基于三维海洋生态动力学模式的莱州湾氮、磷营养盐环境容量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着莱州湾沿岸工、农业的发展和人口的增长,入海河流携带的营养盐不断增多,导致莱州湾生态环境严重受损,具体表现为湾内海水的富营养化不断加重、赤潮频发,产卵场受到破坏,主要经济鱼类和渤海对虾资源严重衰退。依照中国的国情,立即停止营养盐的排放并不现实,应结合海水的环境容量进行营养盐点源排放的合理规划,以减小其对海域环境的危害。本文在前人研究的基础上建立了计算非保守物质环境容量的方法,并将该方法成功应用到了水动力较强、面积较大的莱州湾海域。
     进行莱州湾氮、磷营养盐环境容量计算的基础是生态动力学模式,本文通过建立一个基于PIC(Particle-In-Cell)粒子追踪方法的N-P-Z-D(营养盐-浮游植物-浮游动物-碎屑)生态模式,模拟分析了莱州湾无机氮(DIN)、无机磷(DIP)和浮游植物的大面分布特征与季节变化特征,并研究了21世纪初莱州湾的营养盐限制问题以及黄河和小清河输入的营养盐对莱州湾生态系统的作用。
     经过分析发现在莱州湾海域,比较适合的环境容量计算方法是排海通量最优化法。在使用该方法计算污染物某段时间的环境容量时,必须保证这段时间内目标海域对于污染物存在确定的响应系数场。由于氮、磷营养盐的分布具有明显的季节变化特征,其响应系数场也相应地随时间不断发生变化,不可能最终趋于稳定、获得确定的响应系数场,从而无法直接计算出营养盐的环境容量。
     为获得确定的响应系数场,本文分别选取满足排海通量最优化法适用条件的营养盐月平均浓度场及月最高浓度场数据,依次计算出莱州湾海域每个月的营养盐响应系数场,并进一步使用排海通量最优化法求解出营养盐的月环境容量。根据月平均浓度场计算出的响应系数场为线性,符合线性规划法的前提假设;而根据月最高浓度场计算出的响应系数场包含非线性部分,不能采用线性规划法而必须使用非线性规划法进行环境容量的计算。
     由于每个月浓度超过月平均浓度的天数比较多,经验证发现,即使严格按照月平均浓度场计算出的环境容量进行总量控制,仍将严重破坏海域生态环境,所以不应选用月平均浓度场而应采用月最高浓度场数据进行非保守物质环境容量的计算,以更好地保护海域生态系统。即对于氮、磷等非保守物质,应该使用非线性规划法进行海域环境容量的计算。
     氮、磷营养盐之间相互影响、此消彼长,当氮(或磷)的浓度处于不同状态时,相应的磷(或氮)的环境容量是不一样的。本文旨在探讨计算非保守物质环境容量的方法,为简化数值计算量,将保持磷(或氮)的排放现状不变,计算相应的莱州湾氮(或磷)的环境容量和剩余环境容量。根据渤海近岸海域主要海洋功能区划的要求,莱州湾内五个点源附近的海域都应满足二类水质要求。对于21世纪初莱州湾的营养盐环境容量,使用非线性规划法的最终计算结果为,在保持DIP排放现状不变的情况下,莱州湾DIN年环境容量为21843吨/年,剩余年环境容量为-8264吨/年,需要减少点源DIN的排放量;在保持DIN排放现状不变的情况下,莱州湾DIP年环境容量为1794吨/年,剩余年环境容量达1485吨/年,可继续容纳部分DIP的排放。
     最后,本文探讨了不同水动力条件对莱州湾生态系统以及营养盐环境容量的影响。黄河水动力条件在不同情况下对湾内生态系统和营养盐环境容量的影响不同:当黄河输入莱州湾的营养盐通量不变时,黄河的强水动力条件能限制和削弱莱州湾的富营养化状态;而当黄河输入莱州湾水体中的营养盐浓度不变时,黄河的弱水动力条件能限制和削弱莱州湾内的富营养化状态。可以利用黄河水动力条件及其营养盐的输入量,抑制并改善莱州湾的富营养化现象。另外,模式考虑了正压状态、正压潮(正压状态下只考虑潮的作用)状态和关闭风场对莱州湾生态系统和环境容量的影响,结果表明,无风场作用和正压潮状态都将低估莱州湾的DIN浓度,而正压状态则会高估湾内DIN的浓度。
In recent years, a large amount of nutrients is discharged into the Laizhou Bay byrivers with the development of the country’s economy. As it strongly enhances thegrowth of the phytoplanktons, the ecosystem of the Laizhou Bay could be destroyedby the eutrophication status and its developing trend. According to our country’scondition, cutting off all the discharges of the nutrients into the sea is unpractical. Inorder to reduce the damage to the marine environment, the nutrients discharges shouldbe optimized with the reasonable analysis and assessment of the nutrientsEnvironmental Capacity (EC) in the sea. The innovations in the thesis would be theestablishment of the EC calculational method of the nonconservative substance andthe successful application of the newly developed method on the bay.
