有机—无机复合层包覆型铝颜料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳞片状铝颜料具有独特的金属光泽和“随角异色”效应,是广泛应用于涂料、油墨等行业的重要金属颜料。为了提高铝颜料的耐腐蚀性和与树脂相容性,本文采用丙烯酸树脂单层包覆、丙烯酸树脂/二氧化硅相双层包覆以及丙烯酸树脂/二氧化硅复合层包覆对铝颜料进行表面改性。
     本文首先以甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸(AA)和甲基丙烯酸-2-羟基乙酯(2-HEMA)等为单体,采用溶液聚合法制备了透明的羟基丙烯酸树脂,并通过吸附使羟基丙烯酸树脂在铝颜料表面形成一层包覆层,制备了羟基丙烯酸树脂包覆型铝颜料。考察了加料方式、树脂用量、反应温度和包覆时间等因素对铝颜料的表面形貌、耐腐蚀性和在涂层中粘附性能的影响,结果表明,当铝颜料用量为1.5 g,树脂用量2.0 g以上,温度达50℃,包覆时间2 h以上,羟基丙烯酸树脂在铝颜料表面可形成较好的包覆层。该包覆层对铝颜料的金属光泽影响较小,可提高铝颜料的耐酸腐蚀性能,并明显增强铝颜料在涂层中的粘附性能。而高温高湿测试表明,氢键作用力弱,羟基丙烯酸树脂在铝颜料表面形成的包覆层不稳定,需要采取其他措施增强铝颜料的耐腐蚀性及其与树脂的相容性。
     为了增强包覆层与铝颜料之间的结合力,将sol-gel法与原位聚合法相结合,制备了SiO2和聚丙烯酸酯(PA)双层包覆型铝颜料PA/SiO2/Al。首先以正硅酸乙酯(TEOS)和乙烯基三乙氧基硅烷(VTES)作为共同前驱物,通过溶胶/凝胶反应在铝颜料表面形成一层乙烯基活化的二氧化硅包覆层,在铝颜料表面引入可聚合的碳碳双键;然后在二甲苯和乙酸丁酯的混合溶液体系中,以MMA和丙烯酸甲酯(MA)为单体,在乙烯基活化二氧化硅包覆铝颜料(V-SiO2/Al)表面进行自由基聚合反应,于铝颜料表面包覆一层PA。通过考察单体用量、反应时间及反应温度等因素对铝颜料的形貌、金属光泽、耐腐蚀性能以及与树脂相容性的影响,得出结论如下:铝颜料用量1.5 g,单体用量0.7 g、聚合温度85℃、聚合时间4~6 h时,制备的PA/SiO2/Al在涂层中分散性能良好,涂膜外观平整光滑,明度值较原料铝颜料下降6.67,表明双层包覆对铝颜料的金属光泽影响较小;涂层经pH=1酸液浸泡不变色,表明铝颜料的耐腐蚀性得以增强;铝颜料脱落量为0,且高温高湿处理后无变化,说明包覆层促进了铝颜料与树脂相容性。红外(FTIR)和X-射线光电子能谱(XPS)分析证明SiO2和PA先后成功包覆于铝颜料表面。
     为了简化包覆过程和最大限度降低包覆层对铝颜料金属光泽的影响,进一步开发了新型的有机-无机杂化包覆型铝颜料。首先采用溶液聚合法,以VTES、MMA和BA为聚合单体,在乙酸丁酯与二甲苯混合溶剂中合成了含硅氧烷的丙烯酸树脂PMBV。探讨出较为适宜的聚合条件为:nBA:nMMA:nVTES=2:2:1,BPO用量为单体总量3%,温度110℃。在该条件下,聚合反应转化率达92.5%,分子量3700,分子量分布2.056,产物无色透明。FTIR、氢核磁共振(1H NMR)、碳核磁共振(13C NMR)以及量热法(DSC)分析结果表明VTES、MMA和BA参与了共聚而非自聚反应。比色法测定树脂中硅元素含量为3.89%。随后研究了PMBV与TEOS的水解-缩聚行为。采用原子力显微镜(AFM)、FTIR、热重(TG)和硅核磁共振(29Si NMR)等分析方法分析了PMBV与TEOS水解-缩聚产物,结果表明,PMBV与TEOS在同一乙醇体系中水解、自缩聚与共缩聚同时发生,可形成均一透明的有机-无机杂化材料。变角XPS分析得出,铝表面Si、O和C元素含量随涂层厚度的变化而发生变化,表明在PMBV和TEOS的水解-缩合过程中,硅氧烷基团和硅醇与铝表面的羟基发生缩合反应。
     在上述PMBV和TEOS水解-缩合研究的基础上,采用PMBV与TEOS为共同前驱体,乙醇/水为分散体系,氨水为催化剂,通过sol-gel法在铝颜料表面包覆有机-无机杂化薄层,制备了PMBV-SiO2包覆型铝颜料PMBV-SiO2/Al。考察了PMBV与TEOS的配比及用量、氨水和去离子水用量对包覆效果的影响,并优化了包覆条件。当铝颜料的量为1.5 g,乙醇用量50 mL,氨水用量3 mL,去离子水用量3 mL,PMBV与TEOS之比为1:0.45~1(以硅计),PMBV和TEOS总用量13.1mmo(l以硅计), PMBV与TEOS可以在铝颜料表面形成比较均匀致密的包覆层。PMBV-SiO2/Al的明度值仅下降了0.24,有机-无机杂化包覆层良好的保持了铝颜料的金属光泽。FTIR、TG和XPS分析验证了PMBV和TEOS在溶胶-凝胶过程中发生水解和缩聚后在铝颜料表面形成了键合,并最终在铝颜料表面形成了一层致密的包覆层。提高共同前驱体中TEOS的含量有助于增强PMBV-SiO2/Al的耐腐蚀性能,表明PMBV-SiO2/Al的耐腐蚀性很大程度上取决于SiO2,而对比多种铝颜料的耐酸性也验证了这一结论。撕拉实验结果表明,PMBV-SiO2/Al在涂层中的粘附性能得到了很大的提高,说明PMBV和TEOS水解缩聚包覆铝颜料与树脂的相容性得到了提高,但与双层包覆型铝颜料PA/SiO2/Al相比,存在着微小的差距。
Flaky aluminum pigments are widely used in paint and printing ink industry due to their uniquely metallic effect and“flop-effect”. In order to enhance the anti-corrosion propert and improve the compatibility with resin, the surface of aluminum pigments was modified by acrylate resin single layer, acrylate and silica double layers and acrylate composited with silica layer, respectively.
