新型含磷阻燃剂的合成及无卤阻燃交联EVA复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高分子材料的不断蓬勃发展,由此带来的火灾隐患和火灾危害成为人们关注的重要问题。当前,对高性能、高效、环境友好聚合物阻燃材料的要求不断提高,阻燃评价方法不断完善和更加科学,世界各国阻燃法规日趋严格,特别是欧盟两项指令“废弃电子电器设备指令"(West Electrical and Electronic Equipment Directive,WEEE)(2003年3月生效)及“电子电器设备中禁用有害物质指令”(Restriction of Hazardous Substances Directive,RoHS)的颁布,使得传统卤素等阻燃体系受到严峻挑战,研究和开发新型高效的无卤阻燃体系显得非常迫切和必要。聚烯烃材料在电线电缆领域被广泛使用。EVA树脂是聚烯烃材料家族中的重要成员之一,它的氧指数较低(< 19%),燃烧时热释放速率较大,并伴有熔融低落和大量烟雾,因此必须进行阻燃改性。本论文选择具有较高VA含量(50%)的EVA为基体树脂,采用过氧化物DCP进行交联;首先通过三氯氧磷(POCl_3)与季戊四醇(PER)脱氯化氢的反应合成含磷阻燃剂中间体—双官能团化合物螺环季戊四醇双磷酸酯二酰氯(SPDPC),然后将SPDPC与DOPO结合起来合成出两种不同分子结构的新型含磷阻燃剂(SPDH和SPDV),将SPDH和SPDV分别应用于EVA的阻燃,研究其阻燃机理;采用过氧化物交联方法,考察氢氧化铝、氢氧化镁无卤阻燃EVA复合材料的阻燃、力学、电学和热老化等性能,并将合成的含磷含硅阻燃剂SPDV用于EVA/MDH复合材料的阻燃优化研究;同时,研究SPDV改性MWCNTs和OMMT阻燃交联EVA基复合材料的阻燃性能,深入分析其阻燃机理;分别采用CaCO_3、NG、EG对EVA/APP/PER/ZB阻燃交联复合材料进行阻燃优化,研究石墨膨胀及氧化前后对EVA基交联复合材料阻燃性能的影响,分析材料成炭性与阻燃性能的关系,研究和探讨其阻燃机理。研究无机填充EVA基复合材料的导热与阻燃性能的关系。
     ⒈新型含磷阻燃剂(SPDH和SPDV)的合成及表征:
     从分子设计和合成出发,采用化学反应将几种阻燃官能团结合到单分子阻燃剂当中;以三氯氧磷(POCl_3)、季戊四醇(PER)、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、对苯醌(HQ)和乙烯基甲基二甲氧基硅烷(VMDMS)为原料,合成出含磷阻燃剂SPDH和含磷含硅阻燃剂SPDV,通过FTIR、NMR、GPC、TGA等测试和分析对两类阻燃剂中间体和终产物进行结构表征和热性能分析。TGA测试结果表明:阻燃剂SPDH和SPDV均具有良好的成炭性,相比较而言在空气中SPDV的炭渣热稳定性更高,温度达800℃时的残炭量仍为44.6%,这是由于SPDV在受热氧作用下可以形成硅氧硅的交联结构,从而提高了其残炭高温下的热稳定性。
     ⒉SPDH、SPDV阻燃交联EVA基复合材料的研究
     将合成的两种阻燃剂SPDH和SPDV分别应用于EVA的阻燃改性,采用熔融共混的方法制备无卤阻燃交联EVA/SPDH和EVA/SPDV复合材料,研究结果表明:阻燃剂SPDH和SPDV的加入都降低了EVA的PHRR、THR、EHC和MLR,提高了其FPI、燃烧成炭率和LOI,当阻燃剂SPDV添加量达20phr时,其UL-94垂直燃烧可达V-2级,研究表明EVA/SPDH和EVA/SPDV复合材料的阻燃性均得到明显改善;SPDH和SPDV的加入降低了材料的初始热分解温度,点燃时间稍有缩短;EVA/SPDH阻燃交联复合材料的生烟速率和总生烟量均有所增加,而阻燃剂SPDV的加入使得材料的总生烟量有所降低,EVA/SPDV复合材料的残炭量提高更明显,这与含硅化合物的引入提高了炭层的热稳定性并促进成炭有关。通过SEM观察燃烧残炭,可以发现EVA/SPDH复合材料的炭渣出现一些小的孔洞结构,而EVA/SPDV阻燃交联复合材料的炭渣相对前者较为致密,EDS测试结果发现其炭渣外表面硅含量较内部稍高,表明在燃烧时含硅化合物会向炭层表面迁移,这提高了炭层的热稳定性。
     ⒊纳米阻燃剂(MWCNTs、OMMT)阻燃交联EVA基复合材料的研究
     采用合成的阻燃剂SPDV对MWCNTs进行有机化改性得到MWCNTs-g-SPDV,分别采用FTIR、NMR、TEM和TGA对其结构和热性能进行表征;将MWCNTs和MWCNTs-g-SPDV分别应用于EVA的阻燃,研究结果表明:EVA基阻燃交联复合材料的热稳定性得到改善,同时其PHRR、AHRR均明显降低,TTI、FPI和燃烧残渣均明显增加,表明EVA的阻燃性明显改善;与未改性的MWCNTs相比较,改性后的MWCNTs-g-SPDV对EVA阻燃性的提高更明显,这与其在EVA基体中分散性的提高及其引入的阻燃剂具有促进成炭作用有关。另一方面,将MMT和OMMT分别应用于EVA的阻燃,采用XRD、TEM表征EVA/MMT和EVA/OMMT复合材料的微观结构;研究结果表明:EVA/OMMT插层复合材料的阻燃性得到明显改善,而MMT的加入对阻燃性的改善很小,这是由于OMMT与EVA基体形成插层复合结构,燃烧过程中蒙脱土的无机片层会向材料表面迁移并形成类似“迷宫”的屏障结构,从而起到隔热隔氧的作用,并促进成炭,从而有效提高阻燃性能;而燃烧时OMMT的迁移运动能力是影响成炭性和阻隔作用的重要因素。
     ⒋无机金属氢氧化物(ATH、MDH)阻燃交联EVA基复合材料的性能及其阻燃优化研究
     分别采用乙烯基甲基二甲氧基硅烷(VMDMS)改性的ATH和氨基硅烷改性的MDH为阻燃剂,DCP为交联剂,DDA为防老剂组成的不同配方,考察其阻燃、力学、电学、热老化和流变性能,研究结果表明:EVA/ATH、EVA/MDH复合材料的阻燃性均明显提高,拉伸强度和断裂伸长率有所降低,击穿强度和体积电阻率略有下降,但仍保持了较高的水平,可以满足无卤阻燃电缆护套材料的使用要求;当DDA的添加量由0.5phr增加到2.5phr时,优化的EVA/MDH复合材料耐温等级由原来105℃提高到125℃。同时,将合成的阻燃剂SPDV对EVA/MDH复合材料进行阻燃优化,研究结果表明:EVA/MDH复合材料的阻燃性进一步提高,UL-94垂直燃烧可达V-0级,MDH和SPDV并用具有明显的膨胀阻燃现象,具有协同阻燃效应;无机阻燃剂MDH在燃烧过程中可以抵抗热辐照和火焰作用引起的样品变形及熔滴,同时MDH和SPDV并用发生膨胀阻燃作用,形成的炭层具有更高的强度,可以更有效的起到屏蔽阻隔和发挥磷/硅的阻燃作用,由此提高阻燃效率。
     ⒌膨胀阻燃体系阻燃交联EVA基复合材料的阻燃性能及其机理研究
     分别采用CaCO_3、NG、EG对EVA/APP/PER/ZB阻燃交联复合材料进行阻燃优化,研究结果发现:CaCO_3、NG、EG的加入均进一步降低了复合材料的PHRR、THR、SPR,增加了FPI、TTI及燃烧残渣,表明其阻燃性和抑烟性均进一步改善,表现出明显的阻燃协同效应。分析和研究其炭渣结构发现:CaCO_3、NG、EG的加入均明显提高了炭渣的热稳定性和强度,这是其阻燃性进一步改善的重要原因。进一步研究NG、EG和GO阻燃交联EVA基复合材料的阻燃性,研究结果发现:EVA/EG复合材料的阻燃性和抑烟性提高最明显,而EVA/NG、EVA/GO复合材料的阻燃性提高幅度相对较低,EVA/GO复合材料的抑烟性提高最小。原因是由于EG燃烧时发生巨大膨胀,形成许多具有层间空隙的石墨保护层,有效延缓了热、氧的传递,降低了燃料的热分解和扩散速度,并促进成炭;而EVA/NG、EVA/GO阻燃交联复合材料几乎没有膨胀阻燃效果,GO因为氧化作用其石墨片层受到破坏,阻隔性下降,热稳定性大大降低,因此对阻燃性的提高比较有限,阻燃性和抑烟性均低于NG和EG。
     ⒍无机填充EVA基复合材料的导热与阻燃性能的关系探讨
     测试和分析无机填充EVA/MDH、EVA/ATH、EVA/EG、EVA/MMT和EVA/Cu复合材料的导热与阻燃性的关系,研究结果表明:无机填充EVA基复合材料的导热系数与点燃时间的变化呈正比例变化关系,可以通过提高EVA的导热性来提高其点燃时间,从而改善其耐燃性。
With the continued vigorous development of polymer materials, the resulting fire hidden trouble and fire hazards become important issues of concern. Currently, high-performance, efficient, environmentally friendly flame retardant polymer materials are ever increasing, fire-retardant evaluation methods continue to improve and become more scientific, the more stringent fire regulations, in particular, the EU issued two directives“West Electrical and Electronic Equipment Directive (WEEE)”and“Restriction of Hazardous Substances Directive (RoHS)”, the traditional halogens are faced with severe challenges as flame retardant system, research and development of new efficient halogen-free flame retardant system is very urgent and necessary. The polyolefin materials are widely used in the field of wire and cable. EVA is one important member of the polyolefin materials, its oxygen index is low (<19%), with higher heat release rate while combustion, and accompanied by melting dripping and a lot of smoke, so it must be modified through flame retardant. In this paper, the EVA with higher VA content (50%) was selected as the matrix resin, peroxide DCP was used as crosslinked agent. Firstly, spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC) was synthesized through simple dehydrochlorination reaction of pentaerythritol (PER) and phosphorus oxychloride (POCl_3); Secondly, the novel flame retardant (SPDH) containing phosphorus and another novel flame retardant (SPDV) containing phosphorus and silicon with a different molecular structure were synthesized from SPDPC and DOPO derivatives, respectively. The synthesized SPDH and SPDV were used for the flame retardancy in EVA, respectively, and the flame retardant mechanism was investigated. On the other hand, the method of peroxide crosslinking was used, and the flame retardant, mechanical, electrical and thermal aging properties were investigated for the halogen-free flame retardant EVA composites filled with ATH and MDH, respectively. The synthesized SPDV containing phosphorus-silicon was used for the flame retardant optimizing of EVA/MDH cross-linked composites. Meanwhile, the effect of flame retardant properties was studies by OMMT and MWCNTs organically modified with SPDV for EVA-based cross-linked composites. And also, CaCO_3, nature graphite (NG) and expandable graphite (EG) was used respectively for the flame retardant optimizing of EVA/APP/PER/ZB cross-linked composites; NG, EG and graphite oxide (GO) was utilized for the flame retardant of EVA-based cross-linked composites. The relationship between charring and flame retardant properties was analyzed in detail, and the flame retardant mechanism was discussed. Finally, the possible correlation between heat conduction and flame retardancy was studied for EVA-based composites loaded with different inorganic fillers.