     The nutrients EC of the Laizhou Bay should be calculated based on an ecosystemdynamical model. And the PIC (Particle-In-Cell) method is used in the three-dimensional ecosystem model, which is based on the N-P-Z-D (Nutrients-Phytoplankton-Zooplankton-Detritus) module. Compared with the observed data, theannual cycle of the nutrients and phytoplankton (PPT) in the bay is successfullyreproduced by the new model. In addition, the spatial and seasonal distributions of thenutrients and PPT in the bay are revealed using the model results. The studies of thenutrients limitation in2000s and the effects of the Yellow River and the XiaoqingheRiver on the ecosystem in the bay are also discussed.
     Recently, the most popular EC calculation method is the discharge optimizationmethod. The ascertained response factor field of the research area should be providedin the optimization method. As the specific seasonal variability of the nutrients existsin the bay, the corresponding nutrients response factor field changes over time. As a result, the nutrients EC couldn’t be directly calculated by the discharge optimizationmethod.
     To obtain the ascertained nutrients response factor field, the monthly averagednutrients concentration data and the monthly maximum nutrients concentration dataare adopted respectively, which both meet the applicable condition of the optimizationmethod. Both of the data are used to obtain the nutrients response factor field, andthen calculate the nutrients EC. The results show that the linear programming methodcould be used with the monthly averaged concentration field, while the nonlinearprogramming method would be used with the monthly maximum concentration field.
     In our model, there is about half a month’s time that the daily concentrationexceeds the monthly averaged concentration. Under this condition, even though thenutrients discharge is arranged according to the nutrients EC, which is obtained fromthe monthly mean concentration field, the ecosystem of the bay can still be destroyed.Therefore the monthly maximum concentration field is used to calculate the respondfactor field. In other words, the nonlinear programming method should be used tocalculate the EC of the nonconservative substance, including the nutrients.
     There are interactional effects between the DIN and DIP. If the DIN (or DIP) inthe bay is in different concentration conditions, the corresponding DIP (or DIN) ECmay be different, which is a complex process. The simplified means are adopted, asthe point of this thesis is to discuss how to replace the linear programming with thenonlinear programming. So in the condition of keeping the DIP (or DIN) dischargeunchanged, the corresponding DIN (or DIP) EC in the bay is calculated. Based on themarine functional division in the Bohai Sea, the water quality near all the pointsources should be Grade II. The EC and SEC (Surplus EC) of the nutrients in the bayare calculated using the nonlinear programming. In the condition of keeping the DIPdischarge unchanged, the corresponding DIN EC in the bay is21843t/a, while theSEC is-8264t/a, which means the DIN discharge should be restricted. In the conditionof keeping the DIN discharge unchanged, the corresponding DIP EC in the bay is1794t/a, and the SEC is1485t/a, which means more DIP could be discharged into the bay.
     In the end, the effects of the different hydrodynamic conditions on the ecosystemand the nutrients EC of the Laizhou Bay are also discussed. Strong hydrodynamiccondition of the Yellow River can reduce the eutrophication of the bay, when thefluxes of the discharged nutrients from the Yellow River keep unchanged. Meanwhile,weak hydrodynamic condition of the Yellow River can also reduce the eutrophicationof the bay, while the nutrients concentrations of the discharged water amounts fromthe Yellow River keep unchanged. It means that it is possible to improve theenvironmental quality of the Laizhou Bay by controlling the hydrodynamic conditionand the nutrients discharge of the Yellow River. In addition, the DIN concentration ofthe bay would be undervalued with the barotropic model, in which only the tides areconsidered. While the DIN concentration of the bay would be overestimated with thebarotropic model. Also, the DIN concentration of the bay would decrease if no wind isincluded in the model.