     Hydroxyl acrylic resin encapsulated aluminum pigments were prepared by adsorption of the resin on the surface of Al particles via hydrogen-bond, which has been pre-prepared by free radical polymerization of methal methacrylate (MMA), ethyl acrylate (EA), n-butyl acrylate (BA), acrylic acid (AA)and methacrylate -2 - hydroxy ethyl (2-HEMA). Effects of absorption conditions on the property of aluminum pigments were investigated. The results show that when the mass of aluminum pigments is 1.5 g and mass of resin more than 2.0 g, the hydroxyl acrylic resin film can be well-formed on the surface of aluminum pigments after at least 2h adsorption under the temperature of 50℃. The film can improve the anti-corrosion property of aluminum pigments and their compatibility with resin without reducing their metallic appearance. However, the hydrogen-bond between hydroxyl acrylic resin and aluminum pigments is very weak and easily to be destroyed.
     In order to enhance the binding force between encapsulated layer and aluminum pigments, polyacrylate (PA) and SiO2 double-layer encapsulated aluminum pigments (PA/SiO2/Al) were prepared via sol-gel method and in-situ polymerization. Firstly, aluminum pigments were encapsulated with a layer containing vinyl group activated silica using VTES and TEOS as precursors through sol-gel method. The second layer was then formed on the surface of aluminum pigments by free radical copolymerization of MMA, MA and C=C group of VTES in the presence of benzoyl peroxide (BPO). Effects of in-situ polymerization conditions on the morphology, the metallic appearance, the anti-corrosion property and the compatibility of aluminum pigments were also investigated. It was found that when the mass of aluminum pigments is 1.5 g, the mass of monomers is 0.7 g, the temperature is 85℃and the reaction time is 4~6 hrs, the as-prepared PA/SiO2/Al shows good dispersion in coating. The weight loss of PA/SiO2/Al from coating is almost 0 after peeling-off test under high temperature and humidity. The compatibility of PA/SiO2/Al with resin was improved resulting in stronger binding between layers and aluminum pigments. The L-value of coating containing PA/SiO2/Al is just 6.67 lower than that of raw aluminum pigments, indicating that encapsulation has less effect on the metallic appearance of aluminum pigments. Furthermore, there is no change in L-value of coating before and after dipping the sample in acid medium of (pH=1) for 24 hrs, revealing that the PA/SiO2/Al presents good anti-corrosion. Fourier transformation infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis proved that SiO2 and PA successfully encapsulated on the surface of aluminum pigments in turns.