     ⑴The synthesis and characterization of new phosphorus-containing flame retardants First, phosphorus oxychloride (POCl_3) was reacted with pentaerythritol (PER) to form a intermediate product named spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC). After that, the novel flame retardant (SPDH) containing phosphorus and another novel flame retardant (SPDV) containing phosphorus and silicon with a different molecular structure were synthesized from SPDPC and DOPO derivatives. The structure of the intermediate products (SPDPC, DOPO-HQ and DOPO-VMDMS) and the end products (SPDH and SPDV) was characterized by Fourier transform infrared spectroscopy (FTIR),Nuclear Magnetic Resonance (IH NMR, 31P NMR). The thermal properties of SPDH and SPDV were investigated by thermogravimetric analysis (TGA) in both nitrogen and air. It was found that SPDV had better char yield in air (44.6%) than in nitrogen at 800℃while SPDH had good char yield only in nitrogen at 800℃, which indicates that oxygen can help the charring progress of silicon-containing compounds and the improvement of heat-resistance for char residue.
     ⑵Research on the effect of flame-retardant cross-linked EVA-based composites by SPDH and SPDV
     The synthesized two flame retardants (SPDH and SPDV) were used in EVA respectively, and the corresponding halogen-free flame-retardant cross-linked EVA/SPDH and EVA/SPDV composites were prepared by melt blending. The results showed that the PHRR, THR, EHC, and MLR were significantly reduced, and FPI, char yield and LOI were increased for the addition of flame retardants SPDH and SPDV, respectively. UL-94 vertical test indicated that V-2 grade can be obtained by the addition of 20phr flame retardants. It was found that the flame retardant was significantly improved for the cross-linked EVA/SPDH and EVA/SPDV flame retardant composites. The initial decomposition temperature and ignition time was slightly shortened because of the addition of SPDH and SPDV. The smoke production rate (SPR) and total smoke release (TSR) of flame-retardant cross-linked EVA/SPDH composites increased, while TSR was reduced and char residue was enhanced more evidently for flame-retardant cross-linked EVA/SPDV composites, which of the reason was the introduction of silicon-containing compounds promoting the char formation and its thermal stability. It can be found that the char residue presented some small pores for flame retardant cross-linked EVA/SPDH composites while it showed more compact for flame retardant cross-linked EVA/SPDV composites from SEM photos, and EDS results showed that the outer surface of silicon content was higher than that of the inner because of the migration of silicon compounds, which enhanced the thermal stability of the carbon layer.
     ⑶Research on the effect of flame-retardant cross-linked EVA-based composites by nano-flame retardants (MWCNTs, OMMT)
     The synthesized flame retardant SPDV was used to the organic modification of the MWCNTs to be MWCNTs-g-SPDV, and its structure and thermal stability was characterized by FTIR, NMR, TEM and TGA, respectively. Both MWCNTs and MWCNTs-g-SPDV was utilized to the flame retardant of EVA. It can be found that the thermal stability was improved for flame-retardant cross-linked EVA composites. The PHRR, AHRR were significantly decreased, and TTI, FPI and combustion residue was increased significantly, which indicating that the flame retardant was enhanced significantly; and also the more obvious improvement for the addition of MWCNTs-g-SPDV because of the dispersion of improving in the EVA matrix and promoting the charring while combustion. On the other hand, MMT and OMMT was used in EVA, respectively. XRD and TEM was utilized to the characterization of microstructure for flame-retardant cross-linked EVA/MMT and EVA/OMMT composites. The results showed that the flame resistance was significantly improved for flame-retardant cross-linked EVA/OMMT composites, while it was slight on the improvement of flame resistance for the addition of MMT. This reason was the formation of intercalated structure by OMMT and EVA matrix, and the inorganic montmorillonite layers can migrate to the surface in the combustion process and form similar to the "labyrinth" structure, which played a role in barrier protection and promoted charring.
     ⑷Research on the effect of flame-retardant cross-linked EVA-based composites by inorganic metal hydroxide (ATH, MDH) and its optimization of flame retardant by SPDV
     It was composed of different formulations by ATH modified with vinyl methyl dimethoxy silane (VMDMS) and MDH modified with amino silane as flame retardants, respectively, and DCP as a crosslinking agent, DDA as antioxidant. The flame retardant, mechanical, electrical, thermal aging and rheological properties was studied for flame-retardant cross-linked EVA-based composites. The results showed that: the flame resistance was significantly improved for flame retardant cross-linked EVA composites, while tensile strength and elongation at break was decreased, and breakdown strength and volume resistance was decreased slightly, but still maintained a high level, which can meet the requirements used as halogen-free flame retardant cable sheathing materials. It can be found that the temperature level used at long time was improved to 125℃from 105℃rating for the optimized flame-retardant cross-linked EVA/MDH aging formulation. Meanwhile, the synthetic fire retardant SPDV was used to the flame-retardant optimization for flame-retardant cross-linked EVA/MDH composites. The results showed that the flame retardant was further improved, and it presented obvious intumescent phenomenon. The filled MDH can resist the sample deformation and droplet caused by thermal radiation and flame in the combustion process, and the char can obtain a higher intensity and form a swelled structure. The screen barrier and phosphorus/silicon flame-retardant effect was improved, which enhanced the flame retardant efficiency.