引文
[1]Backhaus, J.. A semi-implicit scheme for the shallow water equations for applications to shelfsea modeling. Continental Shelf Research,1983,2:243-254
    [2]Backhaus, J.. A three-dimensional model for the simulation of shelf sea dynamics. DeutscheHydrographische Zeitschrift,1985,38:165-187
    [3]Behrenfeld, M.J., Falkowski, P.G.. A consumer’s guide to phytoplankton primary productivitymodels. Liminol. Oceanogr.,1997,42(7):1479-1491
    [4]Beleyaev, V.I.. Simulation of functioning of a complex ecosystem. Ecol. Modeling,1984,26:9-15
    [5]Brown, E. J., Button, D. K.. Phosphate-limited growth kinetics of a green alga. J. phyco,1979,15:305-311
    [6]Chapelle, A., Lazure, P., Menesguen, A.. Modelling eutrophication events in a coastalecosystem sensitivity analysis. Estuarine, Coastal and Shelf Science,1994,39(6):529-548
    [7]Chen, C., Ji, R., Zheng, L., Zhu, M., Rawson, W.. Influences of physical processes on theecosystem in Jiaozhou Bay: a coupled physical and biological model experiment. Journal ofGeophysical Research. C. Oceans,1999,104(12):29925-29949
    [8]Chu, S.P.. Experimental studies on the environmental factors influencing the growth ofphytoplankton. Sci Technol China,1949,2:37-52
    [9]Cui, M.C., Zhu, H.. Coupled physical-ecological modeling in the central part of Jiaozhou Bay.II. Coupled with an ecological model. Chinese Journal of Oceanography and Limnology,2001,19(1):21-28
    [10]Cushing, D.H.. The seasonal variation in oceanic production as a problem in populationdynamics. ICES Journal of Marine Science,1959,24(3):455-464
    [11]Daly, K.L., Smith, W.O.. Physical-biological interactions influencing marine planktonproduction. Annu. Rev. Ecol. Syst.,1993,24:555-585
    [12]Dortch, Q., Whitledge, T.E.. Does nitrogen or silicon limit phytoplankton production in theMississippi River plume and nearby regions? Continental Shelf Research,1992,12:1293-1309
    [13]Drago, M., Cescon, B., Iovenitti, B.. A three-dimensional numerical model for eutrophicationand pollutant transport. Ecological Modelling,2001,145:17-34
    [14]Duka, G.G., Goryacheva, N.V., Romanchuk, L.S.. Investigation of natural waterself-purification capacity under simulated conditions. Water Resource,1996,23(6):619-622
    [15]Ebenhoh, W., Kohlmeier, C., Radford, P.J.. The benthic biological submodel in the Europeanregional Seas ecosystem model. NJSR,1995,33(3/4):423-452
    [16]Eppley, R.W.. Temperature and phytoplankton growth in the sea. Fishery Bulletin,1972,70(4):1063-1085
    [17]Fasham, M.J.R., Ducklow, H.W., Mckelvie, S.M.. A nitrogen-based model of planktondynamics in the oceanic mixed layer. J. of Mar. Res.,1990,48(3):591-639
