溶胶一凝胶法制备保护涂层的研究进展[J].材料保护,2005,38(9):35-39
    [97]范松岩.镁合金微弧氧化电解液配方及膜层着色研究:[硕士学位论文].兰州:兰州理工大学,2006
    [98]李瑛,余刚,刘跃龙,等.镁合金的表面处理及其发展趋势[J].表面技术,2003,32(2):1-5
    [99]台洪波.镁合金微弧氧化一步着色及电解液寿命研究:[硕士学位论文].长春:长春理工大学,2009
    [100]蒋百灵,李均明,时慧英,等.微弧氧化技术在镁合金防护处理中的应用[J].汽车工艺与材料,2003,(5):24-27
    [101]Gray J E, Luan B. Protective coatings on magnesium and its alloys-a Critical review[J]. Journal of Alloys and Compounds,2002,336(18):88-113
    [102]李建中,田彦文,崔作兴.镁合金微弧氧化-化学镀的研究[J].稀有金属材料与工程,2007,36(3):528-530
    [103]蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J].稀有金属材料与工程,2005,34(3):393-395
    [104]周慧,李争显,杜继红,等.锆合金表面交流微弧氧化膜组织与性能的研究[J].稀有金属材料与工程,2005,34(8):1330-1333
    [105]Guo Hongfei, An Maozhong. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance[J], Applied Surface Science,2005, 246(1-3):229-233
    [106]Snizhko L O, Yerokhin A L, Pilkington A, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions[J], Electrochimica Acta,2004,49(13):2085-2090
    [107]American Society for Metals on Cleaning and Finishing of Magnesium Alloys. Cleaning and Finishing of Magnesium Alloys[A]. ASM International Metal Handbook 9th Edition Vol.5 Surface Cleaning, Finishing and Coating. U.S.A: ASM International,1982.628-649
    [108]Froats A, Aune T K, Hawke D, et al. Corrosion of Magnesium and Magnesium Alloys[A]. ASM International Metal Handbook 9th Edition Vol.13 Corrosion. U.S.A:ASM International,1987:740-754
    [109]Delong H K. Anodizing and Surface Conversion Treatments for Magnesium[A]. Lawrence H, Dumey J. Electroplating Engineering Handbook 4th Edition. Wokingham Berkshire:Van Nostrand Reinhold, Co.,1984: 410-418
    [110]Kozak O. Method of Coating Article of Magnesium and an Electrolytic Bath Therefore[P]. U.S. Patent:4620904,1986
    [111]Kobayashi W. Anodizing Solution for Anodic Oxidation of Magnesium or Its Alloys[P]. U.S. Patent:4744872,1988
    [112]Bartak D E, Lemieux B E. Hard Anodic Coating for Magnesium Alloys[P]. U.S. Patent:5470664,1995
    [113]Duan Hongping, Yan Chuanwei, Wang Fuhui. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J].Electrochimica Acta,2007,52(11):3785-3793
    [114]Liang Jun, Hu Litian, Hao Jingcheng. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes[J]. Applied Surface Science,2007,253(10):4490-4496
    [115]蒋百灵,吴国建.镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-7
    [116]Jin Fanya, Chu Paul K, Xu Guidong, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Materials Science and Engineering A,2006,435-436:123-126
    [117]Chen Fei, Zhou Hai, Yao Bin, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surface and Coatings Technology,2007, 201(9-11):4905-4908
    [118]石玉龙,张欣宇.氢氧化钠电解液中铝合金的微弧氧化[J].新技术新工艺,2002,(8):39-40
    [119]Cai Qizhou, Wang Lishi, Wei Bokang, et al. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes[J]. Surface and Coatings Technology,2006, 200(12-13):3727-3733