     ⑸Intumescent flame retardant cross-linked EVA-based composites and its mechanism of flame retardant properties
     CaCO_3、NG、EG was used to the flame retardant optimization of the EVA/APP/PER/ZB flame retardant cross-linked composites, respectively. The results showed that the PHRR, THR, SPR were further reduced, and FPI, TTI and combustion residues were further increased significantly for optimized composites, which indicating that the flame retardant and smoke suppression was further improved, showing a certain degree of flame-retardant synergistic effect. It can be found that the thermal stability and strength of char residue was increased duo to the addition of CaCO_3, NG, EG, which was the one of important reasons for the improvement of flame retardancy. Further investigation of the flame-retardant cross-linked EVA composites filled with CaCO_3, NG, EG, it can be found that a obvious improvement of flame retardancy and smoke suppression for flame-retardant cross-linked EVA/EG composites, while a relatively low increase of flame resistance for the flame-retardant cross-linked EVA/NG, EVA/GO composites and a slight enhancement of smoke suppression for the flame-retardant cross-linked EVA/GO composites. A very important reason was that a dramatic expansion can be formed to give a protective screen composed of many graphite layers with hollow structure, which can effectively delay the heat, oxygen transfer, reducing the fuel thermal decomposition and diffusion rate, and promote char formation, while there was almost no effect of intumescent flame retardant for flame-retardant cross-linked EVA/NG, EVA/GO composites. The effect of barrier and thermal stability was greatly reduced for EVA/GO composites because of the oxidation damage of GO.
     ⑹Study on the relationship between thermal conductivity and flame-retardant properties of EVA-based composites loaded with inorganic fillers
     The thermal conductivity and flame retardant properties were tested and analyzed for inorganic filled EVA/MDH, EVA/ATH, EVA/EG, EVA/MMT and EVA/Cu composites. The results showed that it was a directly proportional relationship between the thermal conductivity and ignition time for EVA based composites, and the improvement of thermal conductivity can improve the flame resistance.
引文
1. Georlette P, Reznik E, Kalisky O. Magnesium‐Hydroxide for Flame‐Retardant and Smoke Suppression Application. Kaut Gummi Kunstst 1995;48(7‐8):512‐514.
    2. Hull TR, Stec AA, Lebek K, Price D. Factors affecting the combustion toxicity of polymeric materials. Polym Degrad Stabil 2007;92(12):2239‐2246.
    3. Nazare S, Kandola BK, Horrocks AR. Smoke, CO, and CO_2 measurements and evaluation using different fire testing techniques for flame retardant unsaturated polyester resin formulations. J Fire Sci 2008;26(3):215‐242.
    4. Qu HQ, Wu WH, Xie JX, Xu JZ. Zinc hydroxystannate‐coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride. Fire Mater 2009;33(4):201‐210.
    5. Sacristan M, Hull TR, Stec AA, Ronda JC, Galia M, Cadiz V. Cone calorimetry studies of fire retardant soybean‐oil‐based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polym Degrad Stabil 2010;95(7):1269‐1274.
    6. Saxena NK, Sharma SK. Flame retardant smoke suppressant coatings for PVC sheathed electric cables. J Sci Ind Res India 2002;61(10):805‐809.
    7. Sharma SK, Saxena NK. Flame retardant smoke suppressant protection for poly vinylchloride. Fire Technol 2004;40(4):385‐398.
    8. Shi L, Li DQ, Wang JR, Li SF, Evans DG, Duan X. Synthesis, flame‐retardant andsmoke‐suppressant properties of a borate‐intercalated layered double hydroxide. Clay Clay Miner 2005;53(3):294‐300.
    9. Stec AA, Hull TR, Lebek K. Characterisation of the steady state tube furnace (ISO TS 19700) for fire toxicity assessment. Polym Degrad Stabil 2008;93(11):2058‐2065.
    10. Wang DY, Liu XQ, Wang JS, Wang YZ, Stec AA, Hull TR. Preparation and characterisation of a novel fire retardant PET/alpha‐zirconium phosphate nanocomposite. Polym Degrad Stabil 2009;94(4):544‐549.
    11. Wu ZP, Hu YC, Shu WY. Effect of Ultrafine Zinc Borate on the Smoke Suppression and Toxicity Reduction of a Low‐Density Polyethylene/Intumescent Flame‐Retardant System. J Appl Polym Sci 2010;117(1):443‐449.
    12. Marney DCO, Russell LJ. Combined fire retardant and wood preservative treatments for outdoor wood applications‐ A review of the literature. Fire Technol 2008;44(1):1‐14.
    13. Ostman B, Voss A, Hughes A, Hovde PJ, Grexa O. Durability of fire retardant treated wood products at humid and exterior conditions review of literature. Fire Mater 2001;25(3):95‐104.
    14. Bychkova EV, Rodzivilova IS, Panova LG, Artemenko SE. Adsorption of fire retardant from dilute aqueous solutions onto viscose fiber. Russ J Appl Chem+ 2002;75(10):1591‐1593.
    15. Sen AK, Kumar S. Coir‐fiber‐based fire retardant nano filler for epoxy composites. J Therm Anal Calorim 2010;101(1):265‐271.
    16. Wu Q, Zhu W, Zhang C, Liang ZY, Wang B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 2010;48(6):1799‐1806.
    17. Kaspersma J, Doumen C, Munro S, Prins AM. Fire retardant mechanism of aliphatic bromine compounds in polystyrene and polypropylene. Polym Degrad Stabil 2002;77(2):325‐331.
    18. Onwudili JA, Williams PT. Alkaline reforming of brominated fire‐retardant plastics: Fate of bromine and antimony. Chemosphere 2009;74(6):787‐796.
    19. Roma P, Luda MP, Camino G. Synergistic action of fluorine‐containing additives in bromine antimony fire retardant ABS. Polym Degrad Stabil 1999;64(3):497‐500.
    20. Zanetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA. Fire retardant halogen‐antimony‐clay synergism in polypropylene layered silicate nanocomposites. Chem Mater 2002;14(1):189‐193.
    21. Bridges PE, Palmieri T, Greenhalgh DG. Torchiere‐style halogen floor lamps: A need for fire safety awareness. J Burn Care Rehabil 2000;21(5):447‐449.
    22. Zhang J, Starnes WH. Mechanism for the reductive dehalogenation of "dechlorane plus" by mixtures of antimony(III) oxide and polymers. Acs Sym Ser 2006;922:213‐223.
    23. Ellzey KA, Ranganathan T, Zilberman J, Coughlin EB, Farris RJ, Emrick T. Deoxybenzoin‐based polyarylates as halogen‐free fire‐resistant polymers. Macromolecules 2006;39(10):3553‐3558.
    24. He SQ, Hu Y, Song L, Tang Y. Fire safety assessment of halogen‐free flame retardant polypropylene based on cone calorimeter. J Fire Sci 2007;25(2):109‐118.
    25. Karaivanona MS, Gjurova KM. Non‐halogen‐containing flame‐retardant ethylene‐propylene copolymer compositions for cable insulation with nitrogen‐ and sulfur‐containing fire retardants. J Appl Polym Sci 1997;63(5):581‐588.
    26. Levchik SV, Bright DA, Alessio GR, Dashevsky S. New halogen‐free fire retardant for engineering plastic applications. J Vinyl Addit Techn 2001;7(2):98‐103.
    27. Lyon RE, Emrick T. Non‐halogen fire resistant plastics for aircraft interiors. Polym Advan Technol 2008;19(6):609‐619.
    28. Perret B, Schartel B. The effect of different impact modifiers in halogen‐free flame retarded polycarbonate blends‐ II. Fire behaviour. Polym Degrad Stabil 2009;94(12):2204‐2212.
    29. Espinosa MA, Galia M, Cadiz V. Novel flame‐retardant thermosets: Phosphine oxide containing diglycidylether as curing agent of phenolic novolac resins. J Polym Sci Pol Chem 2004;42(14):3516‐3526.
    30. Faghihi K. A new flame‐retardant polyamide containing phosphine oxide and N,N‐(4,4‐diphenylether) moieties in the main chain: Synthesis and characterization. Turk J Chem 2006;30(5):643‐651.
    31. Faghihi K, Hajibeygi M. New flame retardant and optically active poly(amide‐imide)s based on N‐trimellitylimido‐L‐amino acid and phosphine oxide moiety in the main chain: synthesis and characterization. Mater Sci‐Poland 2010;28(2):545‐556.
    32. Faghihi K, Hajibeygi M, Shabanian M. Novel Flame‐retardant and Thermally Stable Poly(amide‐imide)s Based on Bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic Diimide and Phosphine Oxide in the Main Chain: Synthesis and Characterization. J Chin Chem Soc‐Taip 2009;56(3):609‐618.