    [18]Fleming, R.H.. The control of diatom populations by grazing. ICES Journal of Marine Science,1939,14(2):210-227
    [19]Fransz, H.G., Mommaerts, J.P., Radach, G.. Ecological modeling of the North Sea.Netherlands Journal of Sea Search,1991,28(1-2):67-140
    [20]Gao, H., Feng, S., Guan, Y.. Modelling annual cycles of primary production in differentregions of the Bohai Sea. Fish Oceanography,1998,7(3/4):258-264
    [21]GESAMP (joint Group of Experts on the Scientific Aspects of Marine Pollution).Environmental capacity: An approach to marine pollution prevention. UNEP REG. SEAS REP.STUD.1986,(80):62
    [22]Guillaud, J.F., Andrieux, F., Menesguen, A.. Biogeochemical modeling in the Bay of Seine(France): an improvement by introducing phosphorus in nutrient cycles. Journal of MarineSystems,2000,25(3-4):369-386
    [23]Harvey, H.W.. The chemistry and fertility of seawater. Wambridge University Press, London,1957:1-224
    [24]Heckey, R.E., Kilham, P.. Nutrient limitation of phytoplankton in freshwater and marineenvironments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr.,1988,33:796-822
    [25]Hoffman, E.E., Klinck, J.M., Paffenhofer, G.A.. Concentrations and vertical fluxes ofzooplankton fecal pellets on a continental shelf. Mar. Biol.,1981,61:327-335
    [26]Huang, D.J., Su, J.L., Backhaus, J.O.. Modelling the seasonal thermal stratification andbaroclinic circulation in the Bohai Sea. Continental Shelf Research,1999,19:1485-1505
    [27]Jiang, W.S., Pohlmann, T., Sun, J., Starke, A.. SPM transport in the Bohai Sea: fieldexperiments and numerical modeling. Journal of Marine System,2004,44:175-188
    [28]Jorgensen, S.E., Nielsen, S.N., Jorgensen, L.A.. Handbook of ecological parameters andecotoxicology. London: Elsevier,1991:1-1263
    [29]Justic, D., Rabalais, N.N., Turner, R.E., Dortch, Q.. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar. Coast.Shelf Sci.,1995b,40:339-356
    [30]Kishi, M.J., Kashiwai, M., Ware, D.M., Megrey, B.A. et al. NEMURO-a lower trophic levelmodel for the North Pacific marine ecosystem. Ecological Modelling,2007,202:12-25
    [31]Krom, M.D., Hornung, H., Cohen, Y.. Determination of the environmental capacity of HaifaBay with respect to the input of mercury. Marine pollution bulletin,1990,21:349-354
    [32]Li, K.Q., Wang, X.L., Liang, S.K., Shi, X.Y., Zhu, C.J., Chen, H.. A nitrogen and phosphorusdynamic model of mesocosm pelagic ecosystem in the Jiaozhou Bay in China. Acta OceanologicaSinica,2008,27(5):98-110
