用户名: 密码: 验证码:
金属—水固态电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分四个部分:
    第一部分为背景材料与综述。概述粘土矿物快离子导体及其在固态电池中的应用的研究成果,同时介绍聚合物凝胶电解质的最新研究成果,锂水电池、锂离子电池及锂离子电池正极材料研究概况。
    第二部分为含水的固体电解质研究。主要介绍两类含水固体电解质的研究,第一类为以聚甲基丙烯酸为基的含水凝胶电解质,按自由基聚合方法制备聚甲基丙烯酸,用溶液浇注法制备电解质膜。新制的聚甲基丙烯酸室温电导率为1.63×10~(-7)S.cm~(-1),含水量为19.2%,电导率会随着水分含量增加而增加,说明水分的存在会降低聚合物分子链之间的相互作用。聚甲基丙烯酸膜露置空气中会逐渐失去水分,使电导率降低。往聚甲基丙烯酸膜中加入用自由基法合成的聚甲基丙烯酸锂,随重量比的增加,电导率先增大后减小,在重量比为Li-PMAA:PMAA=1:1时电导率达到最大。往聚甲基丙烯酸、聚甲基丙烯酸锂混合物中加入甘油,电导率先略微下降,后迅速上升,电解质膜呈现最大电导率时其组分为聚甲基丙烯酸、聚甲基丙烯酸锂和甘油,重量比为3:2:3,最大室温电导率为2.3×10~(-4)S.cm~(-1)。膜呈现固态。在凝胶膜中加入氧化铝,可增强凝胶膜的硬度,加入极少量氧化铝时,电导率上升,但重量百分数超过0.2%时,电导率下降。交流阻抗谱测试表明,凝胶膜中含有硬段微区和软段微区,硬段微区电阻和软段微区的电阻都随水分的增多而减小。以石墨为电极的稳态极化曲线测试表明,凝胶膜中的H+能在石墨表面放电,生成氢气,该过程相当于电解水。凝胶膜电导率随温度变化的曲线表明,凝胶膜的电导率在62℃时呈现最大值,说明水分子在凝胶膜的导电过程中起重要作用;甘油对氢离子导电也起帮助作用,因为它能减弱聚合物分子链间的相互作用。凝胶膜的平衡电位是-90mV,交换电流密度0.7μA/cm~2,凝胶膜与石墨组成的电极是一个不可逆电极。凝胶膜的直流电导是2.25×10~(-7)S.cm~(-1),凝胶膜的直流电导:交流电导<0.1%,说明凝胶膜是一种以离子导电为主的固体电解质膜。
    第二类含水固体电解质是聚甲基丙烯锂复合的蒙脱石固体电解质。聚甲基丙烯酸锂重量分数在50%以内,采用两种方法复合,一种是水溶液复合方法,另一
This dissertation involves the following four parts:
    The first part describes some background materials which include mineral fast ion conductors and their application in full solid state cell; gel polymer electrolytes; lithium-water primary batteries; lithium ion battery and corresponding cathode materials.
    The second part describes the solid electrolytes containing water. Two kinds of electrolytes are introduced, one is poly(methyl methacrylic acid)(PMAA) based gel polymer electrolyte membrane. PMAA was prepared by free radical polymerization, and the solvent casting method was used to manufacture gel electrolyte membrane. The ionic conductivity at room temperature is 1.63×10~(-7)S.cm-1 for the newly produced PMAA with 19.2% water amount. Interaction between polymer chains can be lowered by the presentation of water. PMAA membrane lost water when exposed in air, so its ionic conductivity decreases. When Poly(methyl methacrylic lithiumate)(Li-PMAA) was added in PMAA whose ionic conductivity increases first and then decreases with increasing the weigh ratio(Li-PMAA:PMAA). The ionic conductivity reaches maximum at the weigh ratio of Li-PMAA:PMAA=1:1. When glycerol was added to PMAA membrane, its ionic conductivity lowers down slightly first then increases fast, the maximum conductivity occurs at the weigh ratio of ( PMAA: Li-PMAA: glycerol=3:2:3), the maximum conductivity is 2.3×10~(-4)S.cm-1. When aluminum oxide is added into membrane, it gets stiff, when weigh percent of Al_2O_3 exceeds 0.2%, the ionic conductivity of membrane decreases.
