分枝杆菌无机磷酸盐转运相关蛋白PhoY2生物学功能及致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染所引起的结核病(Tuberculosis, TB)目前仍然是严重危害人类公共卫生安全的传染性疾病之一,每年在全球范围内造成近两百万人口死亡。只有大约5%-10%的人在感染M.tuberculosis后会在短时间内发展为活动性结核(Active TB);余下90%-95%被感染人群发展为对结核菌素纯蛋白衍生物(M.tuberculosis purified protein derivative, PPD)免疫学测试结果为阳性(M.tuberculosis感染证据)、但无任何临床症状的潜伏感染(Latent TB)。据世界卫生组织估计,全球有近1/3的人PPD测试结果为阳性,这近20亿人口的潜伏感染人群是活动性结核患者的重要病源。
     结核病潜伏感染及发病的分子机理尚未研究清楚。在潜伏感染的状态下,细菌与宿主之间达成一种平衡:宿主的免疫系统不会完全清除细菌,细菌也不会迅速的增殖扩散而损害机体造成活动性疾病。宿主在感染细菌后会通过形成巨噬细胞吞噬溶酶体、低氧和营养缺陷的肉芽肿(Granuloma)等压力环境来控制细菌的增殖和传播,但M.tuberculosis能够通过各种机制适应所处环境的压力变化从而得以在机体内长期存活。一旦宿主的免疫系统受到损害,例如感染HIV(Human immunodeficiency virus)病毒或接受抗肿瘤坏死因子(Tumor Necrosis Factor alpha, TNF-a)抗体治疗,细菌就会重新活化增殖而致病。前期的研究利用体外的低氧、营养缺陷、一氧化氮等压力模型找出了细菌中许多参与这一适应过程的调控基因,例如对低氧环境的适应起主要作用的DosR Regulon、EHR基因等。
     磷元素是构成生物体的必须元素。细菌在长期的进化过程中形成了复杂的无机磷酸盐转运系统Pho Regulon来调控磷元素的代谢和平衡。其中的关键组成部分是无机磷酸盐特异性转运系统(Phosphate specific transporter system, Pst system),在模式细菌大肠埃希杆菌(Escherichia coli, E.coli)中,Pst系统由胞膜外磷酸盐浓度感知蛋白PstS、胞膜通道蛋白PstA和]PstC、ATP结合蛋白PstB构成,共同调控细菌对胞外Pi的摄取。Pho Regulon主要由PhoR/PhoB双组分系统调控。在无机磷酸盐缺陷的环境下,PhoR蛋白会自磷酸化并将磷酸化基团传递给PhoP,以启动能激活Pho Regulon的基因应答。当细菌所处的外界环境无机磷酸盐过量时,PhoR又能行使磷酸酶的功能对磷酸化的PhoB蛋白进行去磷酸化以中止相关基因的激活。PhoU是位于胞膜内的调控蛋白,对PhoB磷酸化蛋白的去磷酸化以及Pho Regulon在富集的无机磷酸盐环境中的调控至关重要。PhoU蛋白的详细调控机制尚未明晰,结构生物学上证据推测它可能直接与PhoR/PhoB蛋白相互作用并影响其功能。
     在M. tuberculosis中有两个PhoU蛋白的同源成分:PhoY1和(Rv3301c)PhoY2(Rv0821c),二者在氨基酸序列上与大肠埃希杆菌的同源系分别为40%和44%。前期的研究通过鉴定PhoY1和PhoY2蛋白突变的M. tuberculosis在抗生素压力和动物感染模型体内压力情况下持续性感染形成的能力发现PhoY2与PhoU具有相同的表型。PhoY2蛋白调控这些表型形成的机制尚未有研究报道。我们通过筛选分枝杆菌研究的模式细菌——海分枝杆菌(Mycobacterium marinum, M.marinum)的转座子插入突变库,得到了PhoU同源蛋白PhoY2的突变菌株phoY2::Tn。我们的研究发现:M. marinum中phoY2基因的插入失活导致胞内poly Pi浓度上调;突变菌株胞内ATP的含量也随着poly Pi量的上调而增加;处于poly Pi和ATP代谢失调的phoY2::Tn菌株不仅对体外高磷酸盐浓度更为敏感,在细胞壁裂解剂十二烷基磺酸钠(SDS)、营养缺陷、抗生素等环境压力的处理下,其生存能力均降低;此外,体外低氧模型的研究结果也发现phoY2::Tn对低氧环境的适应过程、从低氧状态下的休眠期复苏受到了影响。基于这些工作基础和相关研究背景,我们提出:PhoY2蛋白在维持分枝杆菌的代谢平衡和对环境压力的应答中发挥重要的作用。(论文第一章)
     结核病由潜伏感染到发病是一个复杂的、由宿主与M.tuberculosis相互作用的过程。诸多宿主因素参与了对潜伏感染的调控。在本论文的第二部份,我们研究了microRNA (miRNA)在这一过程中的调控作用。miRNA是一类22bp左右的内源性RNA片段,能通过与靶基因mRNA结合并降解mRNA的的机制来抑制靶基因的表达,从而在哺乳动物和植物的转录后调控中发挥重要的作用。目前,在人类miRNA数据库中已经有约1000余种miRNA的详细信息记录。这使得miRNA能调控一些重要的生物学过程如细胞发育、分化、凋亡、新陈代谢、抵御病毒侵染、肿瘤发生等。miRNA同样可以通过调控免疫细胞的发育和分化来调控固有免疫和获得性免疫系统对病原体入侵的免疫反应。前期的临床研究发现miRNA可以在多种癌症的诊断、预后等过程中做为生物标记(Biomarker)发挥作用。与之相比,在感染性疾病,特别是细菌感染性疾病中miRNA的调控和临床作用的研究仍然很少。我们使用微芯片(Microarray)技术比较了活动性结核患者、结核潜伏感染人群和健康人群外周血单核细胞miRNA的表达谱,找出了在三组人群中表达有差异的miRNA并使用实时荧光实时定量PCR方法予以验证。根据这些miRNA在数据库中记录的靶基因信息,我们构建了活动性结核患者和潜伏感染人群之间差异miRNA的调控网络。我们的研究对miRNA介导的结核病潜伏感染调控机制有了新的认识。(论文第二章)