    [33]Li, K.Q., Wang, X.L., Han, X.R., Shi, X.Y., Chen, H.. Modelling nitrogen and phosphorusdynamics in a mesocosm pelagic ecosystem in Laizhou Bay in China. Oceanic and Coastal SeaResearch,2009,8(2):133-140
    [34]Liu, H., Yin, B.S.. Model study on Bohai ecosystem: I. model description and primaryproductivity. Acta Oceanologica Sinica,2006a,25(4):77-90.
    [35]Liu, H., Yin, B.S.. Numerical investigation of nutrient limitations in the Bohai Sea. MarineEnvironmental Research,2010,70:308-317.
    [36]Liu, S.M., Zhang, J., Jiang, W.S.. Pore water nutrient regeneration in shallow coastal BohaiSea, China. Journal of Oceanography,2003,59:377-385
    [37]Mahajan, A.U., Chalapatirao, C.V., Gadkari, S.K.. Mathematical modeling–A tool for coastalwater quality management. Water Science and Technology,1999,40:151-157
    [38]Mao, X.Y., Jiang, W.S., Zhao, P., Gao, H.W.. A3-D numerical study of salinity variations inthe Bohai Sea during the recent years. Continental Shelf Research,2008,28:2689-2699
    [39]Margeta, J., Baric, A., Gacic, M.. Environmental capacity of kastela Bay. EIGHTHINTERNATIONAL OCEAN DISPOSAL SYMPOSIUM,1989:9-13
    [40]Nelson, D.M., Brzezinski, M.A.. Kinetics of silicic acid uptake by natural diatom assemblagesin two Gulf Stream warmcore rings. Mar. Ecol. Progr. Ser.,1990,62:283-292
    [41]Nordvarg, L., Hakanson, L.. Predicting the environmental response of fish farming in coastalareas of the Aland archipelago using management models for coastal water planning. Aquaculture,2002,206:217-243
    [42]Piedracoba, S., Souto, C., Gilcoto, M., Pardo, P.. Hydrography and dynamics of the Ria deRibdel (NW Spain), a wave driven estuary. Estuarine, Coastal and Shelf Science,2005,65:726-738
    [43]Radach, G., Moll, A.. Estimation of the variability of production by simulating annual cyclesof phytoplankton in the central North Sea. Progress In Oceanography,1993,31(4):339-419
    [44]Riley, G.A.. Factors controlling phytoplankton populations on Georges Bank. J. mar. Res.,1946,6:54-73
    [45]Riley, G.A., Stommel, H.B.. Quantitative ecology of the plankton of the western NorthAtlantic. Bulletin of Bingham Oceanography College,1949,12:1-169
    [46]Simionato, C., Meccia, V., Dragani, W., Nunez, M.. On the use of the NCEP/NCAR surfacewinds for modeling barotropic circulation in the Rio de la Plata Estuary. Estuarine, Coastal andShelf Science,2006,70:195-206
    [47]Steele, J.H.. The structure of marine ecosystems. Cambridge, Harvard University of press,1974:1-128
    [48]Stronach, J., Backhaus, J., Mutry, T.. An update on the numerical simulation of oceanographicprocesses in the waters between Vancourer Island and the mainland: the GF8model.Oceanography and Marine Biology: an Annual Review,1993,31:1-86