     In order to simplify the encapsulation process and minimize the loss of metallic luster of aluminum pigments, organic-inorganic hybrid encapsulated aluminum pigments were further developed using siloxane groups modified acrylate resin and TEOS as precursors. Firstly, Siloxane groups modified acrylate resin Poly (Methyl methacryalte-n-Butyl acrylate-Vinyl trieth oxysilane (PMBV) was formed by co-polymerization of MMA, BA and VTES. When nBA:nMMA:nVTES=2:2:1, the amount of Initiator is 3% of total monomers, the reaction temperature is 110℃and the reaction time is more than 3 hrs, the conversion rate is up to 92.5%, and the product of polymerization is colorless and transparent with Molecular Weight of 3700 and Molecular weight distribution of 2.056. Outcomes of FTIR, nuclear magnetic resonance of H element (1H NMR), nuclear magnetic resonance of C element (13C NMR) and differential scanning calorimentry (DSC) analysis of resin demonstrate that VTES, MMA and BA copolymerized with each other instead of self-polymerized. The content of silicon in PMBV is about 3.89% according to the result of colorimetry. Then the hydrolysis-condensation product of PMBV and TEOS was studied by atomic force microscopy(AFM), FTIR, thermo gravimetric(TG)and nuclear magnetic resonance of Si element (29Si NMR). The results show that hydrolysis products of PMBV and TEOS have self-condensed and co-condensed with each other simultaneously in ethanol media to form homogeneous and transparent organic-inorganic hybrid materials. Variable angle XPS analysis shows that the contents of Si, O and C element have relationship with the thickness of hybrid films, indicating that the siloxane groups and the silicon have co-condensed with hydroxyl groups on the surface of aluminum in the hydrolysis - condensation process.
     PMBV composited with SiO2 encapsulated aluminum pigments (PMBV-SiO2/Al) were prepared by hydrolysis and condensation of PMBV and TEOS on the surface of pigments via sol-gel method using ammonia as catalyst and ethanol/H2O as dispersion media. FTIR, TG and XPS analysis of encapsulated aluminum pigments reveal that when the mass of aluminum pigments is 1.5 g, the amounts of ammonia and H2O are 3 mL and 3 mL respectively, the total amount of PMBV and TEOS is 13.1mmol(molars of Si), and the ratio of PMBV to TEOS is 1:0.45~1(molars of Si),PMBV and TEOS can form uniform and compact organic-inorganic hybrid layer on the surface of aluminum pigments. The as-prepared aluminum pigment shows good anti-corrosion and compatibility with resin. It is useful to enhance the corrosion resistance of PMBV-SiO2/Al by increase the amount of TEOS, which means that the anti-corrosion property of PMBV-SiO2/Al largely depends on SiO2. And the comparison of anti-corrosion of a variety of aluminum pigments also verifies this conclusion. Lightness value test shows L-value of PMBV-SiO2/Al decrease 0.24, stating clearly that the organic - inorganic hybrid film maintained the metallic appearance of aluminum pigments well. Peeling test demonstrates that the adhesion of PMBV-SiO2/Al in coating has been enhanced compared with that of raw aluminum pigments, which means the compatibility of PMBV-SiO2/Al with resin has been improved. However, the compatibility of PMBV-SiO2/Al is slightly poorer than that of PA/SiO2/Al.
引文
[1] Zeno W., Frank N., Peter S.著.有机涂料科学和技术[M].经桴良,姜英涛译.北京:化学工业出版社.2002:432-433.
    [2] Karlsson P., Palmqvist A. E. C., Holmberg K.. Surface modification for aluminium pigment inhibition[J]. Advance. Colloid Interface, 2006, 128, 121-134.
    [3] Supplit R., Schubert U.. Corrosion protection of aluminum pigments by sol-gel coatings[J]. Corrosion Science, 2007, 49(8): 3325-3332.
    [4] Marquez M, Grady B. P., Robb I.. Different methods for surface modification of hydrophilic particulates with polymers[J]. Colloid Surface A, 2005, 266(1-3): 18-31.
    [5]舒波.漂浮型片状铝粉制备工艺的研究[D].昆明:昆明理工大学,2006.
    [6]唐振宁.无机颜料的表面处理[J].中国涂料, 2005, 20(12).