    33. Ozarslan O, Bayazit MK, Catiker E. Preparation and Properties of Flame RetardantPoly(urethane‐imide)s Containing Phosphine Oxide Moiety. J Appl Polym Sci 2009;114(2):1329‐1338.
    34. Ren H, Sun JZ, Wu BJ, Zhou QY. Synthesis and properties of a phosphorus‐containing flame retardant epoxy resin based on bis‐phenoxy (3‐hydroxy) phenyl phosphine oxide. Polym Degrad Stabil 2007;92(6):956‐961.
    35. Ribera G, Mercado LA, Galia M, Cadiz V. Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. J Appl Polym Sci 2006;99(4):1367‐1373.
    36. Sponton M, Ronda JC, Galia M, Cadiz V. Flame retardant epoxy resins based on diglycidyl ether of (2,5‐dihydroxyphenyl)diphenyl phosphine oxide. J Polym Sci Pol Chem 2007;45(11):2142‐2151.
    37. Cai YB, Wei QF, Huang FL, Gao WD. Preparation and properties studies of halogen‐free flame retardant form‐stable phase change materials based on paraffin/high density polyethylene composites. Appl Energ 2008;85(8):765‐775.
    38. Chen XL, Jiao CM. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. Fire Safety J 2009;44(8):1010‐1014.
    39. Kandare E, Kandola BK, Price D, Nazare S, Horrocks RA. Study of the thermal decomposition of flame‐retarded unsaturated polyester resins by thermogravimetric analysis and Py‐GC/MS. Polym Degrad Stabil 2008;93(11):1996‐2006.
    40. Lu CX, Wang J, Chen L, Fu QA, Cai XF. The Effect of Adjuvant on the Halogen‐Free Intumescent Flame Retardant ABS/PA6/SMA/APP Blend. J Appl Polym Sci 2010;118(3):1552‐1560.
    41. Nie SB, Hu Y, Song L, He SQ, Yang DD. Study on a novel and efficient flame retardant synergist‐nanoporous nickel phosphates VSB‐1 with intumescent flame retardants in polypropylene. Polym Advan Technol 2008;19(6):489‐495.
    42. Siat C, Le Bras M, Bourbigot S. Combustion behaviour of ethylene vinyl acetate copolymer‐based intumescent formulations using oxygen consumption calorimetry. Fire Mater 1998;22(3):119‐128.
    43. Abdel‐Mohdy FA. Graft copolymerization of nitrogen‐ and phosphorus‐containing monomers onto cellulosics for flame‐retardant finishing of cotton textiles. J Appl Polym Sci 2003;89(9):2573‐2578.
    44. Bhuniya SP, Maiti S. Flame retardant behavior of nitrogen and phosphorus based polymers and effect of nitrogen and antimony on their flame retardancy. J Indian Chem Soc 2000;77(10):482‐485.
    45. Gaan S, Sun G. Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds. J Anal Appl Pyrol 2007;78(2):371‐377.
    46. Gaan S, Sun G, Hutches K, Engelhard MH. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus‐nitrogen synergism. Polym Degrad Stabil 2008;93(1):99‐108.
    47. Hu XP, Li WY, Wang YZ. Synthesis and characterization of a novel nitrogen‐containing flame retardant. J Appl Polym Sci 2004;94(4):1556‐1561.
    48. Leu TS, Wang CS. Synergistic effect of a phosphorus‐nitrogen flame retardant on engineering plastics. J Appl Polym Sci 2004;92(1):410‐417.
    49. Liu Y, Wang Q. The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J Polym Res 2009;16(5):583‐589.
    50. Nguyen C, Kim A. Synthesis of a Novel Nitrogen‐Phosphorus Flame Retardant Based on Phosphoramidate and Its Application to PC, PBT, EVA, and ABS. Macromol Res 2008;16(7):620‐625.
    51. Zhang XH, Liu F, Chen S, Qi GR. Novel flame retardant thermosets from nitrogen‐containing and phosphorus‐containing epoxy resins cured with dicyandiamide. J Appl Polym Sci 2007;106(4):2391‐2397.
    52. Chen YH, Wang Q, Yan W, Tang HM. Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polym Degrad Stabil 2006;91(11):2632‐2643.
    53. Gijsman P, Steenbakkers R, Furst C, Kersjes J. Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66. Polym Degrad Stabil 2002;78(2):219‐224.
    54. Konig A, Fehrenbacher U, Kroke E, Hirth T. Thermal Decomposition Behavior of the Flame Retardant Melamine in Slabstock Flexible Polyurethane Foams. J Fire Sci 2009;27(3):187‐211.
    55. Liu Y, Li J, Wang Q. The Investigation of Melamine Polyphosphate Flame Retardant Polyamide‐6/Inorganic Siliciferous Filler with Different Geometrical Form. J Appl Polym Sci 2009;113(3):2046‐2051.
    56. Wang XL, Jiang JM, Yang SL, Jin JH, Li G. Flame retardant synergistic performance between cyclic diphosphonate ester and melamine in polyamide 6. Polym‐Korea 2008;32(2):125‐130.
    57. Martin C, Ronda JC, Cadiz V. Boron‐containing novolac resins as flame retardant materials. Polym Degrad Stabil 2006;91(4):747‐754.
    58. Wu ZP, Hu YC, Shu WG. Influence of Ultrafine Zinc Borate on the Thermal Degradation Behavior of a(Low‐Density Polyethylene)/(Intumescent Flame Retardant) System. J Vinyl Addit Techn 2009;15(4):260‐265.
    59. Pi H, Guo SY, Ning Y. Mechanochemical improvement of the flame‐retardant and mechanical properties of zinc borate and zinc borate‐ Aluminum trihydrate‐filled poly(vinyl chloride). J Appl Polym Sci 2003;89(3):753‐762.
    60. Chen XL, Hu Y, Song L. Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym Eng Sci 2008;48(1):116‐123.
    61. Chiang CL, Chiu SL. Synthesis, characterization and properties of halogen‐free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol‐Gel method. J Polym Res 2009;16(6):637‐646.
    62. Li Q, Jiang PK, Su ZP, Wei P, Wang GL, Tang XZ. Synergistic effect of phosphorus, nitrogen, and silicon on flame‐retardant properties and char yield in polypropylene. J Appl Polym Sci 2005;96(3):854‐860.
    63. Li Q, Jiang PK, Wei P. Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polym Eng Sci 2006;46(3):344‐350.
    64. Wu CS, Liu YL, Chiu YS. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 2002;43(15):4277‐4284.
    65. Ebdon JR, Hunt BJ, Joseph P. Thermal degradation and flammability characteristics of some polystyrenes and poly(methyl methacrylate)s chemically modified with silicon‐containing groups. Polym Degrad Stabil 2004;83(1):181‐185.
    66. Zhong HF, Wu D, Wei P, Jiang PK, Li Q, Hao JW. Synthesis, characteristic of a novel additive‐type flame retardant containing silicon and its application in PC/ABS alloy. J Mater Sci 2007;42(24):10106‐10112.
    67. Zhong HF, Wei P, Jiang PK, Wang GL. Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon‐containing flame retardant. Fire Mater 2007;31(6):411‐423.
    68. Kelarakis A, Hayrapetyan S, Ansari S, Fang J, Estevez L, Giannelis EP. Clay nanocomposites based on poly(vinylidene fluoride‐co‐hexafluoropropylene): Structure and properties. Polymer 2010;51(2):469‐474.
    69. Alonso RH, Estevez L, Lian HQ, Kelarakis A, Giannelis EP. Nafion‐clay nanocomposite membranes: Morphology and properties. Polymer 2009;50(11):2402‐2410.
    70. Shah D, Fytas G, Vlassopoulos D, Di J, Sogah D, Giannelis EP. Structure and dynamics ofpolymer‐grafted clay suspensions. Langmuir 2005;21(1):19‐25.
    71. Bourlinos AB, Jiang DD, Giannelis EP. Clay‐organosiloxane hybrids: A route to cross‐linked clay particles and clay monoliths. Chem Mater 2004;16(12):2404‐2410.
    72. Giannelis EP. Clay‐polymer nanocomposites. Abstr Pap Am Chem S 2002;223:D89‐D89.
    73. Wang JQ, Du JX, Zhu J, Wilkie CA. An XPS study of the thermal degradation and flame retardant mechanism of polystyrene‐clay nanocomposites. Polym Degrad Stabil 2002;77(2):249‐252.
    74. Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, et al. Flame retardant mechanism of polyamide 6‐clay nanocomposites. Polymer 2004;45(3):881‐891.