    [49]Tedeschi, S.. Assessment of the environmental capacity of enclosed coastal sea. Marinepollution bulletin,1991,23:449-455
    [50]Wang, X.L., Yu, A., Jun, Z.. Contribution of biological processes to self-purification of waterwith respect to petroleum hydrocarbon associated with No.0diesel in Changjiang estuary andJiaozhou Bay. Hydrobiologia,2002,469:179-191
    [51]Wei, H., Sun, J., Moll, A., Zhao, L.. Phytoplankton dynamics in the Bohai Sea–Observationsand modeling. Journal of Marine Systems,2004,44:233-251
    [52]Wen, Y.H., Peters, R.H.. Empirical models of phosphorus and nitrogen excretion rates byzooplankton. Limnol. Oceanogr.,1994,39(7):1669-1679
    [53]Wu, Z.M., Zhai, X.M., Zhang, Z.N., Yu, G.Y., Zhang, X.L., Gao, S.H.. A simulation analysison pelagic-benthic coupling ecosystem of the northern Jiaozhou Bay, Qingdao, China. ActaOceanologica Sinica,2001,20(3):443-453
    [54]Yang, B., Sheng, J.Y., Hatcher, B.G.. Modeling Circulation and Hydrodynamic Connectivity inBras d'Or Lakes using Nested-Grid Approach. Journal of Coastal Research,2009, SI52:57-70
    [55]Yoon, Y.Y., Martin, J.M., Cotte, M.H.. Dissolved trace metals in the western MediterraneanSea: total concentration and fraction isolated by C18Sep-Pak technique. Marine Chemistry,1999,66:129-148
    [56]Zavatarelli, M., Baretta, J.W., Baretta-Bekker, J.G.. The dynamics of the Adriatic Seaecosystem. An idealized model study. Deep-Sea Research Part I,2000,47(5):937-970
    [57]Zhang, X.L., Wu, Z.M., Li, J., Yu, G.Y., Zhang, Z.N., Gao, S.H.. Modeling study of seasonalvariation of the pelagic-benthic ecosystem characteristics of the Bohai Sea. Journal of OceanUniversity of China,2006,5(1):21-28
    [58]白雪娥,庄志猛.渤海浮游动物生物量及其主要种类数量变动的研究.海洋水产研究,1991,12:71-92
    [59]陈朝华,詹兴旺.厦门东侧海域表层海水质量现状与评价.台湾海峡,2001,20:157-160
    [60]陈慈美,林月玲.厦门西海域磷的生物地球化学行为和环境容量.海洋学报,1993,15:43-48
    [61]陈国珍,钮因义,文圣常.渤海、黄海、东海海洋图集,1992:1-100
    [62]陈力群.莱州湾海洋环境评价与污染总量控制方法研究:[硕士学位论文].青岛:中国海洋大学,2004
    [63]崔江瑞,张珞平.厦门湾环境容量研究中污染物迁移转化模式的确定及其应用.环境科学与管理,2009,34(11):10-14
    [64]崔毅,杨琴芳,宋云利.夏季渤海无机磷酸盐和溶解氧分布及其相互关系.海洋环境科学,1994,13(4):31-35
    [65]崔毅,宋云利.渤海海域营养现状研究.海洋水产研究,1996,17(1):57-62
    [66]崔毅,马绍赛,李云平,邢红艳,王梅胜,辛福言,陈聚法,孙耀.莱州湾污染及其对渔业资源的影响.海洋水产研究,2003,24(1):35-41
    [67]刁焕祥.渤海浮游植物的水温磷硅环境评价.海洋湖沼通报,1986,4:35-40
    [68]方秦华,张珞平,王佩儿,赵清,洪华生.象山港海域环境容量的二步分配法.厦门大学学报,2004,43:217-220
    [69]费尊乐.渤海海水透明度与水色的研究.黄渤海海洋,1986,4(1):33-40
    [70]费尊乐,毛兴华,朱明远,李冰,李宝华,管永红,张新胜,吕瑞华.渤海生产力研究I.叶绿素a的分布特征与季节变化.海洋学报,1988,10(1):99-106
    [71]费尊乐,毛兴华,朱明远,李冰,李宝华,管永红,张新胜,吕瑞华.渤海生产力研究——叶绿素a、初级生产力与渔业资源开发潜力.海洋水产研究,1991,12:55-69
    [72]冯士筰,张经,魏皓.渤海环境动力学导论.北京:科学出版社,2007:1-200