    [120]Ma Yueyu, Hu Henry, Northwood Derek, et al. Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi method[J]. Journal of Materials Processing Technology, 2007,182(1-3):58-64
    [121]邓姝皓,易丹青,龚竹青,等.镁合金微弧氧化膜的制备工艺研究[J].材料科学与工艺,2007,15(1):22-25
    [122]Khaselev O, Yahalom J. Constant voltage anodizing of Mg-Al alloys in KOH-Al(OH)3solutions[J].JElectrochemSoc,1998,145(1):190-193
    [123]Liang Jun, Guo Baogang, Tian Jun, et al. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate-KOH electrolyte [J]. Surface and Coatings Technology,2005,199(2-3):121-126
    [124]薛文斌,邓志威,陈通和,等.铸造镁合金微弧氧化机理[J].稀有金属材料与工程,1999,28(6):353-355
    [125]于霞.镁合金AZ31环保型阳极氧化工艺及基础理论研究:[博士学位论文].长沙:中南大学,2006
    [126]Krysmann W, Kurze P, Dittrich K H, et al. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge(ANOF) [J]. Cryst. Res. Technol.,1984,19(7):973-979
    [127]Ma Y, Nie X, Northwood D O, et al. Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection[J]. Thin Solid Films,2006,494(1-2):296-301
    [128]赵晖,刘正,马荣峰.AZ91镁合金微弧氧化处理研究[J].金属热处理,2006,31(8):12-14
    [129]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3):141-143
    [130]汝继刚.高密度光学头悬线式力矩器动态特性的研究:[博士学位论文].北京:清华大学,2006
    [131]王显凤,吴品江,魏萍,等.田口(Taguchi)实验设计法优选中药材补骨脂的提取工艺[J].成都中医药大学学报,2010,33(2):80-83
    [132]Shi Zhiming, Song Guangling, Atrens Andrej. Influence of the β phase on the corrosion performance of anodised coatings on magnesium-aluminium alloys [J]. Corrosion Science,2005,47(11):2760-2777
    [133]骆海贺,蔡启舟,魏伯康.AZ91D镁合金微弧氧化工艺参数的优化[J].特 种铸造及有色合金,2007,27(7):554-556
    [134]梁军,郭宝刚,田军,等.镁合金微弧氧化膜的SEM研究[J].电子显微学报,2004,23(4):445-445
    [135]Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochim Acta,2006,51 (14):2898-2908
    [136]刘君,强颖怀,熊党生.3种溶液体系中镁合金微弧氧化研究第一部分-氧化膜的相组成及其耐蚀性[J].电镀与涂饰,2006,25(10):38-42
    [137]Bai Allen, Chuang Poyao, Hu Chichang. The corrosion behavior of Ni-P deposits with high phosphorous contents in brine media[J]. Mater. Chem. Phys. 2003,82(1):93-100
    [138]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995:91-99
    [139]贾峥,戴长松,陈玲.电化学测量技术[M].北京:化学工业出版社,2006:157-168
    [140]宋光玲.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:203-209
    [141]Phani A R, Gammel F J, Hack T. Structural mechanical and corrosion resistance properties of Al2O3-CeO2 nanocomposites in silica matrix on Mg alloys by a sol-gel dip coating technique[J]. Surf Coat Technol,2006, 201(6):3299-3306
    [142]Khramov A N, Balbyshev V N, Kasten L S, et al. Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys[J]. Thin Solid Films,2006,514(1-2):174-181
    [143]HuJY, Li Q, Zhong X K, et al. Novel anti-corrosion silicon dioxide coating prepared by sol-gel method for AZ91D magnesium alloy [J]. Prog Org Coatings,2008,63(1):13-17
    [144]蔡启舟,王栋,骆海贺.镁合金微弧氧化膜的SiO2溶胶封孔处理研究[J].特种铸造及有色合金,2006,26(10):612-614