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tuberculosis), causes approximately2million deaths annually and remains a threat to global health. Approximately5to10%of M.tuberculosis-infected individual develops active TB at some stage in their life. The remaining,90to95%infected people remain asymptomatic, carrying so-called latent TB infection (LTBI), which is defined solely by the evidence of immunological sensitization to mycobacterial proteins (M tuberculosis purified protein derivative, PPD) in the absence of clinical signs and symptoms of active disease. The World Health Organization estimates that nearly one third of the world population is PPD+. This vast reservoir of LTBI-infected individuals is a constant source of disease caused by reactivation.
     The exact underlying mechanisms of LTBI and its transition to active TB remain elusive. LTBI rely on an equilibrium in which the host is able to control the infection but does not completely eradicate the bacteria. The host could form several in vivo environmental stresses include phagocytic vacuoles of macrophages, hypoxic and nutrient-limited environments within granulomas, as well as oxygen-rich alveolar airspaces to control the replication and spread of bacteria.However, some bacteria could adapt to such diverse conditions by altering its physiology in response to changes in the environment therefore survive in a phenotype called dormancy for a long period. Immunosuppressants such as HIV infection or antitumor necrosis factor (TNF) treatment for rheumatoid arthritis may lead to the reactivation of these bacteria. Studies of M tuberculosis response to several stress conditions including hypoxia, nutrient deprivation, nitric oxide treatment and growth in acidic media have been described and genes induced by certain stress conditions such as the DosR regulon and EHR genes in response to hypoxia have been identified.
     Phosphate is an essential nutrient for cell functions and life. Bacteria employ a sophisticated system, encoded by the Pho regulon, to manage inorganic phosphate (Pi) acquisition and metabolism. A key component of the Pho regulon is the ABC-type phosphate specific transporter (Pst) system consisting of PstSCAB. PstS is a periplasmic protein that binds Pi with high affinity, PstC and PstA are cytoplasmic membrane transporters for Pi translocation into the cytosol, and PstB is an ATPase that provides energy for the transporter. The Pho regulon is controlled by the PhoR/PhoB two-component regulatory system. Under Pi limitation, PhoR is autophosphorylated and transfers a phosphoryl group to PhoB, which in turn activates target genes including the Pho regulon. When Pi is in excess, the activation is interrupted by PhoR acting as a phosphatase on phosphor-PhoB. PhoU, a peripheral membrane protein, is also required for dephosphorylation of PhoB and is essential for repression of Pho regulon under Pi rich condition. The precise mechanism of PhoU action is unknown, but it may interact with PhoR/PhoB proteins and interfere with their functions.