    [73]高会旺,王强.1999年渤海浮游植物生物量的数值模拟.中国海洋大学学报,2004,34(5):867-873
    [74]高会旺,吴德星,白洁,石金辉,李正炎,江文胜.2000年夏季莱州湾生态环境要素的分布特征.青岛海洋大学学报,2003,33(2):185-191
    [75]葛明,王修林,阎菊,石晓勇,祝陈坚,蒋凤华.胶州湾营养盐环境容量计算.海洋科学,2003,27(3):36-42
    [76]龚纯,王正林.精通MATLAB最优化计算(第2版).北京:电子工业出版社,2012:85-210
    [77]国家海洋局.渤海污染调查图集.1976,大连:国家海洋局东北海洋工作站
    [78]国家海洋局.中国海洋环境年报(1990~1998).1991-1999.
    [79]国家海洋局.中国海洋环境质量公报(2000~2005).2000-2005.
    [80]国家海洋局北海分局.渤黄海环境质量年报.1990-2005
    [81]国家科委海综办.全国海洋综合调查报告.1964.
    [82]郭良波.渤海环境动力学数值模拟及环境容量研究:[硕士学位论文].青岛:中国海洋大学,2005
    [83]郭良波,江文胜,李凤岐,王修林.渤海COD与石油烃环境容量计算.中国海洋大学学报,2007,37(2):310-316
    [84]郭全.渤海夏季营养盐和叶绿素分布特征及富营养化状况分析:[硕士学位论文].青岛:中国海洋大学,2005
    [85]海洋图集编委会.渤海、黄海、东海海洋图集,生物卷&化学卷.北京:海洋出版社,1991:1-100
    [86]郝彦菊,王宗灵,朱明远,李瑞香,孙丕喜,夏滨,陈力群.莱州湾营养盐与浮游植物多样性调查与评价研究.海洋科学进展,2005,23(2):197-204
    [87]洪华生,陈宗团.海岸带综合管理中面临的科学问题.海洋开发与管理,1998,1:28-31
    [88]黄河水利委员会.黄河水资源公报,2000-2009:1-30
    [89]贾振邦,赵智杰,吕殿录,辛会忠,刘春,李铁庆.柴河水库流域主要重金属平衡估算及水环境容量研究.环境保护科学,1996,22(2):49-52
    [90]蒋红,崔毅,陈碧鹃,陈聚法,宋云利.渤海近20年来营养盐变化趋势研究.海洋水产研究,2005,26(6):61-67
    [91]姜太良.莱州湾西南部的物理自净能力.海洋通报,1991,2:73-79
    [92]康元德.渤海浮游植物的数量分布和季节变化.海洋水产研究,1991,12:31-54
    [93]匡国瑞,杨殿荣,喻祖祥,潘若琰,张玉林,方胜民,周德坚.海湾水交换的研究——乳山东湾环境容量初步探讨.海洋环境科学,1987,(1):13-23
    [94]雷宗友.中国海环境手册.上海:上海交通大学出版社,1988:1-638
    [95]李广楼,陈碧鹃,崔毅,马绍赛,唐学玺.莱州湾浮游植物的生态特征.中国水产科学,2006,13(2):292-299
    [96]李广楼,崔毅,陈碧鹃,陈聚法,宋云利,过锋.秋季莱州湾及附近水域营养现状与评价.海洋环境科学,2007,26(1):45-57
    [97]李克强,王修林,阎菊,石晓勇,祝陈坚,葛明,安宇.胶州湾石油烃污染物环境容量计算.海洋环境科学,2003,22(4):13-17
    [98]李明.详解MATLAB在最优化计算中的应用(配视频教程).北京:电子工业出版社,2011:74-262
    [99]李适宇,李耀初,陈炳禄,吴群河.分区达标控制法求解海域环境容量.环境科学,1999,(4):96-99
    [100]栗苏文,李红艳,夏建新.基于Delft3D模型的大鹏湾水环境容量分析.环境科学研究,2005,18(5):91-95
    [101]林辉,张元标.厦门西海域水质状况及其环境容量评估.台湾海峡,2008,27:214-220
    [102]林庆礼,宋云利,杨琴芳,崔毅,辛兆海,衣铭明,于宏.渤海增值水化学环境.海洋水产研究,1991,12:11-30
    [103]刘浩,潘伟然.营养盐负荷对浮游植物水华影响的模型研究.水科学进展,2008,19(3):345-351
    [104]刘浩,尹宝树.辽东湾氮、磷和COD环境容量的数值计算.海洋通报,2006,25(2):46-54
    [105]刘霜,张继民,杨建强,崔文林.黄河口生态监控区主要生态问题及对策探析.海洋开发与管理,2009,26(3):49-52
    [106]刘素美,张经,于志刚,陈洪涛,姚庆祯.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量.环境科学,1999,20(2):12-16
    [107]吕瑞华,夏滨,李宝华,费尊乐.渤海水域初级生产力10年间的变化.黄渤海海洋,1999,17(3):80-86
    [108]马德毅.第二次全国海洋污染基线调查报告.大连:国家海洋局海洋环境监测中心,2004
    [109]马绍赛.乳山湾东流区丰水期(8月)有机物及营养盐的环境容量.海洋水产研究,1998,19(2):33-36
    [110]马媛.黄河入海径流量变化对河口及邻近海域生态环境影响研究:[硕士学位论文].青岛:中国海洋大学,2006
    [111]慕建东.渤海重要渔业水域生态环境质量状况评价:[硕士学位论文].青岛:中国海洋大学,2009
    [112]慕金波,郝光前,张洪秀,董力克,杜金辉.泗河水环境容量及最大允许排污量计算.环境科学与技术,2009,32(11):177-180
    [113]潘友联.胶州湾两个站的海水透明度和水下照度——周年观测资料的初步分析.海洋科学,1987,3:49-53
    [114]曲克明,崔毅,辛福言,陈民山,宋云利,袁有宪.莱州湾东部养殖水域氮、磷营养盐的分布与变化.海洋水产研究,2002,23(1):37-46