    AC Impedance Spectra show that there are stiff micro-area and soft micro-area in the gel membrane, the resistance of both stiff section and soft section decreases with increasing water amount of membrane. It proved that water molecule can disperse in the gel membrane. Steady Polarization Curve of GPW when use graphite as electrode show that hydrogen ion can be reduced to hydrogen at the surface of graphite, this procedure is just like water electrolysis. The plot of ionic conductivity vs. temperature showed that water molecule plays a major role in the course of GPW’s conduction,
    glycerol is also helpful for the hydrogen ion migration because it can lower the interaction between polymer chains. The equilibrium potential of GPW is –90mV, exchange current is 1.182μA. The electrode consists of GPW and graphite is irreverse electrode. The direct Current conductivity of GPW is 2.25 ×10-7S.cm-1 ,DC conductivity : AC conductivity <0.1%. The other kind of solid electrolyte containing water is Li-PMAA composited Montmorillonite(Mont.), Weigh percent of Li-PMAA is smaller than 50%. Two methods are employed to prepare composite Mont.. One is by solution, the other is by heat. X Ray Powder Diffraction Patterns indicated that when Li-PMAA is mixed with Mont., the pure phase can’t be obtained even weigh ratio of Li-PMAA:Mont. smaller than 1:10. Composite Mont. by solution method gives a new diffraction peak at 2θ=0-10o, it means that a new phase of composite Mont. occurs at the presence of water molecule. The analysis program of X’Pert Plus show that although composite Mont. isn’t pure phase, some Li-PMAA molecule embeds into Mont. which were prepared by solution method and heat method. It makes spacing of Mont. crystal change at c axis. Both IR Spetra and DTA analysis showed that Li-PMAA molecule embeds into Mont. AC Impedance Spetra showed that ionic conductivity of composite Mont. is smaller than pure Mont., composite Mont. by heat method smaller than that by solution method. Also, the ionic conductivity of composite Mont. containing higher weigh percent of Li-PMAA are smaller than that of lower weigh percent. The third part is solid-state cell by using water as oxidation agent. The cell assembly is Re| SE| GPW| graphite, Me stands for negative electrode which is lithium or magnesium, SE is solid electrolyte; GPW is gel polymer containing water. Principle of cell reaction is (a) reaction at negative electrode: Me+nOH-=Me(OH)n+ne-…(1)or Me=Men++ne-…(2),n=1 for lithium, n=2 for magnesium. Both of reaction (1) and (2) are occurred in the process of cell reaction, the ratio of (1) : (2) depends on the solid electrolyte. (b) Reaction at positive electrode: RH+H2O+e=RH+OH-+1/2H2,RH stands for PMAA ,and R stands for PMAA anion. Hydrogen ion of PMAA in GPW embeds into the graphite, it combines with one electron to produce hydrogen atom, PMAA anion seizes one hydrogen ion, it makes
    water molecule disaggregate to produce hydroxide anion. Hydroxide anion migrate through GPW layer, solid electrolyte layer and reach the surface of metal, combines with metal ion to produce metal hydroxide. The results of cell reaction is to make surface of metal covered with metal hydroxide, so the internal resistance of cell increases. When magnesium was used as negative electrode, the cell is called magnesium water cell. The cell using Mont as solid electrolyte, the open circuit voltage (OCV) is 1.45V, the discharging time is 30 hours when constant load (51KΩ) discharging at voltage plateau above 1.0V, the discharge capacity is 2mAh/g. The cell using reformed Mont as solid electrolyte, the discharging time is 90 hours when constant load(51KΩ) discharging at voltage plateau above 1.0V, the discharge capacity is 6mAh/g. Discharging time of cell using sintering gaolinite disc, sintering magnesium oxide disc, gel polymer electrolyte (LiClO4-PMMA), cross-linking GPW as solid electrolyte is 6 days, 40 hours, 48 hours and 14 hours respectively at the same discharging condition. Store property of cell is poor; the utilization rate of magnesium is 2.8%. When the negative electrode is lithium, the cell is lithium water cell. The solid electrolyte employed is gel polymer electrolyte (GPE) LiClO4-PMMA of weigh ratio(LiClO4:PMMA= 3:2), OCV of cell is 3.2V, discharge capacity is 1.4mAh/g when constant current 0.05mA discharge. Negative electrode can be eroded by electrolyte, the OCV decreases when cell was storaged. When solid electrolyte is LiClO4-PEG20,000, negative electrode can also be eroded by the electrolyte with even a little amount water, the short current is 12.5mA, average short current 7mA can maintain one hour, discharge capacity 7mAh. Discharging time is 7 hours when constant load 51KΩat voltage plateau above 2.8V with discharge capacity 2.1mAh/g. The fourth part is primary study on cerium dioxide base embedded compound, lithium ion doped cerium dioxide was synthesized by high temperature solid phase reaction, lithium oxide and cerium dioxide can be molted together to get molten solid solution at about 950℃.DTA analysis at the synthetic process and XRD patterns showed that lithium oxide and cerium dioxide can turn into fluorite type solid solution
    at mole ratio 0.4-1.0(Li+:Ce4+), a new phase is occurred at mole ratio below 0.3. Intensity of new phase peak decreases with increasing the mole ratio of Li+:Ce4+. When lithium ion doped into cerium dioxide, unit-cell shrinks slightly, unit-cell parameters decrease from 5.4124? to 5.4034?,d-spacing for(1,1,1)shrinks from 3.1248? to 3.12268?.Charge discharge examination indicated that the OCV of lithium ion cell assembly by using lithium ion doped cerium dioxide as cathode material is 3.26V, discharge capacity at 2.5V plateau is 10.5mAh when 0.2mA constant current discharge. It proved that lithium doped cerium dioxide can be embedded and unimpeded by lithium ion, and it is a potential cathode material for the lithium ion battery.