     There are two PhoU homologues in M.tuberculosis, PhoYl (Rv3301c) and PhoY2(RvO821c) which share40%and44%homology to E. coli PhoU. Previous studies showed that disruption of phoY2but not phoY1in M. tuberculosis resulted in increased susceptibility to antibiotics and reduced persistence of the bacterium in mice. The persistence phenotype of phoY2mutant is similar to that of phoU mutant of E. coli, suggesting that PhoY2is the functional homolog of PhoU. However, the underlying molecular mechanisms for the observed phenotypes associated with phoY2mutation in mycobacteria remain unknown. In the first part of this study, we characterized a transposon inactivated phoY2mutant of Mycobacterium marinum (M marinum). We found that the disruption of phoY2resulted in elevated levels of intracellular poly-Pi and ATP. The expression of phoY2was induced by environmental stress conditions and the phoY2::Tn mutant exhibited increased sensitivity to SDS, antibiotics and excessive levels of Pi. We also investigated the phenotypes of the phoY2::Tn mutant under hypoxia-induced dormancy. Taken together, our results indicate that PhoY2is required for maintaining metabolic homeostasis and adaption to environmental stress conditions (Part1).
     The transition of latent to active TB is a complex process, which depends on the interaction between host and mycobacterium. In the second part of this work, we investigate the regulated role of microRNA (miRNA) in this process. miRNAs are endogenous,22-nucleotide RNAs that play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. There are currently1,000human miRNAs sequences listed in the miRNA registry which may target about60%of all mammalian genes [http://www.mirbase.org/], indicating that these small molecules play fundamental and global functions in human biology, including development, differentiation, apoptosis, metabolism, viral infection, and cancer. MiRNAs also modulate the innate and adaptive immune responses to pathogens by affecting mammalian immune cell differentiation and the development of diseases of immunological origin.The clinical application of miRNAs as diagnostic or prognostic biomarkers has already been demonstrated in various types of cancers. However, compared to their well-known role in cancer, the role of miRNAs in susceptibility and resistance to infectious disease, especially those of bacterial origin, is still poorly understood. We compared the miRNA expression profiles of PBMCs from patients with active TB, subjects with LTBI, and healthy controls in order to test the hypothesis that candidate miRNAs regulate the transition from LTBI to active TB. We used a miRNA microarray chip containing,960probes to identify the differently expressed miRNAs, and performed realtime quantitative polymerase chain reaction (qPCR) for confirmation. The putative regulatory network of miRNAs that were differentially expressed in the samples from active TB and LTBI individuals was constructed based on predicted target genes and previously published genome-wide transcriptional profiles. Our study provides a greater understanding of the role of miRNAsmediated regulated networks in the transition from latent to active TB (Part
引文
1. WorldHealthOrganization:WHO Report 2011:Global Tuberculosis Control. Epidemiology, Strategy, Financing.2011.
    2.卫生部2011年1月及2010年度全国法定传染病疫情报告
    3. Dheda K, Migliori GB:The global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdue? Lancet 2012, 379(9817):773-775.
    4. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C: The growing burden of tuberculosis:global trends and interactions with the HIV epidemic. Arch Intern Med 2003,163(9):1009-1021.
    5. Barry CE,3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D:The spectrum of latent tuberculosis:rethinking the biology and intervention strategies. Nat Rev Microbiol 2009,7(12):845-855.
    6. Bigger JW:Treatment of staphylococcal infections with penicillin. Lancet 1944, 244:4.
    7. Kaufmann SH:How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001, 1(1):20-30.
    8. Boshoff HI, Barry CE,3rd:Tuberculosis-metabolism and respiration in the absence of growth, Nat Rev Microbiol 2005,3(1):70-80.
    9. Vandiviere HM, Loring WE, Melvin I, Willis S:The treated pulmonary lesion and its tubercle bacillus. Ⅱ. The death and resurrection. Am J Med Sci 1956, 232(1):30-37; passim.