    [7]张晔,周贵恩,李磊,等.纳米TiO2-甲基丙烯酸甲醋聚合物均匀分散体系的制备与结构.材料研究学报,1998,12(3):291-294.
    [8]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报, 1997(3): 7-15.
    [9]陈光明,马永梅,漆宗能,等.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征[J].高分子通报, 2000(5): 599-603.
    [10]何涛波,陈建峰,毋伟.无机超细粒子表面聚合物包覆改性研究进展[J].高分子材料科学与工程, 2004, 20(3): 13-16.
    [11]陈子路,叶红齐,刘辉,等.超细金属粒子表面有机包覆改性[J].材料导报, 2006, 20(7): 135-138.
    [12]乌润德,童筱莉,王锐兰,等.聚丙烯酸酯原位乳液聚合包覆纳米硅溶胶[J].有机硅材料, 2002, 16(5):5-8.
    [13]陈立,林静,林敏.硫酸钡粉末存在下无乳化剂的聚合研究[J].高分子学报, 1993, 12(3): 338-343.
    [14]李晓,张卫英.微乳液聚合研究进展[J].合成橡胶工业, 2000, 26(6):378-381.
    [15] Schwuger M. J., Stichdom K. Microemusions in technical processes[J]. Chemistry Review, 1995, 95, 849-848.
    [16] Chaimberg M., Parnas R., Cohen Y.,et al. Graft polymerization of polyvinylpyrrolidone onto silica [J]. Journal of Application Polymer Science, 1989, 37(10): :2921-2931.
    [17] Oosterling M L C M, Sein A., Schouten A. Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides[J]. Polymer, 1992, 33(20): 4394-4400.
    [18] Tsubokawa, N. Functionalization of carbon black by surface grafting of polymers[J]. Progress of Polymer Science, 1992, 17(3):417-470.
    [19] Bovena, G., Oosterlinga, M. L. C. M., Challaa, G.et al. Grafting kinetics of poly(methyl methacrylate) on microparticulate silica [J]. Polymer, 1990, 31(12): 2377-2383.
    [20] Erdem B., Sudol E. D., Dimonie V. L., et al. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer[J]. Journal of Polymer Science: Polymery Chemistry, 2000, 38(24): 4419-4430.
    [21] Erdem B., Sudol E. D., Dimonie V. L., et al. Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles[J]. Journal of Polymer Science: Polymery Chemistry, 2000, 38(24): 4431-4440.
    [22] Erdem, B., Sudol, E. D., Dimonie, V. L.et al. Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation[J]. Journal of Polymer Science: Polymery Chemistry, 2000, 38(24): 4441-4450.
    [23]黄剑锋.溶胶-凝胶原理与技术,化学工业出版社,北京,2005,p:2.
    [24]刘辉.原位聚合制备聚丙烯酸酯、氧化铝或金属铝复合粒子及性能研究[D].2007.长沙:中南大学.
    [25] Chiang C. L., Ma C. C.. Synthesis,Characterization and thermal Properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method[J]. European Polymer Joumal, 2002, 38(11): 2219-2224.
    [26] Bian L. J., Qian, X. F., Yin J.. Preparation and luminescence properties of the PMMA/SiO2/EL3?H2O Hybrids by a sol-gel method.[J]. Materials Seienee and Engineering B, 2003, 100(1): 53-58..
    [27]周毅,贾延刚.铝粉化学着色初探[J].阴山学刊(自然科学版),13(2):30-33.
    [28] Eckart.用于粉末涂料的着色铝粉颜料[J].中国涂料工业, 2002(1): 14.
    [29]王淑芹.铝颜料的国外状况[J].中国涂料, 1994(2): 44-48.
    [30]李校远,韩爱军,刘永峙,等.新型吸波材料及其制备方法概述[J].江苏化工, 2003, 31(6):5-8.
    [31]吴垠,李凤生,白华萍,等.金色闪光铝粉颜料的制备研究[J].材料科学与工程学报,2006,104:923-925.
    [32]付义平.铝粉颜料的制备及其改性研究[D].南京:南京理工大学,2005.
    [33]陈加娜.片状铝粉表面包覆SiO2和Fe2O3的研究[D].长沙:中南大学,2007.
    [34]刘辉,叶红齐,林丹,等.苯乙烯-马来酸酐包覆铝颜料的研究[J].粉末冶金技术, 2007, 25(4):262-265.