    75. Pack S, Kashiwagi T, Cao CH, Korach CS, Lewin M, Rafailovich MH. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties. Macromolecules 2010;43(12):5338‐5351.
    76. Roman‐Lorza S, Rodriguez‐Perez MA, Saez JAD, Zurro J. Cellular Structure of EVA/ATH Halogen‐free Flame‐retardant Foams. J Cell Plast 2010;46(3):259‐279.
    77. Wei P, Han ZD, Xu XN, Li ZX. Synergistic flame retardant effect of SiO2 in LLDPE,/EVA/ATH blends. J Fire Sci 2006;24(6):487‐498.
    78. Ye L, Wu QH, Qu BJ. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen‐free flame retardant EVA/MH/MWNT nanocomposites. Polym Degrad Stabil 2009;94(5):751‐756.
    79. Cui Z, Qu BJ. Synergistic Effects of Layered Double Hydroxide with Phosphorus‐Nitrogen Intumescent Flame Retardant in Pp/Epdm/Ifr/Ldh Nanocomposites. Chinese J Polym Sci 2010;28(4):563‐571.
    80. Gao F, Tong LF, Fang ZP. Effect of a novel phosphorous‐nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stabil 2006;91(6):1295‐1299.
    81. Liu G, Zhao JQ, Zhang YH, Liu SM, Ye H. Synthesis and application in polypropylene of a novel nitrogen‐containing intumescent flame‐retardant. Polym Polym Compos 2007;15(3):191‐198.
    82. Xing WY, Song L, Hu YA, Lv XQ, Wang X. Combustion and thermal behaviors of the novel UV‐cured intumescent flame retardant coatings containing phosphorus and nitrogen. E‐Polymers 2010:1‐11.
    83. Zhi YJ, Yong Y, Ru YZ, Xin CL, Yu FZ. Synthesis and thermal stability of a novel phosphorus‐nitrogen containing intumescent flame retardant. Chinese Chem Lett2008;19(3):277‐278.
    84. Lim HM, Yun J, Hyun M, Yoon Y, Lee DJ, Whang CM, et al. Magnesium hydroxide flame retardant and its application to a low‐density polyethylene/ethylene vinyl acetate composite. J Ceram Process Res 2009;10(4):571‐576.
    85. Morgan AB, Midland DA, Bundy M. UL‐94 to cone calorimeter correlation: Effects of polymer structure and flame retardant type. Abstr Pap Am Chem S 2004;228:U439‐U440.
    86. Beyer G, Breulet H, Desmet S. Cone calorimeter experiments with flame retardant halogen‐free cables. Abstr Pap Am Chem S 2000;220:U363‐U363.
    87. Li B, Sun CY, Zhang XC. An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter. Chem J Chinese U 1999;20(1):146‐149.
    88. Li B, Jia H, Guan LM, Bing BC, Dai JF. A Novel Intumescent Flame‐Retardant System for Flame‐Retarded LLDPE/EVA Composites. J Appl Polym Sci 2009;114(6):3626‐3635.
    89. Li YT, Li B, Dai JF, Jia H, Gao SL. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polym Degrad Stabil 2008;93(1):9‐16.
    90. Liu XF, Zhang J, Zhang HP. Studies on flame retardancy of HIPS/montmorillonite composites. Acta Polym Sin 2004(5):650‐655.
    91. Cogen JM, Lin TS, Lyon RE. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen‐free flame retardant polyolefin compounds. Fire Mater 2009;33(1):33‐50.
    92. Modesti M, Lorenzetti A, Besco S, Hreja D, Semenzato S, Bertani R, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane‐nanocomposite foams. Polym Degrad Stabil 2008;93(12):2166‐2171.
    93. Nie SB, Hu Y, Song L, He QL, Yang DD, Chen H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym Advan Technol 2008;19(8):1077‐1083.
    94. Gao LP, Wang DY, Wang YZ, Wang JS, Yang B. A flame‐retardant epoxy resin based on a reactive phosphorus‐containing monomer of DODPP and its thermal and flame‐retardant properties. Polym Degrad Stabil 2008;93(7):1308‐1315.
    95. Costa FR, Wagenknecht U, Heinrich G. LDPE/Mg‐Al layered double hydroxide nanocomposite: Thermal and flammability properties. Polym Degrad Stabil 2007;92(10):1813‐1823.
    96. Jayakody C, Myers D, Sorathia U, Nelson GL. Fire‐retardant characteristics of water‐blown molded flexible polyurethane foam materials. J Fire Sci 2000;18(6):430‐455.
    97. Jayakody C, Nelson GL, Sorathia U, Lewandowski S. A cone calorimetric study of flame retardant elastomeric polyurethanes modified with siloxanes and commercial flame retardant additives. J Fire Sci 1998;16(5):351‐382.
    98. Duquesne S, Le Bras M, Jama C, Weil ED, Gengembre L. X‐ray photoelectron spectroscopy investigation of fire retarded polymeric materials: application to the study of an intumescent system. Polym Degrad Stabil 2002;77(2):203‐211.
    99. Elliot PJ, Whiteley RH. A cone calorimeter test for the measurement of flammability properties of insulated wire. New Developments and Future Trends in Fire Safety on a Global Basis‐ International Conference 1997: 244, 101‐118.
    100. Zhang XG, Guo F, Chen JF, Wang GQ, Liu H. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites. Polym Degrad Stabil 2005;87(3):411‐418.
    101. Metin D, Tihminhoglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part a‐Appl S 2004;35(1):23‐32.
    102. Haworth B, Gilbert M, Raymond CL. Anisotropic effects in polymer‐particle composites: The influence of organic coatings and wall‐slip phenomena. J Mater Sci Lett 2000;19(16):1415‐1418.
    103. Andreou GT, Labridis DP. Electrical parameters of low‐voltage power distribution cables used for power‐line communications. Ieee T Power Deliver 2007;22(2):879‐886.
    104. Demoulias C, Labridis DP, Dokopoulos PS, Gouramanis K. Ampacity of low‐voltage power cables under nonsinusoidal currents. Ieee T Power Deliver 2007;22(1):584‐594.
    105. Nyambo C, Wilkie CA. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym Degrad Stabil 2009;94(4):506‐512.
    106. Laoutid F, Gaudon P, Taulemesse JM, Cuesta JML, Velasco JI, Piechaczyk A. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene‐vinyl acetate containing organo‐modified montmorillonite. Polym Degrad Stabil 2006;91(12):3074‐3082.
    107. Bourbigot S, Duquesne S, Sebih Z, Segura S, Delobel R. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene‐vinyl acetatecopolymer. Acs Sym Ser 2006;922:200‐212.
    108. Qiu LZ, Xie RC, Ding P, Qu BJ. Preparation and characterization of Mg(OH)(2) nanoparticles and flame‐retardant property of its nanocomposites with EVA. Compos Struct 2003;62(3‐4):391‐395.
    109. Fu MZ, Qu BJ. Synergistic flame retardant mechanism of fumed silica in ethylene‐vinyl acetate/magnesium hydroxide blends. Polym Degrad Stabil 2004;85(1):633‐639.
    110. Estevao LRM, Nascimento RSV. The use of heating microscopy in the study of intumescence in waste catalyst containing polymer systems. Polym Degrad Stabil 2002;75(3):517‐533.
    111. Kandare E, Kandola BK, Staggs JEJ. Global kinetics of thermal degradation of flame‐retarded epoxy resin formulations. Polym Degrad Stabil 2007;92(10):1778‐1787.
    112. Laoutid F, Ferry L, Leroy E, Cuesta JML. Intumescent mineral fire retardant systems in ethylene‐vinyl acetate copolymer: Effect of silica particles on char cohesion. Polym Degrad Stabil 2006;91(9):2140‐2145.
    113. Le Bras M, Bourbigot S, Revel B. Comprehensive study of the degradation of an intumescent EVA‐based material during combustion. J Mater Sci 1999;34(23):5777‐5782.
    114. Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T. PA‐6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 2000;24(4):201‐208.
    115. Chen XL, Hu Y, Song L, Xing WY. Combustion and thermal behavior of polyurethane acrylate modified with a phosphorus monomer. J Fire Sci 2008;26(2):93‐108.
    116. Duquesne S, Lefebvre J, Seeley G, Camino G, Delobel R, Le Bras M. Vinyl acetate/butyl acrylate copolymers‐ Part 2: Fire retardancy using phosphorus‐containing additives and monomers. Polym Degrad Stabil 2004;85(2):883‐892.
    117. Riva A, Camino G, Fomperie L, Amigouet P. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stabil 2003;82(2):341‐346.