    10. Kennedy HE, Vandiviere HM, Melvin IG, Willis HS:The treated pulmonary lesion and its tubercle bacillus. Ⅲ. Drug susceptibility studies. Am J Med Sci 1957,233(6):676-684.
    11. Kennedy HE, Vandiviere HM, Willis HS:The effects of extended incubation on propagability of tubercle bacilli. Am Rev Tuberc 1958,77(5):802-814.
    12. Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN, Tanverdi M, Mathema B, Ramaswamy SV, Walther G, Steyn LM et al:Mycobacterium tuberculosis growth at the cavity surface:a microenvironment with failed immunity. Infect Immun 2003,71(12):7099-7108.
    13. Capuano SV,3rd, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel S, Fuhrman C, Klein E, Flynn JL:Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 2003,71 (10):5831-5844.
    14. Chao MC, Rubin EJ:Letting Sleeping dos Lie:Does Dormancy Play a Role in Tuberculosis? Annual Review of Microbiology, Vol 64,2010 2010,64:293-311.
    15. Manabe YC, Bishai WR:Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med 2000,6(12):1327-1329.
    16. Wayne LG, Sohaskey CD:Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 2001,55:139-163.
    17. Stewart GR, Robertson BD, Young DB:Tuberculosis:a problem with persistence. Nat Rev Microbiol 2003, 1(2):97-105.
    18. Coates A, Hu Y, Bax R, Page C:The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002,1(11):895-910.
    19. Vershinina OA, Znamenskaia LV:[The Pho regulons of bacteria]. Mikrobiologiia 2002,71(5):581-595.
    20. Lamarche MG, Wanner BL, Crepin S, Harel J:The phosphate regulon and bacterial virulence:a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 2008,32(3):461-473.
    21. Oganesyan V, Oganesyan N, Adams PD, Jancarik J, Yokota HA, Kim R, Kim SH: Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus. J Bacteriol 2005,187(12):4238-4244.
    22. Liu J, Lou Y, Yokota H, Adams PD, Kim R, Kim SH:Crystal structure of a PhoU protein homologue:a new class of metalloprotein containing multinuclear iron clusters. J Biol Chem 2005,280(16):15960-15966.
    23. Kornberg A, Rao NN, Ault-Riche D:Inorganic polyphosphate:a molecule of many functions. Annu Rev Biochem 1999,68:89-125.
    24. Lee RMH, Paul A.; Stahr, H. Michael; Olson, Dennis G.; Williams, Fred D. Antibacterial Mechanism of Long-Chain Polyphosphates in Staphylococcus aureus. Journal of Food Protection 1994,57(6).
    25. Dunn T, Gable K, Beeler T:Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem 1994,269(10):7273-7278.
    26. Das S, Lengweiler UD, Seebach D, Reusch RN:Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc Natl Acad Sci U SA1997,94(17):9075-9079.
    27. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Con way T:The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008,68(5):1128-1148.
    28. Potrykus K, Cashel M:(p)ppGpp:still magical? Annu Rev Microbiol 2008, 62:35-51.
    29. Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A:Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2000,97(17):9636-9641.
    30. Kim KS, Rao NN, Fraley CD, Kornberg A:Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A 2002,99(11):7675-7680.
    31. Rashid MH, Kornberg A:Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2000,97(9):4885-4890.
    32. Meyer A:Orientierende untersuchungen uber verbreitung, morphologie, und chemie des volutins. Bot Z 1904,62:113-152.
    33. Wiame J-M:Yeast metaphosphate. Fed Proc 1947,6:302.
    34. Avarbock D, Salem J, Li LS, Wang ZM, Rubin H:Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 1999,233(1-2):261-269.
    35. Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE,3rd:The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 2000,182(17):4889-4898.
    36. Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC:The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis2010,202(9):1397-1404.
    37. Thayil SM, Morrison N, Schechter N, Rubin H, Karakousis PC:The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS One 2011,6(11):e28076.
    38. Yu J, Niu C, Wang D, Li M, Teo W, Sun G, Wang J, Liu J, Gao Q:MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect, 13(1):33-41.
    39. Dong D, Wang D, Li M, Wang H, Yu J, Wang C, Liu J, Gao Q:PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun,80(1):43-54.
    40. Yu J, Tran V, Li M, Huang X, Niu C, Wang D, Zhu J, Wang J, Gao Q, Liu J:Both Phthiocerol Dimycocerosates and Phenolic Glycolipids Are Required for Virulence of Mycobacterium marinum. Infect Immun,80(4):1381-1389.