    [35] Supplit, R., Schubert, U. Corrosion Protection of Aluminum Pigments by Sol-Gel Coatings[J]. Corrosion Science, 2007, 49: 3325-3332.
    [36]宋少青,薛红.软硬酸碱原理及其在超分子化学中的应用[J].化工技术与开发, 2006, 35(01):18-20.
    [37] Kummert R., Stumm W.. The surface complexation of organic acids on hydrousγ-Al2O3[J]. Journal of Colloid Interface Science, 1980, 75(2): 373-385.
    [38] Bommarito G. M., Pocius A. V.. An electrochemical study of the changes in the passivation of an aluminum alloy surface induced by the presence of a self-assembled monolayer [J]. Thin Solid Films, 1998:481-485.
    [39] Hidber P. C., Graule T. J., Gauckler L. J.. Influence of the dispersant structure on properties of electrostatically stabilized aqueous alumina suspensions[J]. Journal of Euroupe Ceramic Society, 1997, 17:239-249.
    [40] Das M. R., Mahiuddin S.. Kinetics and adsorption behaviour of benzoate and phthalate at theα-alumina-water interface:Influence of functionality[J]. Colloids and Surfaces A:Physicochem. Engineer Aspects, 2005, 264:90-100.
    [41] Das M. R., Sahu O. P., Borthakur P. C.,et al. Kinetics and adsorption behaviour of salicylate on alpha-alumina in aqueous medium[J]. Colloid Surface A, 2004, 237(1-3): 23-31.
    [42] Ainsworth C. C., Friedrich D. M., Gassman P. L.,et al. Characterization of salicylate-alumina surface complexes by polarized fluorescence spectroscopy[J]. Geochim. Cosmochim. Ac, 1998, 62:595-612.
    [43] Wang Z., Ainsworth C. C., Friedrich D. M. Kinetics and mechanism of surface reaction of salicylate on alumina in colloidal aqueous suspension[J]. Geochim. Cosmochim. Ac, 2000, 64:1159-1172.
    [44]Muller B.. Citric acid as corrosion inhibitor for aluminium pigment[J]. Corrosion Science, 2004, 46(1):159-167.
    [45] Muller B., Kubitzki S.. Corrosion inhibition of aluminium pigments by esters of gallic acid[J]. Material Corrosion, 1997, 48(11): 755-758.
    [46]Müller B., Kubitzki G., Kinet G.. Aromatic 2-Hydroxy Oximes as corrosion inhibitors for aluminium and zinc pigments[J]. Corrosion Science, 1998, 40(9): 1469-1477.
    [47] Müller B. Corrosion inhibition of aluminium and zinc pigments by saccharides[J]. Corrosion Science, 2002, 44(7): 1583-1591.
    [48] El-Etre, A. Y. Inhibition of acid corrosion of aluminum using vanillin[J]. Corrosion Science, 2001, 43(6):1031-1039.
    [49] Huerta-Vilca D., Moraes S. R., Motheo A. J. Role of a chelating agent in the formation of polyaniline films on aluminum[J]. Journal of Application Polymer Science, 2003, 90(3); 819-823.
    [50] Muller B.. Amino and polyamino acids as corrosion inhibitors for aluminum and zinc pigments[J]. Pigment & Resin Technology, 2002, 31: 84-87.
    [51] El-Etre A. Y. Inhibition of aluminum corrosion using Opuntia extract[J]. Corrosion Science, 2003, 45(11): 2485-2495.
    [52] Oguzie E. E. Corrosion inhibition of aluminium in acidic and alkaline media by sansevieria trifasciata extract[J]. Corrosion Science, 2007, 49(1): 1527-1539.
    [53] Zhao T. P., Mu G. N.. The adsorption and corrosion inhibition of anion surfactants on aluminum surface in hydrochloric acid[J]. Corrosion Science, 1999, 41(10): 1937-1944.
    [54] Yu X., Somasundaran P. Structure of sodium dodecyl Sulfate and polyacrylic acid adsorption layer using nitroxide spin labeled alumina[J]. Langmuir, 2000, 16: 3506-3508.
    [55] Dick S. G., Kuerstenau D. W., Healy T. W.,et al. Adsorption of alkylbenzene sulfonate (A.B.S.) surfactants at the alumina-water interface[J]. Journal of Colloid Interface Science, 1971, 37: 595-599.
    [56] Jeon J. S., Sperline R. P., Raghavan S.,et al. In situ analysis of alkyl phosphate surfactant adsorption at the alumina/aqueous solution interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 111: 29-38.