    [145]Tan A L K, Soutar A M, Annergren I F, et al. Multilayer sol-gel coatings for corrosion protection of magnesium[J]. Surf. Coat. Technol.2005,198 (1-3):478-482
    [146]Tamar Y, Mandler D. Corrosion inhibition of magnesium by combined zirconia silica sol-gel films[J]. Electrochim. Acta,2008,53(16):5118-5127
    [147]中华人民共和国机械电子工业部.JB/T 6073-92.金属覆盖层实验室全侵腐蚀试验.北京:机械电子工业部机械标准化研究所,1992-9-1
    [148]唐正姣,欧阳贻德,陈中.Ti02涂层耐蚀性能研究[J].腐蚀与防护,2003,24(3):96-98
    [149]周健儿,许爱民,张小珍,等CaO·6MgO·4Zr4(PO4)6耐碱腐蚀涂层制备及其性能[J].过程工程学报,2006,6(6):987-990
    [150]陈文梅,杨尊先,赵修建.工艺参数对Ti02薄膜性能的影响[J].玻璃与搪瓷,2001,29(4):18-21
    [151]Blawert C, Heitmann V, Dietzel W, et al. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys[J], Surface and Coatings Technology,2005,20(1-4):68-72
    [152]Bai Allen, Chuang Poyao, Hu Chichang, The corrosion behavior of Ni-P deposits with high phosphorous contents in brine media[J], Materials Chemistry and Physics,2003,82(1):93-96
    [153]Yao Zhongping, Jiang Zhaohua, Sun Xuetong, et al. Influence of the frequency on the structure and corrosion resistance of ceramic coatings on Ti-6Al-4V alloy produced by micro-plasma oxidation[J], Materials Chemistry and Physics,2005,92(2-3):408-413
    [154]于兴文,曹楚南.循环阳极极化曲线评价LY12A1合金表面稀土转化膜耐腐蚀性能的研究[J].腐蚀科学与防护技术,2001,(1):49-51
    [155]蒋百灵,张先锋,朱静.铝合金镁合金微弧氧化陶瓷层的形成机理及性能[J].西安理工大学学报,2003,19(4):297-302
    [156]张淑芬,张先锋,蒋百灵.镁合金微弧氧化陶瓷层形成及生长过程的研究[J].中国表面工程,2004,(64):35-38
    [157]薛文斌,邓志威,来永春,等.ZM5镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998,13(3):42-45
    [158]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术,2001,29(11):1-2
    [159]黄光胜,范永革,汤爱涛,等.镁及镁合金腐蚀最新研究进展[J].材料导报,2002,16(4):38-40
    [160]姚美意,周邦新,王均安.电压对镁合金微弧氧化膜组织及耐蚀性的影响[J].材料保护,2005,38(6):7-10
    [161]Alex J Z, Duane E B. Anodized Coatings for Magnesium Alloys [J]. Metal Finishing,1994,92(3):39-44.
    [162]郝建民,陈宏,张荣军,等.镁合金微弧氧化陶瓷层的耐蚀性[J1.中国有 色金属学报,2003,13(4):988-991
    [163]刘亚萍,段良辉,潘俊德,等.镁合金微弧氧化陶瓷膜的微观结构和耐腐蚀性能[J].材料保护,2006,39(2):49-51
    [164]周玲伶,易丹青,邓姝皓,等.镁合金无铬微弧氧化新工艺[J].材料保护,2006,39(1):20-24
    [165]Kedam M, Kuntz C, Takenouti H, et al. Exfoliation corrosion of aluminum alloys examined by electrode impedance[J]. Electrochimica Acta,1997, 42(1):87-97
    [166]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270
    [167]Goeminne G, Terryn H, Vereecken J. Characterisation of conversion layers on aluminum by means of electrochemical impedance spec-troscopy[J]. Electr. Acta,1995,40(4):479-486
    [168]Schram T, Goeminne G, Terryn H, et al. Study of the composition[J]. Metal Finishing,1995,93:91-95
    [169]王燕华,王佳,张际标.镁合金微弧氧化过程中不同电压下获得膜层的性能研究[J].中国腐蚀与防护学报,2005,25(5):267-270
    [170]王文峰.NiO固体及表面吸附反应电子结构的密度泛函研究:[博士学位论文].福州,福州大学,2005
    [171]刘衍贞.前线轨道理论在化学中的应用[J].潍坊学院学报,2002,2(2):42-44
    [172]Baril G, Pebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions[J]. Corrosion Science,2001,43(3):471-475
    [173]Inoue H, Sugahara K, Yamamoto A, et al. Corrosion rate of magnesium and its alloys in buffered chloride solutions[J]. Corrosion Science,2002, 44(3):603-607