引文
1. 王文继王生扳卢宗兰福州大学学报(自然科学版)1986,14(4):84.
    2. 张大力王文继赵景总功能材料1995,26 (3):255
    3. 王文继张大力赵景总福州大学学报(自然科学版)1991,19(1):54
    4. Wenji WANG ,Zhibin ZHANG,Xiangyang OU ,Jingzong ZHAO Solid State Ionics 1988,28-30 442-443
    5. Wenji WANG ,Shengban WANG,Lin RAO, Zonglan LU,Xinzheng YI Solid State Ionics 1988,28-30 424-426
    6. 王文继王生扳刘一柏卢宗兰无机化学1987,3(2):12
    7. 王文继欧向阳赵景总无机材料学报1989,4 (2 ):151
    8. Wenji WANG,Jinxi CHEN ,Jingzong ZHAO Solid State Ionics:Maerials and Application edited by B.V.R.Chowdari et al. 1992 :369-372
    9. 王生扳王文继卢宗兰无机化学学报1989,7(3):271
    10. 王文继王生扳刘一柏无机化学1986,2 (4 ):1
    11. 蔡增良王文继福州大学学报(自然科学版)1997,25 (5):88
    12. 张玉荣王文继功能材料2001,32 (5):51
    13. 张志斌王文继李小妹功能材料1993,24(1):38
    14. Zhang Y R , Wang W J , Solid State Ionics:Maerials and Application edited by B.V.R.Chowdari et al. , World Scientific ,2000:63
    15. 黄庚王文继功能材料2001,32 (5):50
    16. 陈静西福州大学硕士研究生学位论文1991年
    17. S.S.Sekhon and Narinder Arora, Solid State Ionics:Materials and Devices,ed.by B.V.R.Chowdari,Wenji Wang, World Scientific Publishing Co.,Singapore,(2000) 443
    18. 齐力林云青景遐斌化学研究与应用2001,13 (2): 137
    19. 孙晓光林云青齐力等应用化学1996,13 (1):71
    20. 陈维君殷凤英王守东化学与粘合1997, (1) :17
    21. 孙晓光林云青景遐斌等高分子材料科学与工程1995, 11 (6):57-61
    22. 孙晓光林云青景遐斌等高分子材料科学与工程1996, 12 (1):80-83
    23. 齐力张永杰林云青等高分子学报2000,(2):129-135
    24. 王兆翔黄碧英薛荣坚等电化学1998, 4 (1):79-87
    25. Chi S. Kim, Seung M. Oh, Electrochimica Acta 2001,46: 1323-1331
    26. Chi S Kim Seung M.Oh Electrochimica Acta 2001,46:323
    27. 许佩新谢文明陈治中高分子材料科学与工程1999,15(4):23
    28. 孙杰刘昌炎高分子通报1997,(4):219
    29. Chul-Huwan Kim Kyoung –Hee etal Journal of Power Sources 2001,94:163
    30. 刘长生过俊石谢洪泉高分子材料科学与工程1998,14(3):130-132
    31. 刘长生过俊石谢洪泉武汉化工学院学报1996,18(2):9-13
    32. 朱伟张胜涛黄宗卿电源技术1997,21(6):248-251
    33. 杨新河李长江王文才高分子学报1998,(2):139
    34. 吴宇平万春荣姜长印锂离子二次电池[M] 北京:化学工业出版社(2002年11月):94
    35. Mirna Urquidi-Macdonald, Homero Castaneda, Angela M. Cannon Electrochimica Acta 2002,47 :2495-2503
    36. 赵莹歆刘昌炎电化学1999,5(1):94
    37. 吴伯荣田艳红李长江等高分子材料科学与工程1997,13(11):87
    38. 丁黎明董绍俊汪尔康电化学1997,3(4):349
    39. 张星辰熊培文张越等河北轻化工学院学报1998,19(4):16
    40. 余晴春黄海燕吴益华科技通报2000,16(5):347-350
    41. 余晴春黄海燕吴益华功能材料2001,32(2):213-214
    42. 娄永兵剧金兰顾庆超功能材料2000,30(3):319-320
    43. 陈猛史鹏飞程新群电池2000,30(3):130-132
    44. 张文龚克成电源技术1997,21(6):256-259
    45. 许鑫华陈贻瑞方洞浦等天津大学学报1998,31(5):627-631
    46. 夏笃伟张肇熙J.Smid 功能材料1992,23(4):201-205
    47. 顾庆超徐炜政莫天麟功能材料1991,22(1):21-31
    48. 艾新平洪昕林董全峰等电化学2000,6(2):193-199
    49. 钱新明古宁宇程志亮等北京大学学报2001,37(2):183-185