    41. Muda M, Rao NN, Torriani A:Role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 1992,174(24):8057-8064.
    42. Steed PM, Wanner BL:Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon:evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 1993, 175(21):6797-6809.
    43. Nakata A, Amemura M, Shinagawa H:Regulation of the phosphate regulon in Escherichia coli K.-12:regulation of the negative regulatory gene phoU and identification of the gene product. J Bacteriol 1984,159(3):979-985.
    44. Surin BP, Dixon NE, Rosenberg H:Purification of the phoU protein, a negative regulator of the pho regulon of Escherichia coli K.-12. J Bacteriol 1986, 168(2):631-635.
    45. Aschar-Sobbi R, Abramov AY, Diao C, Kargacin ME, Kargacin GJ, French RJ, Pavlov E:High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 2008,18(5):859-866.
    46. Schurig-Briccio LA, Farias RN, Rintoul MR, Rapisarda VA:Phosphate-enhanced stationary-phase fitness of Escherichia coli is related to inorganic polyphosphate level. J Bacteriol 2009,191(13):4478-4481.
    47. Andrey DO, Renzoni A, Monod A, Lew DP, Cheung AL, Kelley WL:Control of the Staphylococcus aureus toxic shock tst promoter by the global regulator SarA. J Bacteriol 2010,192(22):6077-6085.
    48. Rice CD, Pollard JE, Lewis ZT, McCleary WR:Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2 ABC transporter in Escherichia coli. Appl Environ Microbiol 2009, 75(3):573-582.
    49. Ghorbel S, Kormanec J, Artus A, Virolle MJ:Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 2006,188(2):677-686.
    50. Brown MR, Kornberg A:Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci U S A 2004,101 (46):16085-16087.
    51. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K:Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002,43(3):717-731.
    52. Xie Z, Siddiqi N, Rubin EJ:Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2005, 49(11):4778-4780.
    53. Wayne LG, Hayes LG:An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect lmmun 1996,64(6):2062-2069.
    54. Manganelli R, Voskuil MI, Schoolnik GK, Smith I:The Mycobacterium tuberculosis ECF sigma factor sigmaE:role in global gene expression and survival in macrophages. Mol Microbiol 2001,41(2):423-437.
    55. Fontan PA, Voskuil MI, Gomez M, Tan D, Pardini M, Manganelli R, Fattorini L, Schoolnik GK, Smith I:The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol 2009,191(18):5628-5633.
    56. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK: Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A 2001,98(13):7534-7539.
    57. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR:Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003,48(3):833-843.
    58. Rustad TR, Harrell MI, Liao R, Sherman DR:The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 2008,3(1):e1502.
    59. Shi L, Sohaskey CD, Pfeiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML:Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol,78(5):1199-1215.
    60. Vilcheze C, Weisbrod TR, Chen B, Kremer L, Hazbon MH, Wang F, Alland D, Sacchettini JC, Jacobs WR, Jr.:Altered NADH/NAD+ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 2005,49(2):708-720.
    61. Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI:The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 2010, 192(6):1662-1670.
    62. [1]Li Y, Zhang Y:PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 2007,51(6):2092-2099.
    63. Morohoshi T, Maruo T, Shirai Y, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kuroda A:Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environ Microbiol 2002, 68(8):4107-4110.
    64. Kato J, Yamada K, Muramatsu A, Hardoyo, Ohtake H:Genetic improvement of Escherichia coli for enhanced biological removal of phosphate from wastewater. Appl Environ Microbiol 1993,59(11):3744-3749.
    65. Hardoyo, Yamada K, Shinjo H, Kato J, Ohtake H:Production and release of polyphosphate by a genetically engineered strain of Escherichia coli, Appl Environ Microbiol 1994,60(10):3485-3490.
    66. Jangaard NO, Unkeless J, Atkinson DE:The inhibition of citrate synthase by adenosine triphosphate. Biochim Biophys Acta 1968,151(1):225-235.
    67. Harford S, Weitzman PD:Evidence of isosteric and allosteric nucleotide inhibition of citrate synthease from multiple-inhibition studies. Biochem J 1975, 151(2):455-458.
    68. Ault-Riche D, Fraley CD, Tzeng CM, Kornberg A:Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J Bacteriol 1998,180(7):1841-1847.