    118. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Roels T. Mechanism of Expandable Graphite fire retardant action in Polyurethanes. Abstr Pap Am Chem S 2000;220:U333‐U334.
    119. Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A, Jerome R, et al. Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromol Rapid Comm 2001;22(8):643‐646.
    120. Gao FG, Beyer G, Yuan QC. A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym Degrad Stabil 2005;89(3):559‐564.
    121. Wang JQ, Wu SL. On the flammability of the electron‐beam‐induced grafting of ABS and SBS copolymers, studied by LOI/CONE/XPS. J Fire Sci 2001;19(2):157‐172.
    122. Siat C, Bourbigot S, Le Bras M. Thermal behaviour of polyamide‐6‐based intumescent formulations‐ a kinetic study. Polym Degrad Stabil 1997;58(3):303‐313.
    123. Li ZZ, Qu BJ. Effects of gamma irradiation on the properties of flame‐retardant EVM/magnesium hydroxide blends. Radiat Phys Chem 2004;69(2):137‐141.
    124. Muralidharan MN, Kumar SA. Pervaporation of chloroform‐acetone mixtures through DCP crosslinked poly (ethylene‐co‐vinyl acetate) membranes. Indian J Chem Techn 2005;12(4):441‐446.
    125. Ding ZY, Hu GS, Wang BB. Effect of in situ co‐crosslinking on mechanical properties and rheology of nylon 11/EVOH/DCP composites. J Polym Res 2007;14(6):511‐517.
    126. Ma GW, Fang ZP, Xu CW. Phase dispersion‐crosslinking synergism in binary blends of poly(vinyl chloride) with low‐density polyethylene: Entrapping phenomenon in PVC/LDPE/DCP blend. J Appl Polym Sci 2003;88(5):1296‐1303.
    127. Wang ZZ, Zhou S, Hu Y. Intumescent flame retardation and silane crosslinking of PP/EPDM elastomer. Polym Advan Technol 2009;20(4):393‐403.
    128. Wang ZZ, Hu Y, Gui Z, Zong RW. Halogen‐free flame retardation and silane crosslinking of polyethylenes. Polym Test 2003;22(5):533‐538.
    129. Grubbstrom G, Oksman K. Influence of wood flour moisture content on the degree of silane‐crosslinking and its relationship to structure‐property relations of wood‐thermoplastic composites. Compos Sci Technol 2009;69(7‐8):1045‐1050.
    130. Mateev M, Karageorgiev S. The effect of electron beam irradiation and content of EVA upon the gel‐forming processes in LDPE‐EVA films. Radiat Phys Chem 1998;51(2):205‐206.
    131. Ikeda S, Tabata Y, Suzuki H, Miyoshi T, Katsumura Y. Formation of crosslinked PTFE by radiation‐induced solid‐state polymerization of tetrafluoroethylene at low temperatures. Radiat Phys Chem 2008;77(4):401‐408.
    132. Zhu XF, Lu P, Chen W, Dong JA. Studies of UV crosslinked poly(N‐vinylpyrrolidone) hydrogels by FTIR, Raman and solid‐state NMR spectroscopies. Polymer 2010;51(14):3054‐3063.
    133. Wu GL, Jiang Y, Ye L, Zeng SJ, Yu PR, Xu WJ. A novel UV‐crosslinked pressure‐sensitive adhesive based on photoinitiator‐grafted SBS. Int J Adhes Adhes 2010;30(1):43‐46.
    134. Kim JK, Kim WH, Lee DH. Adhesion properties of UV crosslinkedpolystyrene‐block‐polybutadiene‐block‐polystyrene copolymer and tackifier mixture. Polymer 2002;43(18):5005‐5010.
    135. Sen M, Basfar AA. The effect of UV light on the thermooxidative stability of linear low density polyethylene films crosslinked by ionizing radiation. Radiat Phys Chem 1998;52(1‐6):247‐250.
    136. Wang DY, Cai XX, Qu MH, Liu Y, Wang JS, Wang YZ. Preparation and flammability of a novel intumescent flame‐retardant poly(ethylene‐co‐vinyl acetate) system. Polym Degrad Stabil 2008;93(12):2186‐2192.
    137. Wang DY, Liu Y, Ge XG, Wang YZ, Stec A, Biswas B, et al. Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire‐retarded polyethylene systems. Polym Degrad Stabil 2008;93(5):1024‐1030.
    138. Wang X, Hu Y, Song L, Xing WY, Lu HDA, Lv P, et al. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010;51(11):2435‐2445.
    139. Artner J, Ciesielski M, Walter O, Doring M, Perez RM, Sandler JKW, et al. A novel DOPO‐based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng 2008;293(6):503‐514.
    140. Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, Doring M, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐(DOPO)‐based diamino hardener. Eur Polym J 2008;44(3):704‐715.
    1. Bridges PE, Palmieri T, Greenhalgh DG. Torchiere‐style halogen floor lamps: A need for fire safety awareness. J Burn Care Rehabil 2000;21(5):447‐449.
    2. Kaspersma J, Doumen C, Munro S, Prins AM. Fire retardant mechanism of aliphatic bromine compounds in polystyrene and polypropylene. Polym Degrad Stabil 2002;77(2):325‐331.
    3. Onwudili JA, Williams PT. Alkaline reforming of brominated fire‐retardant plastics: Fate of bromine and antimony. Chemosphere 2009;74(6):787‐796.
    4. Roma P, Luda MP, Camino G. Synergistic action of fluorine‐containing additives in bromine antimony fire retardant ABS. Polym Degrad Stabil 1999;64(3):497‐500.
    5. Zanetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA. Fire retardant halogen‐antimony‐clay synergism in polypropylene layered silicate nanocomposites. Chem Mater 2002;14(1):189‐193.
    6. Zhang J, Starnes WH. Mechanism for the reductive dehalogenation of "dechlorane plus" by mixtures of antimony(III) oxide and polymers. Acs Sym Ser 2006;922:213‐223.
    7. Roman‐Lorza S, Rodriguez‐Perez MA, Saez JAD, Zurro J. Cellular Structure of EVA/ATH Halogen‐free Flame‐retardant Foams. J Cell Plast 2010;46(3):259‐279.
    8. Wei P, Han ZD, Xu XN, Li ZX. Synergistic flame retardant effect of SiO2 in LLDPE,/EVA/ATH blends. J Fire Sci 2006;24(6):487‐498.
    9. Bourbigot S, Duquesne S, Sebih Z, Segura S, Delobel R. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene‐vinyl acetate copolymer. Acs Sym Ser 2006;922:200‐212.
    10. Laoutid F, Gaudon P, Taulemesse JM, Cuesta JML, Velasco JI, Piechaczyk A. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene‐vinyl acetatecontaining organo‐modified montmorillonite. Polym Degrad Stabil 2006;91(12):3074‐3082.
    11. Nyambo C, Wilkie CA. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym Degrad Stabil 2009;94(4):506‐512.
    12. Rudi R, Orville JS. Some Chemical Reactions of 3,9‐Dichloro‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5]undecane 3,9‐Dioxide. J Org Chem 1963;
    28 (6):1608–1612.
    13. Vijayakumar CT, Sivasamy P, Geetha B, Fink JK. Structural basis for intumescence‐ Study of model compounds containing spiro phosphorus moiety and polymers containing such units. Macromol Symp 2002;181:245‐251.
    14. Fan RL, Wang LS, Guo TT, Wu JS. Solubilities of 2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5]undecane‐3,9‐dimethanol, alpha,alpha,alpha ',alpha '‐tetramethyl‐3,9‐dioxide in selected solvents. J Chem Eng Data 2007;52(4):1340‐1342.
    15. Guo XZ, Wang LS, Wang BA, Tian NN. Solubilities of 3,9‐Dimethyl‐3,9‐dioxide‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5]undecane in Selected Solvents. J Chem Eng Data 2010;55(2):978‐981.
    16. Hoang D, Kim J, Jang BN. Synthesis and performance of cyclic phosphorus‐containing flame retardants. Polym Degrad Stabil 2008;93(11):2042‐2047.
    17. Hoang DQ, Kim JW. Synthesis and applications of biscyclic phosphorus flame retardants. Polym Degrad Stabil 2008;93(1):36‐42.
    18. Liu Y, Wang DY, Wang JS, Song YP, Wang YZ. A novel intumescent flame‐retardant LDPE system and its thermo‐oxidative degradation and flame‐retardant mechanisms. Polym Advan Technol 2008;19(11):1566‐1575.