    50. 李丹胡春圃应圣康高分子学报1994 (6):680-685
    51. 许佩新谢文明陈治中化学研究与应用1999,11(4):399-401
    52. 胡树文张正诚方世璧高分子通报2001,(2):9-23
    53. 许海生杨昌正高分子学报1996,(4):395
    54. 朱伟黄宗卿重庆大学学报1998,21(1):102
    55. Golodnitsky,D.; Peled,E. Electrochim.Acta, 2000, 45(8-9):1431-1436
    56. Mao,G; Baboul, A.G.;Curtiss, L.A. et al Proc.-Electrochem. Soc.,99-41(Molten Salts Ⅻ),247-252
    57. Xu Meizhen; Edward M.; Eyring etal, Solid State Ionics, 1996, 83 (3-4): 293-300
    58. Hyuk-Soo Moon, Jung-Ki Park Solid State Ionics, 1999,120 (1-4):1-12
    59. A. Magistris, P.Mustarelli, E.Quartarone, etal, Solid State Ionics, 2000 , 136-137 (1-2):1241-1247
    60. 宋文顺化学电源工艺学中国轻工业出版社北京:1998
    61. 贺可英硅酸盐物理化学武汉工业大学出版社武汉:1995
    62. 吉泽四郎[日] 电池手册杨玉伟等译国防工业出版社北京:1987
    63. 徐光年电池1990,20,(5): 19
    64. 吴宇平戴晓兵等锂离子电池─应用与实践[M] 北京:化学工业出版社(2004年4月):297
    65. 徐国宪章庆权新型化学电源[M] 北京: 国防工业出版社1984年3月:159
    66. 李国欣新型化学电源导论[M] 上海:复旦大学出版社1992年12月:29
    67. Mirna Urquidi-Macdonald, Digby D. Macdonald, Osvaldo Pensado, etal ,Electrochimica Acta,2001,47: 833
    68. M. Urquidi-Macdonald, J.Flores, D.D.Macdonald, etal,Electrochimica Acta,1998,43(19-20):3069-3077
    69. 粉晶X射线物相分析南京大学地质学系矿物岩石学教研室编北京:地质出版社1980年:147
    70. 陈文徐庆郜定山等武汉工业大学学报1998,20(4):5
    71. Yancheng Zhang, Mirna Urquidi-Macdonald, Journal of Power Source, 2004,129:312-318
    72. 吴浩青李永舫电化学动力学[M] 北京:高等教育出版社,1998年,163-167
    73. 严瑞宣水溶性聚合物北京:化学工业出版社1988年12月:131
    74. 王璋等食品化学北京:中国轻工业出版社1999年9月:31
    75. 顾振军王寿泰聚合物的电性和磁性上海:上海交通大学出版社1990年:282
    76. 静电手册【日】营义夫主编,北京:科学出版社1981年:473-475
    77. 玻璃的本质、结构和性质【联邦德国】H、舒尔兹黄照柏译北京:中国建筑工业出版社1984年
    78. M.Broussely , P.Biensan, B.Simon,Electrochimica Acta,1999, 45 :3-22
    79. A.G.Ritchie, Journal of Power Source ,2001,96 :1-4
    80. 张卫民杨永会孙思修等无机化学学报2000,16(6):873-878
    81. 刘建睿王猛尹大川等电源技术2001,25(4):308-311
    82. 贺益陈召勇刘兴泉等合成化学2001,9(2):142-144
    83. 林河成四川有色金属2002,(1):22-24
    84. 陈立泉中国硅酸盐学会2003年学术年会论文摘要集:272
    85. 林祖襄郭祝昆孙成文快离子导体:固体电解质基础、材料、应用上海:上海科学技术出版社1988年
    86. R.G.Linford Electrochemical Science And Technology of Polymers—1,2 Elsevier Applied Science : London and New York 1987
    87. S.S.Sekhon, Rajiv Kumar, Boor Singh, Solid State Ionics:THE SCIENCE AND TECHNOLOGY OF IONS IN MOTION,Edited by B.V.R.Chowdari,et al, 2004, World Scientific Publishing Co.,911-922
    88. K.Zaghib, K.Striebel, A.Guerfi, et al, Electrochimica Acta, 50 (2004): 263-270
    89. A.A.M.Prince, S.Mylswamy, T.S.Chan, et al, Solid State Communication, 132(2004):455-458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700