    [174]Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys[J]. Corrosion Science,2003, 45(12):2741-2755
    [175]Zidoune M, Grosjean M H, Roue L, et al. Comparative study on the corrosion behavior of milled and unmilled magnesium by electrochemical impedance spectroscopy[J]. Corrosion Science,2004,46(12):3041-3045
    [176]Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy [J]. Materials and Design,2004,25(7):637-643
    [177]Song G, Atrens A, Wu X, et al. Corrosion behavior of AZ21, AZ50 and AZ91 in sodium chloride[J]. Corrosion Science,1998,40(10):1769-1791
    [178]Zhang Y, Yan C, Wang F, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2002,161(1):36-43
    [179]Ma Y, Nie X, Northwood D O, et al. Corrosion and erosion properties of silicate and phosphate coatings on magnesium [J]. Thin Solid Films,2004, 469-470:472-477
    [180]郅青,高瑾,董超芳,等.AZ91D镁合金微弧氧化膜的腐蚀行为研究[J].金属学报,2008,44(8):986-990
    [181]杨巍,时惠英,蒋百灵,等.镁合金微弧氧化陶瓷膜耐蚀性的无损评价[J].金属热处理,2009,34(10):30-33
    [182]方世杰,闵志宇,刘耀辉.SRB对微弧氧化AZ91镁合金的腐蚀影响[J].重庆理工大学学报,2010,24(4):49-53
    [183]Pebere N, Riera C, Dabosi F. Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy[J]. Electrochim Acta,1990,35(2):555-561
    [184]Hunkovic M M, Barbic R, Grubac Z. Impedance spectroscopic study of aluminium and Al-alloys in acid solution:inhibitory action of nitrogen containing compounds[J]. J. Appl Electrochem,1994,24:772-778
    [185]Breslin C B, Rudd A L. Activation of pure Al in an indium-containing electrolyte-an electrochemical noise and impedance study[J]. Corrosion Science,2000,42(6):1023-1039
    [186]文强,曹发和,张昭.脉冲方波对镁合金AZ91D阳极氧化的影响[J].腐蚀科学与防护技术,2009,21(2):182-184
    [187]钟丽应,曹发和,施彦彦,等.AZ91镁合金表面钟基稀土转化膜的制备及腐蚀电化学行为[J].金属学报,2008,44(8):979-985
    [188]张丽君,张昭,张鉴清.阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为[J].物理化学学报,2008,24(10):2831-2838
    [189]Chen M, Yu Q S, Reddy C M, et al. Model study investigating the role of interfacial factors in electrochemical impedance spectroscopy measurements [J]. Corrosion,2000,56(7):709-721
    [190]张永君.镁及镁合金环保型阳极氧化表面改性技术研究:[博士学位论文], 中国科学院金属研究所,2003
    [191]王燕华,镁合金微弧氧化膜的形成过程及腐蚀行为研究:[博士学位论文],中国科学院海洋研究所,2005
    [192]郭洪飞,安茂忠,徐莘,等.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响[J].材料工程,2006,(3):29-36
    [193]范佳敏.溶胶凝胶法在制备AZ91D镁合金复合涂层技术中的应用研究:[硕士学位论文],云南,西南大学,2009
    [194]李劲风,郑子樵,张昭,等.铝合金剥蚀过程的电化学阻抗谱分析[J].中国腐蚀与防护学报,2005,25(1):48-52
    [195]李海先.镁合金环保型阳极氧化及着色工艺的研究:[硕士学位论文],哈尔滨,哈尔滨工业大学,2008
    [196]李菊霞.环保型酸性络合染料的研制及应[J].皮革化工,2005,22(2):15-17
    [197]Wang Y M, Jiang B L, LeiTQ, et al. Effects of Electrical Parameters on the Microstructure of Microarc Oxidation Ceramic Coatings on Ti6A14V Alloy[J]. Journal of Inorganic Materials,2003,18(6):1325-1330
    [198]杨春霞.稀土镁合金微弧氧化着色技术研究:[硕士学位论文],长春,长春理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700