    [57] Neupane D., Park J. W. Binding of dialkylated disulfonated diphenyl oxide surfactant onto alumina in the aqueous phase[J]. Chemosphere, 1999, 38(1):1-12.
    [58] Esumi K., Yamanaka Y. Interaction between sodium dodecyl poly(oxyethylene) sulfate and alumina surface in aqueous solution[J]. Journak of Colloid Interface Science, 1995, 172, 116-120.
    [59] Karlsson P. M., Alexandra B., Palmqvist, A. E. C. Surfactant inhibition of aluminium pigments for waterborne printing inks[J]. Corrosion Science, 2008, 50(8): 2282-2287.
    [60] Kiehl A., Brendel H. 26th FATIPEC Congress, Dresden, Germany, 2002, 109-120.
    [61] Emregül K. C., Aksüt A. A. The effect of sodium molybdate on the pitting corrosion ofaluminum[J]. Corrosion. Science, 2003, 45(11): 2415-2433.
    [62] Putilova I. N., Balezin S. A., Barannik, V. P. Metallic corrosion inhibitors[M]. Pergamon Press, 1960, 125.
    [63] Becaria A. M., Chiarutini L. Chiarutini The inhibitive action of metacryloxypropylmethoxysilane(MAOS) on aluminum corrosion in NaCl solution[J]. Corrosion. Science, 1999, 41(5): 885-889.
    [64] Müller B.. Polymeric corrosion inhibitors for aluminium pigment[J]. Reactive and Functional Polymers, 1999, 39(2): 165-177.
    [65] Muller B., Schubert M., Oughourlian, C. Copolymers as corrosion inhibitors for different metal pigments[J]. Material and Corrosion, 2000, 51(9): 642-647.
    [66] Muller B. Adsorption and corrosion inhibition of polyacrylic acids on aluminium pigment[J]. Materials and Corrosion, 1998, 49, 753-757.
    [67] Müller B., Schmelich T. High-molecular weight styrene-maleic acid copolymers as corrosion inhibitors for aluminium pigments[J]. Corrosion. Science, 1995, 37(6): 877-883.
    [68] Muller B., Schubert M., Oughourlian, C. Corrosion inhibition of aluminium and zinc pigments by copolymers[J]. Pigment & Resin Technology, 2001, 30(1): 6-12.
    [69] Muller B. Paint resins stabilize aluminium pigment[J]. European Coatings Journal, 2001, 5, 81-92.
    [70] Müller B., Fischer S. Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments[J]. Corrosion. Science, 2006, 48(9): 2406-2416.
    [71] Glebov E. M., Yuan L., Krishtopa L. G.,et al. Coating of metal powders with polymers in supercritical carbon dioxide[J]. Industry of Engineer Chemistry Research, 2001, 40(19): 4058-4068.
    [72] Kiehl A., Greiwe K.. Encapsulated aluminium pigments[J]. Progress in Organic Coating, 1999, 37(3-4): 179-183.
    [73]毛丹,姚建曦.有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响[J].稀有金属材料与工程, 2007, 36(S1): 180-183.
    [74] Iriyama Y., Ihara T., Kiboku M.. Plasma polymerization of tetraethoxysilane on aluminum granules for corrosion protection[J]. Thin Solid Films, 1996, 287(1-2): 169-173.
    [75] Frignani A., Zucchi F., Trabanelli G.,et al. Protective action towards aluminium corrosion by silanes with a long aliphatic chain[J]. Corrosion. Science, 2006, 48(8): 2258-2273.
    [76] Koyanagi T., Yamada K.. Polymer coated aluminum pigment having water dispersible property and method for producing the same[P]. JP2004292690, 2004-10-21.
    [77]刘辉,叶红齐,张颖超.丙烯酸-苯乙烯原位共聚包覆颜料铝粉[J].中国粉体技术, 2007(3): 18-20.
    [78] Li L. J., Pi P. H., Wen X. F., et al. Optimization of sol-gel coatings on the surface of aluminum pigments for corrosion protection[J]. Corrosion. Science, 2008, 50, 795-803.
    [79] Li L. J., Pi P. H., Wen X. F.,et al. Aluminum pigments encapsulated by inorganic-organic hybrid coatings and their stability in alkaline aqueous media[J]. Journal of Coating Technical Research, 2008, 5(1): 77-83.