    19. Vijayakumar CT, Mathan ND, Sarasvathy V, Rajkumar T, Thamaraichelvan A, Ponraju D. Synthesis and thermal properties of spiro phosphorus compounds. J Therm Anal Calorim 2010;101(1):281‐287.
    20. Horrocks AR, Zhang S. Enhancing polymer char formation by reaction with phosphorylated polyols. 1. Cellulose. Polymer 2001;42(19):8025‐8033.
    21. Horrocks AR, Zhang S. Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (Proban CC9) flame retardant. Fire Mater 2002;26(4‐5):173‐182.
    22. Horrocks AR, Zhang S. Char formation in polyamides (nylons 6 and 6.6) and wool keratinphosphorylated by polyol phosphoryl chlorides. Text Res J 2004;74(5):433‐441.
    23. Ma ZL, Zhao WG, Liu YF, Shi JR. Intumescent polyurethane coatings with reduced flammability based on spirocyclic phosphate‐containing polyols. J Appl Polym Sci 1997;66(3):471‐475.
    24. Ma ZL, Zhao WG, Liu YF, Shi JR. Synthesis and properties of intumescent, phosphorus‐containing, flame‐retardant polyesters. J Appl Polym Sci 1997;63(12):1511‐1515.
    25. Yan L, Zheng YB, Liu JP, Shang HZ. Synthesis of Polymeric Flame Retardants Containing Phosphorus‐Nitrogen‐Bromide and Their Application in Acrylonitrile‐Butadiene‐Styrene. J Appl Polym Sci 2010;115(2):957‐962.
    26.欧育湘.阻燃剂一制造、性能及应用,北京:兵器工业出版社, 1997.
    27. Satio T,Shi K. Cyclic organophophorus compounds and process for making same:US,3702878[P].1972‐11‐24.
    28. Artner J, Ciesielski M, Ahlmann M, Walter O, Doring M, Perez RM, et al. A novel and effective synthetic approach to 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) derivatives. Phosphorus Sulfur 2007;182(9):2131‐2148.
    29. Alcon MJ, Espinosa MA, Galia M, Cadiz V. Synthesis, characterization and polymerization of a novel glycidyl phosphinate. Macromol Rapid Comm 2001;22(15):1265‐1271.
    30. Liu YL, Wei WL, Chen WY. Reversibility of hydration and dehydration reactions of a phosphaphenanthrene oxide (DOPO) pendent group on polyamide. Polym Int 2003;52(8):1275‐1279.
    31. Schafer A, Seibold S, Lohstroh W, Walter O, Doring M. Synthesis and properties of flame‐retardant epoxy resins based on DOPO and one of its analog DPPO. J Appl Polym Sci 2007;105(2):685‐696.
    32. Canadell J, Mantecon A, Cadiz V. Synthesis of a novel ris‐spiroorthoester containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenantrene‐10‐oxide as a substituent: Homopolymerization and copolymerization with diglycidyl ether of bisphenol A. J Polym Sci Pol Chem 2007;45(10):1980‐1992.
    33. Liu YL. Phosphorous‐containing epoxy resins from a novel synthesis route. J Appl Polym Sci 2002;83(8):1697‐1701.
    34. Stockland RA, Taylor RI, Thompson LE, Patel PB. Microwave‐assisted regioselective addition of P(O)‐H bonds to alkenes without added solvent or catalyst. Org Lett 2005;7(5):851‐853.
    35. Zhong HF, Wei P, Jiang PK, Wang GL. Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon‐containing flame retardant. Fire Mater 2007;31(6):411‐423.
    36. Zhong HF, Wu D, Wei P, Jiang PK, Li Q, Hao JW. Synthesis, characteristic of a novel additive‐type flame retardant containing silicon and its application in PC/ABS alloy. J Mater Sci 2007;42(24):10106‐10112.
    37. Li Q, Jiang PK, Wei P. Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polym Eng Sci 2006;46(3):344‐350.
    38. Li Q, Zhong HF, Wei P, Jiang PK. Thermal degradation behaviors of polypropylene with novel silicon‐containing intumescent flame retardant. J Appl Polym Sci 2005;98(6):2487‐2492.
    39. Li Q, Jiang PK, Wei P. Thermal degradation behavior of poly(propylene) with a novel silicon on‐containing intumescent flame retardant. Macromol Mater Eng 2005;290(9):912‐919.
    40. Li Q, Jiang PK, Wei P. Studies on the properties of polypropylene with a new silicon‐containing intumescent flame retardant. J Polym Sci Pol Phys 2005;43(18):2548‐2556.
    41. Li Q, Jiang PK, Su ZP, Wei P, Wang GL, Tang XZ. Synergistic effect of phosphorus, nitrogen, and silicon on flame‐retardant properties and char yield in polypropylene. J Appl Polym Sci 2005;96(3):854‐860.
    42. Camino G, Lomakin SM, Lageard M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 2002;43(7):2011‐2015.
    43. Lewicki JP, Liggat JJ, Patel M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stabil 2009;94(9):1548‐1557.
    44. Nodera A, Kanai T. Relationship between thermal degradation behavior and flame retardancy on polycarbonate‐polydimethylsiloxane block copolymer. J Appl Polym Sci 2006;102(2):1697‐1705.
    1. Fujiwara S, Sakamoto T. Method for Manufacturing a Clay-Polyamide Composite. Kokai Patent Application, no SHO 51(1976)-109998.
    2. Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M. Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stabil 2007;92(11):1957-1965.
    3. Chen-Yang YW, Wang WS, Tang JC, Wu YW, Chen HS. Novel flame retardant epoxy/clay nanocomposites prepared with a pre-ground phosphorus-containing organoclay. J Mater Res 2008;23(6):1618-1630.
    4. Choi SK, Jo BW, Sohn JS, Choi YS. Flame Retardant Polymeric Foams Based on Poly(ethylene vinylacetate)/Clay Nanocomposites. J Nanosci Nanotechno 2008;8(10):5479-5484.
    5. Das G, Karak N. Vegetable oil-based flame retardant epoxy/clay nanocomposites. Polym Degrad Stabil 2009;94(11):1948-1954.
    6. Dekar A, Stretz H, Koo J. Flame retardant properties of novolac phenolic/bisoxazoline amended with an epoxy-terminated siloxane and clay nanocomposite. Abstr Pap Am Chem S 2000;220:U363-U363.
    7. Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Mater Lett 2005;59(1):36-39.
    8. Cui Z, Qu BJ. Synergistic Effects of Layered Double Hydroxide with Phosphorus-Nitrogen Intumescent Flame Retardant in Pp/Epdm/Ifr/Ldh Nanocomposites. Chinese J Polym Sci 2010;28(4):563-571.
    9. Zhang G, Ding P, Zhang M, Qu B. Synergistic effects of layered double hydroxide with hyperfine magnesium hydroxide in halogen-free flame retardant EVA/HFMH/LDH nanocomposites. Polym Degrad Stabil 2007;92(9):1715-1720.
    10. Marosfoi BB, Marosi GJ, Szep A, Anna P, Keszei S, Nagy BJ, et al. Complex activity of clay and CNT particles in flame retarded EVA copolymer. Polym Advan Technol 2006;17(4):255-262.
    11. Fukushima K, Murariu M, Camino G, Dubois P. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stabil 2010;95(6):1063-1076.
    12. Duquesne S, Le Bras M, Bourbigot S, Delobel R, Vezin H, Camino G, et al. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater 2003;27(3):103-117.
    13. Wang GJ, Yang JY. Influences of expandable graphite modified by polyethylene glycol on fire protection of waterborne intumescent fire resistive coating. Surf Coat Tech 2010;204(21-22):3599-3605.
    14. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-58.
    15. Beyer G. Short communication: Carbon nanotubes as flame retardants for polymers. Fire Mater 2002;26(6):291‐293.
    16. Gao FG, Beyer G, Yuan QC. A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym Degrad Stabil 2005;89(3):559‐564.
    17. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Comm 2002;23(13):761‐765.
    18. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol‐gel method. J Phys Chem Solids 2010;71(4):539‐543.
    19. Kuwana K, Saito K. Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes. P Combust Inst 2007;31:1857‐1864.
    20. Liu YY, Wang XW, Qi KH, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18(29):3454‐3460.
    21.胡小平,赵国明,杨冰等.膨胀型阻燃聚乙烯MWNT复合材料的阻燃性及燃烧性能研究[J].阻燃材料与技术,2006,3:6-9
    22. Morlat‐Therias S, Fanton E, Gardette JL, Peeterbroeck S, Alexandre M, Dubois P. Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation. Polym Degrad Stabil 2007;92(10):1873‐1882.