    69. Rao NN, Kornberg A:Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog Mol Subcell Biol 1999,23:183-195.
    70. Rao NN, Kornberg A; Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol 1996,178(5):1394-1400.
    71. Shiba T, Tsutsumi K, Yano H, thara Y, Kameda A, Tanaka K, Takahashi H, Munekata M, Rao NN, Kornberg A:Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci U S A 1997,94(21):11210-11215.
    72. Kuroda A, Murphy H, Cashel M, Kornberg A:Guanosine tetra-and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 1997,272(34):21240-21243.
    73. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, Rodrigue S, Basu J, Kundu M: Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 2007,65(2):261-276.
    74. Shi W, Zhang Y:PhoY2 but not PhoYl is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother, 2010,65(6):1237-1242.
    75. Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 2006,74(11):6108-6117.
    1. World Health Organization:WHO Report 2011:Global Tuberculosis Control. Epidemiology, Strategy, Financing.2011.
    2. Dheda K, Migliori GB:The global rise of extensively drug-resistant tuberculosis:is the time to bring back sanatoria now overdue? Lancet 2012, 379(9817):773-775.
    3. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C:The growing burden of tuberculosis:global trends and interactions with the HIV epidemic. Arch Intern Med 2003,163(9):1009-1021.
    4. Barry CE,3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D:The spectrum of latent tuberculosis:rethinking the biology and intervention strategies. Nat Rev Microbiol 2009,7(12):845-855.
    5. Kaufmann SH:How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001, 1(1):20-30.
    6. Chao MC, Rubin EJ:Letting sleeping dos lie:does dormancy play a role in tuberculosis? Annu Rev Microbiol 2010,64:293-311.
    7. Lin PL, Flynn JL:Understanding latent tuberculosis:a moving target. J Immunol 2010,185(1):15-22.
    8. Selwyn PA, Alcabes P, Hartel D, Buono D, Schoenbaum EE, Klein RS, Davenny K, Friedland GH:Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N Engl J Med 1992,327(24):1697-1703.
    9. Verver S, Warren RM, Munch Z, Vynnycky E, van Helden PD, Richardson M, van der Spuy GD, Enarson DA, Borgdorff MW, Behr MA et al:Transmission of tuberculosis in a high incidence urban community in South Africa. Int J Epidemiol 2004,33(2):351-357.
    10. Wolfe F, Michaud K, Anderson J, Urbansky K:Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum 2004,50(2):372-379.
    11. Portevin D, Gagneux S, Comas I, Young D:Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 2011,7(3):el001307.
    12. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ, Ziegler A, Kaufmann SH:Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl) 2007,85(6):613-621.
    13. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH:Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 2011,12(1):15-22.
    14. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ et al:An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010,466(7309):973-977.
    15. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, Cavassini M, Calandra T, Blanchet CL, Jaton K et al:Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 2011,17(3):372-376.
    16. Bartel DP:MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004,116(2):281-297.
    17. Ambros Ⅴ:The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
    18. Winter J, Jung S, Keller S, Gregory RI, Diederichs S:Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009, 11(3):228-234.
    19. Lee RC, Feinbaum RL, Ambros V:The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
    20. Wightman B, Ha I, Ruvkun G:Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993,75(5):855-862.
    21. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G:The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000,403(6772):901-906.
    22. Griffiths-Jones S:The microRNA Registry. Nucleic Acids Res 2004, 32(Database issue):D109-111.
    23. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I:A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006,126(6):1203-1217.
    24. Coolen M, Bally-Cuif L:MicroRNAs in brain development and physiology. Curr Opin Neurobiol 2009,19(5):461-470.
    25. Ivey KN, Srivastava D:MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 2010,7(1):36-41.
    26. Bailey SG, Sanchez-Elsner T, Stephanou A, Cragg MS, Townsend PA: Regulating the genome surveillance system:miRNAs and the p53 super family. Apoptosis 2010, 15(5):541-552.
    27. Dykxhoorn DM:MicroRNAs and metastasis:little RNAs go a long way. Cancer Res 2010,70(16):6401-6406.
    28. Skalsky RL, Cullen BR:Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010,64:123-141.
    29. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al:MicroRNA expression profiles classify human cancers. Nature 2005,435(7043):834-838.
    30. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA et al:Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316(5824):608-611.