    [80] Kimura I., Taguchi Y., Yoshii H.,et al. Encapsulation of aluminum flakes by dispersion polymerization of styrene in a nonaqueous system with reactive surfactants[J]. Journal of Application Polymer Science, 2001, 81(3): 675-683.
    [81]季卫刚.硅烷直接改性环氧涂层的防护性能及其作用机制[D].杭州:浙江大学.2007.
    [82]李清江,伍玉娇,陈兴江,等。PP/纳米SiO2粉体共混体系相容机理的研究[J].高分子材料科学与工程, 2007(3): 159-162.
    [83] Liu H., Ye H. Q., Zhang Y. C, et al. Preparation and Characterization of Poly(trimethylolpropane triacrylate)/flaky Aluminum Composite Particle by In Situ Polymerization[J]. Dyes and Pigments, 2008, 79, 236-241.
    [84]李利君.颜料铝粉的表面包覆改性及在涂料中的应用[D].广州:华南理工大学.2008.
    [85]高爱环,皮丕辉,文秀芳.铝粉颜料表面防腐研究进展[J].化工进展, 2009, 28(3): 485-490.
    [1] Muller B.. Adsorption and corrosion inhibition of polyacrylic acids on aluminium pigment[J]. Materials and Corrosion, 1998, 49: 753-757.
    [2] Muller B.. Paint resins stabilize aluminium pigment[J]. European Coatings Journal, 2001, 5: 81-92.
    [3] Müller B.. Polymeric corrosion inhibitors for aluminium pigment[J]. Reactive and Functional Polymers, 1999, 39(2): 165-177.
    [4] Müller B., Fischer S.. Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments[J]. Corrosion Science, 2006, 48(9): 2406-2416.
    [5] Muller B., Forster, I., Klager, W., et al. Corrosion inhibition of zinc pigments in aqueous alkaline media by polymers[J]. Progress in Organic Coatings, 1997, 31(3): 229-233.
    [6] Muller B., Oughourlian C., Schubert M., et al. Amphiphilic copolymers as corrosion inhibitors for zinc pigment[J]. Corrosion Science, 2000, 42(3): 577-584.
    [7] Muller B., Paulus A., Lettmann B., et al. Amphiphilic maleic acid copolymers as corrosion inhibitors for aluminum pigment[J]. Journal of Application Polymer Science, 1998, 69(11): 2169-2174.
    [8] Müller B., Schmelich T.. High molecular weight styrene-maleic acid copolymers as corrosion inhibitors for aluminium pigments[J]. Corrosion Science, 1995, 37(6): 877-883.
    [9] Muller B., Schubert M., Oughourlian C.. Copolymers as corrosion inhibitors for different metal pigments[J]. Material Corrosion, 2000, 51(9): 642-647.
    [10] Muller, B., Triantafillidis, D. Polymeric corrosion inhibitors for copper and brass pigments[J]. Journal of Application Polymer Science, 2001, 80(3): 475-483.
    [11] Oosterling M L C M, S. A., Schouten A J. Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides[J]. Polymer, 1992, 33(20): 4394-4400.
    [12] Shek C. H., Lai J. K. L., Gu T. S.,et al. Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders[J]. Nanostructure Material, 1997, 8(5): 605-610.
    [13] Mardalen J., Lein, J. E., Bolm, H. Time and Cost Effective Methods for Testing Chemical Resistance of Aluminum Mmetallic Pigmented Powder Coatings[J]. Progress in Organic Coatings, 2008, 63(1): 49-54.
    [14] van den Brand, J., Van Gils, S., Beentjes, P. C. J., et al. Improving the adhesion between epoxy coatings and aluminium substrates[J]. Progress in Organic Coatings, 2004, 51(4): 339-350.
    [1]徐建文.有机/无机杂化材料的制备及有机与无机组分间的相互作用[D].合肥:中国科技大学,2006.
    [2] Sakellariou G., Park M., Advincula R., et al. Homopolymer and block copolymer brushes on gold by living anionic surface-initiated polymerization in a polar solvent[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(2): 769-782.
    [3] Gravano S. M., Dumas R., Liu K., et al. Methods for the surface functionalization ofα-Fe2O3 nanoparticles with initiators for atom transfer radical polymerization and the formation of core-shell inorganic-polymer structures[J]. Journal of Polymer Science Part a-Polymer Chemis, 2005, 43(16): 3675-3688.
    [4] Rusa M., Whitesell J. K., Fox M. A., et al. Controlled Fabrication of Gold/PolymerNanocomposites with a Highly Structured Poly(N-acylethylenimine) Shell[J]. Macromolecules., 2004, 37(8): 2766-2774.