    [115]饶开艳,古秋森,黎夏,万肇忠.伶仃洋N,P静态环境容量的研究.海洋科学,1990,(3):49-52
    [116]单志欣,郑振虎,邢红艳,刘晓静,刘晓波,刘义豪.渤海莱州湾的富营养化及其研究.海洋湖沼通报,2000,2:41-46
    [117]沈明球,房建孟.宁波石浦港的环境质量现状及环境容量的初步研究.海洋通报,1996,15(6):51-59
    [118]孙军,刘东艳,柴心玉,张晨.1998~1999年春秋季渤海中部及其邻近海域叶绿素a浓度及初级生产力估算.生态学报,2003,23(3):517-526
    [119]孙培艳.渤海富营养化变化特征及生态效应分析:[博士学位论文].青岛:中国海洋大学,2007
    [120]孙丕喜,王波,张朝晖,王宗灵,夏滨.莱州湾海水中营养盐分布与富营养化的关系.海洋科学进展,2006,24(3):329-335
    [121]唐启升,孟田湘.渤海生态环境和生物资源分布图集.青岛:青岛出版社,1997:1-100
    [122]唐献力,郭宗楼.水环境容量价值及其影响因素研究.农机化研究,2006:45-48
    [123]万修全,吴德星,鲍献文,姜华.2000年夏季莱州湾主要观测要素的分布特征.中国海洋大学学报,2004,34(1):7-13
    [124]王辉.海洋生态系统模型研究的几个基本问题.海洋与湖沼,1998,29(4):341-346
    [125]王俊,康元德.渤海浮游植物种群动态的研究.海洋水产研究,1998,19(1):43-52
    [126]王俊,李洪志.渤海近岸叶绿素和初级生产力研究.海洋水产研究,2002,23(1):23-28
    [127]王俊.渤海近岸浮游植物种类组成及其数量变动的研究.海洋水产研究,2003,24(4):44-50
    [128]王修林,崔正国,李克强,韩秀荣,李雁宾,祝陈坚.环渤海三省一市溶解态无机氮容量总量控制.中国海洋大学学报,2008,38(4):619-622
    [129]王修林,崔正国,李克强,梁生康,祝陈坚,郭全.渤海COD入海通量估算及其分配容量优化研究.海洋环境科学,2009,28(5):497-500
    [130]王修林,邓宁宁,李克强,石晓勇,祝陈坚,韩秀荣,张传松,王磊.渤海海域夏季石油烃污染状况及其环境容量估算.海洋环境科学,2004,23(4):14-18
    [131]王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006a:1-310
    [132]王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社,2006b:1-293
    [133]王卓,宋春艳,王树恩.关于环境质量控制模型的研究.生态经济:学术版,2007:347-350
    [134]魏皓,赵亮,于志刚,孙军,刘哲,冯士筰.渤海浮游植物生物量时空变化初析.青岛海洋大学学报,2003,33(2):173-179
    [135]吴俊,王振基.大连湾海水交换及自净能力的研究.海洋科学,1983,6(3):32-35
    [136]杨积武.近岸海域实施污染物排放总量控制的理论与实践.海洋信息,2001,(2):24-26
    [137]叶德赞,倪纯治,周宗澄,林燕顺,姚瑞梅,曾活水,梁子原,顾静瑜.厦门西海域水体的细菌动力学研究和环境容量评估.海洋学报,1994,16(4):102-112
    [138]余静,孙英兰,张越美,张燕,蔡惠文.宁波—舟山海域入海污染物环境容量研究.环境污染与防治,2006,28(1):21-24
    [139]于志刚,米铁柱,谢宝东,姚庆祯,张经.二十年来渤海生态环境参数的演化和相互关系.海洋环境科学,2000,19(1):15-19
    [140]袁有宪.黄渤海环境质量与生态变化研究.《黄渤海环境质量与生态变化研究》编写组,1996
    [141]张存智,韩康,张砚峰,窦振兴.大连湾污染排放总量控制研究——海湾纳污能力计算模型.海洋环境科学,1998,17(3):1-5
    [142]张继民,刘霜,张琦,刘一霆.黄河口附近海域营养盐特征及富营养化程度评价.海洋通报,2008,27(5):65-72
    [143]张均顺,沈志良.胶州湾营养盐结构变化的研究.海洋与湖沼,1997,28(5):529-535
    [144]张学庆.胶州湾三维环境动力学数值模拟及环境容量研究:[硕士学位论文].青岛:中国海洋大学,2003
    [145]张永良.水环境容量基本概念的发展.环境科学研究,1992,5(3):59-61
    [146]张永良,刘培哲.环境容量综合手册.北京:清华大学出版社,1991:1-1222
    [147]赵亮,魏皓,冯士筰.渤海氮磷营养盐的循环和收支.环境科学,2002,23(1):78-81
    [148]赵骞,田纪伟,赵仕兰,吴自库.渤海冬夏季营养盐和叶绿素a的分布特征.海洋科学,2004,28(4):34-39
    [149]郑庆华,何悦强,张银英,温伟英,张慕贞,梁雪仪.珠江口咸淡水交汇区营养盐的化学自净研究.热带海洋,1995,14(2):68-75
    [150]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59
    [151]朱静,王靖飞,田在峰,陈新永.海洋环境容量研究进展及计算方法概述.水科学与工程技术,2009,4:8-11
    [152]邹景忠.渤海湾富营养化和赤潮问题探讨.海洋环境科学,1983,2(2):45-54
    [153]邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨.海洋环境科学,1983,2(2):41-54
    [154]邹立,张经.渤海春季营养盐限制的现场实验.海洋与湖沼,2001,32(6):672-678

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700