    31. Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H:miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010, 184(9):4955-4965.
    32. O'Neill LA, Sheedy FJ, McCoy CE:MicroRNAs:the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011,11(3):163-175.
    33. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M:Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007,449(7164):919-922.
    34. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B: Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004,114(12):1790-1799.
    35. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD:MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008, 9(8):839-845.
    36. Lodish HF, Zhou B, Liu G, Chen CZ:Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008,8(2):120-130.
    37. Neyrolles O, Quintana-Murci L:Sexual inequality in tuberculosis. PLoS Med 2009,6(12):e1000199.
    38. Herrera V, Perry S, Parsonnet J, Banaei N:Clinical application and limitations of interferon-gamma release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis 2011,52(8):1031-1037.
    39. Dooley KE, Chaisson RE:Tuberculosis and diabetes mellitus:convergence of two epidemics. Lancet Infect Dis 2009,9(12):737-746.
    40. Zhao Y, Simon R:BRB-ArrayTools Data Archive for human cancer gene expression:a unique and efficient data sharing resource. Cancer Inform 2008, 6:9-15.
    41. Pankla R, Buddhisa S, Berry M, Blankenship DM, Bancroft GJ, Banchereau J, Lertmemongkolchai G, Chaussabel D:Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol 2009,10(11):R 127,
    42. Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Sunakozaka H, Sakai Y, Horimoto K, Kaneko S:Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 2009,49(4):1098-1112.
    43. Molinaro AM, Simon R, Pfeiffer RM:Prediction error estimation:a comparison of resampling methods. Bioinformatics 2005,21(15):3301-3307.
    44. Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O, Xi Y:Systematic evaluation of three microRNA profiling platforms:microarray, beads array, and quantitative real-time PCR array. PLoS One 2011,6(2):e17167.
    45. Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, Gao Y, Chen J, Shao L, Weng X et al:Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One 2011,6(8):e24290.
    46. Shalgi R, Lieber D, Oren M, Pilpel Y:Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 2007,3(7):e131.
    47. Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT:Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 2007,23(9):1141-1147.
    48. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD:Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008, 451(7182):1125-1129.
    49. Rosa A, Ballarino M, Sorrentino A, Sthandier O, De Angelis FG, Marchioni M, Masella B, Guarini A, Fatica A, Peschle C et al:The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci U S A 2007, 104(50):19849-19854.
    50. Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M et al:Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010,24(2):460-466.
    51. Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright AJ, O'Carroll D:The miR-144/451 locus is required for erythroid homeostasis. J Exp Med 2010, 207(7):1351-1358.
    52. Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O'Carroll D, Lai EC:Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 2010,107(34):15163-15168.
    53. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL et al:Regulation of the germinal center response by microRNA-155. Science 2007,316(5824):604-608.
    54. Taganov KD, Boldin MP, Chang KJ, Baltimore D:NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006,103(33):12481-12486.
    55. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari Q Galli C, Naldini L:Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007,25(12):1457-1467.
    56. Igarashi K, Ochiai K, Muto A:Architecture and dynamics of the transcription factor network that regulates B-to-plasma cell differentiation. J Biochem 2007, 141(6):783-789.
    57. van Doom R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, van der Velden PA, Vermeer MH, Willemze R, Yan PS et al: Epigenetic profiling of cutaneous T-cell lymphoma:promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRQ and p73. J Clin Oncol 2005,23(17):3886-3896.
    58. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ:Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 2007, 109(7):3069-3075.
    59. Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, Divangahi M, Remold HG:Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 2011,4(3):279-287.
    60. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG:Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 2008, 9(10):1189-1197.
    61. Zhang J, Jiang R, Takayama H, Tanaka Y:Survival of virulent Mycobacterium tuberculosis involves preventing apoptosis induced by Bcl-2 upregulation and release resulting from necrosis in J774 macrophages. Microbiol Immunol 2005,49(9):845-852.
    62. Liu Y, Wang X, Jiang J, Cao Z, Yang B, Cheng X:Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol 2011,48(9-10):1084-1090.
    63. Wu J, Lu C, Diao N, Zhang S, Wang S, Wang F, Gao Y, Chen J, Shao L, Lu J et al:Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis:a preliminary study. Hum Immunol 2011,73(1):31-37.
    64. Fu Y, Yi Z, Wu X, Li J, Xu F:Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol 2011,49(12):4246-4251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700