    23. Ma HY, Tong LF, Xu ZB, Fang ZP. Synergistic effect of carbon nanotube and clay for improvingthe flame retardancy of ABS resin. Nanotechnology 2007;18(37):‐.
    24. Durbach SH, Krause RW, Witcomb MJ, Coville NJ. Synthesis of branched carbon nanotubes using copper catalysts in a hydrogen‐filled DC arc‐discharger. Carbon 2009;47(3):635‐644.
    25.李向梅,杨荣杰,李晓东.纳米材料对聚丙烯/A溴醚阻燃体系的影响研究[J].中国塑料,2005,19(7):71-74.
    26. Cho BH, Hwang IR, Lee YS, Jeong JM, Son KJ, Nah C. Enhancement of Flame Retardancy of Rubber Matrix Using Nanofillers. J Nanosci Nanotechno 2008;8(10):5516‐5520.
    27. Fukushima K, Murariu M, Camino G, Dubois P. Effect of expanded graphite/layered‐silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stabil 2010;95(6):1063‐1076.
    28. Keshri AK, Balani K, Bakshi SR, Singh V, Laha T, Seal S, et al. Structural transformations in carbon nanotubes during thermal spray processing. Surf Coat Tech 2009;203(16):2193‐2201.
    29. Hsieh CC, Youh MJ, Wu HC, Hsu LC, Guo JC, Li YY. Synthesis of Carbon Nanotubes Using a Butane‐Air Bunsen Burner and the Resulting Field Emission Characteristics. J Phys Chem C 2008;112(49):19224‐19230.
    30. Subyakto, Hata T, Ide I, Kawai S. Fire‐resistant performance of a laminated veneer lumber joint with metal plate connectors protected with graphite phenolic sphere sheeting. J Wood Sci 2001;47(4):329‐329.
    31. Peeterbroeck S, Laoutid F, Taulemesse JM, Monteverde T, Lopez‐Cuesta JM, Nagy JB, et al. Mechanical properties and flame‐retardant behavior of ethylene vinyl acetate/high‐density polyethylene coated carbon nanotube nanocomposites. Adv Funct Mater 2007;17(15):2787‐2791.
    32. Liu YX, Du ZJ, Li Y, Zhang C, Li CJ, Yang XP, et al. Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol). J Polym Sci Pol Chem 2006;44(23):6880‐6887.
    1. Roman‐Lorza S, Rodriguez‐Perez MA, Saez JAD, Zurro J. Cellular Structure of EVA/ATHHalogen‐free Flame‐retardant Foams. J Cell Plast 2010;46(3):259‐279.
    2. Wei P, Han ZD, Xu XN, Li ZX. Synergistic flame retardant effect of SiO2 in LLDPE,/EVA/ATH blends. J Fire Sci 2006;24(6):487‐498.
    3. Ye L, Wu QH, Qu BJ. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen‐free flame retardant EVA/MH/MWNT nanocomposites. Polym Degrad Stabil 2009;94(5):751‐756.
    4. Onwudili JA, Williams PT. Alkaline reforming of brominated fire‐retardant plastics: Fate of bromine and antimony. Chemosphere 2009;74(6):787‐796.
    5. Elliot PJ, Whiteley RH. A cone calorimeter test for the measurement of flammability properties of insulated wire. New Developments and Future Trends in Fire Safety on a Global Basis‐ International Conference 1997: 244,101‐118.
    6. Zhang XG, Guo F, Chen JF, Wang GQ, Liu H. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites. Polym Degrad Stabil 2005;87(3):411‐418.
    7. Metin D, Tihminhoglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part a‐Appl S 2004;35(1):23‐32.
    8. Haworth B, Gilbert M, Raymond CL. Anisotropic effects in polymer‐particle composites: The influence of organic coatings and wall‐slip phenomena. J Mater Sci Lett 2000;19(16):1415‐1418.
    9. Andreou GT, Labridis DP. Electrical parameters of low‐voltage power distribution cables used for power‐line communications. Ieee T Power Deliver 2007;22(2):879‐886.
    10. Demoulias C, Labridis DP, Dokopoulos PS, Gouramanis K. Ampacity of low‐voltage power cables under nonsinusoidal currents. Ieee T Power Deliver 2007;22(1):584‐594.
    11. Nyambo C, Wilkie CA. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym Degrad Stabil 2009;94(4):506‐512.
    12. Laoutid F, Gaudon P, Taulemesse JM, Cuesta JML, Velasco JI, Piechaczyk A. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene‐vinyl acetate containing organo‐modified montmorillonite. Polym Degrad Stabil 2006;91(12):3074‐3082.
    13. Bourbigot S, Duquesne S, Sebih Z, Segura S, Delobel R. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene‐vinyl acetatecopolymer. Acs Sym Ser 2006;922:200‐212.
    14. Qiu LZ, Xie RC, Ding P, Qu BJ. Preparation and characterization of Mg(OH)(2) nanoparticles and flame‐retardant property of its nanocomposites with EVA. Compos Struct 2003;62(3‐4):391‐395.
    15. Fu MZ, Qu BJ. Synergistic flame retardant mechanism of fumed silica in ethylene‐vinyl acetate/magnesium hydroxide blends. Polym Degrad Stabil 2004;85(1):633‐639.
    1. Wu ZP, Hu YC, Shu WG. Influence of Ultrafine Zinc Borate on the Thermal Degradation Behavior of a(Low-Density Polyethylene)/(Intumescent Flame Retardant) System. J Vinyl Addit Techn 2009;15(4):260-265.
    2. Cui Z, Qu BJ. Synergistic Effects of Layered Double Hydroxide with Phosphorus-Nitrogen Intumescent Flame Retardant in Pp/Epdm/Ifr/Ldh Nanocomposites. Chinese J Polym Sci 2010;28(4):563-571.
    3. Gao F, Tong LF, Fang ZP. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stabil 2006;91(6):1295-1299.
    4. Liu G, Zhao JQ, Zhang YH, Liu SM, Ye H. Synthesis and application in polypropylene of a novel nitrogen-containing intumescent flame-retardant. Polym Polym Compos 2007;15(3):191-198.
    5. Xing WY, Song L, Hu YA, Lv XQ, Wang X. Combustion and thermal behaviors of the novel UV-cured intumescent flame retardant coatings containing phosphorus and nitrogen. E-Polymers 2010:1-11.
    6. Zhi YJ, Yong Y, Ru YZ, Xin CL, Yu FZ. Synthesis and thermal stability of a novel phosphorus-nitrogen containing intumescent flame retardant. Chinese Chem Lett 2008;19(3):277-278.
    7. Estevao LRM, Nascimento RSV. The use of heating microscopy in the study of intumescence in waste catalyst containing polymer systems. Polym Degrad Stabil2002;75(3):517-533.
    8. Kandare E, Kandola BK, Staggs JEJ. Global kinetics of thermal degradation of flame-retarded epoxy resin formulations. Polym Degrad Stabil 2007;92(10):1778-1787.
    9. Laoutid F, Ferry L, Leroy E, Cuesta JML. Intumescent mineral fire retardant systems in ethylene-vinyl acetate copolymer: Effect of silica particles on char cohesion. Polym Degrad Stabil 2006;91(9):2140-2145.
    10. Le Bras M, Bourbigot S, Revel B. Comprehensive study of the degradation of an intumescent EVA-based material during combustion. J Mater Sci 1999;34(23):5777-5782.
    11. Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 2000;24(4):201-208.
    12. Chen XL, Hu Y, Song L, Xing WY. Combustion and thermal behavior of polyurethane acrylate modified with a phosphorus monomer. J Fire Sci 2008;26(2):93-108.
    13. Duquesne S, Lefebvre J, Seeley G, Camino G, Delobel R, Le Bras M. Vinyl acetate/butyl acrylate copolymers - Part 2: Fire retardancy using phosphorus-containing additives and monomers. Polym Degrad Stabil 2004;85(2):883-892.
    14. Riva A, Camino G, Fomperie L, Amigouet P. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stabil 2003;82(2):341-346.
    15. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Roels T. Mechanism of Expandable Graphite fire retardant action in Polyurethanes. Abstr Pap Am Chem S 2000;220:U333-U334.
    16. Morrey EL. Flame retardant composite materials - Measurement and modelling of ignition properties. J Therm Anal Calorim 2003;72(3):943-954.
    17. Friederich B, Laachachi A, Ferriol M, Ruch D, Cochez M, Toniazzo V. Tentative links between thermal diffusivity and fire-retardant properties in poly(methyl methacrylate)-metal oxide nanocomposites. Polym Degrad Stabil 2010;95(7):1183-1193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700