    [5] Kiehl A., Greiwe K.. Encapsulated aluminium pigments[J]. Progress in Organic Coatings, 1999, 37(3-4): 179-183.
    [6] Iriyama Y., Ihara T., Kiboku M. Plasma polymerization of tetraethoxysilane on aluminum granules for corrosion protection[J]. Thin Solid Films, 1996, 287(1-2): 169-173.
    [7]李利君,皮丕辉,文秀芳,等.溶胶-凝胶法制备纳米SiO2包覆的铝颜料[J].华南理工大学学报(自然科学版): 2007, 35(11): 72-76.
    [8]刘辉,叶红齐,邹晓黎,等.颜料铝粉包覆SiO2的研究[J].材料导报, 2006, 20(F05): 258-260.
    [9] Karlsson P., Palmqvist A. E. C., Holmberg K., et al. Surface modification for aluminium pigment inhibition[J]. Advance in Colloid Interface, 2006, 128:121-134.
    [10] Liu H., Ye H. Q., Zhang Y. C.,et al. Preparation and characterization of poly(trimethylolpropane triacrylate)/flaky aluminum composite particle by in situ polymerization[J]. Dyes and Pigments, 2008, 79(3): 236-241.
    [11]徐守芳,李春忠,陈雪花.纳米碳酸钙颗粒表面接枝聚合甲基丙烯酸甲酯的结构及机理分析[J].华东理工大学学报(自然科学版): 2005, 31(5): 602-605.
    [12] Kloprogge J. T., Duong L. V., Wood B. J. XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite [J]. Journal of Colloid Interface Science, 2006, 296(2): 572-576.
    [13] Zhang X., Wu Y. Y., He S. Y., et al. Structural characterization of sol-gel composites using TEOS/MEMO as precursors[J]. Surface and Coatings Technology, 2007, 201(12): 6051-6058.
    [14] Li Y. S., Wright P. B., Puritt R., et al. Vibrational spectroscopic studies of vinyltriethoxysilane sol-gel and its coating[J]. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(12): 2759-2766.
    [1] Huang H. H., Bruce O., Wilkes G. L. Hybrid materials incorporating polymrtic/oligomeric species with inorganic glasses by a sol-gel processA[J]. Polymer Bullet., 1985, 14: 557.
    [2] Wei Y., Yang D. C., Tang L. G.,et al. Synthesis, characterization, and properties of new polystyrene-SiO2 hybrid sol-gel materials[J]. Jouranl of Material Research, 1993, 8:1143-1149
    [3]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料[J].高分子材料科学与工程, 1997(3): 434-440.
    [4] Huang H. H., Wilkes J. L., Carlson J. G. , et al.Structure property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide) [J]. Polymer, 1987, 30(11): 2001-2012.
    [5] Huang Z. H., Dong J. H., Qiu K. Y.,et al. New hybrid materials incorporating tetrabutyl titanate and tetraethoxysilane with functional SEBS elastomer via the sol-gel process: Synthesis and characterization[J]. Journal of Application Polymer Science, 1997, 66, 853-860.
    [6] Huang Z. H., Qiu K. Y. Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process [J]. Polymer Bulletin, 1995, 35(5): 607-613.
    [7]曹志海,单国荣.水溶性和油溶性引发剂引发γ-甲基丙烯酰氧基丙基三甲氧基硅烷/苯乙烯细乳液共聚和的比较[J].高分子学报, 2008(10):433-441.
    [8] Mark J. E., Sun C. C., et al. Polymer-modified silica glasses [J]. Polymer Bulletin, 1987, 18(3): 259-264.
    [9] Kikuehi S., Ikeda T., Sato R.. Recovery microsphericalsilicone resin partiele [P]. JP4202226, 1992.
    [10]周宁琳,编.有机硅聚合物导论[M].北京:科学出版社,2000, P:221.
    [11]王志奎,张爱黎.有机硅改性丙烯酸酯乳液合成研究[J].沈阳理工大学学报, 2008, 27(4): 62-65.
    [12]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社. 2006.p:130.
    [13] Jones R. G., Ando W., Chojnowski J.,et al. Silicon-Containing Polyners-The Science and Technology of Their Synthesis and Applications[M]. Ntherlands, Kluwer Academic Publishers, 2000,p:582-588.
    [14]王燕,张保利,朱柯.丙烯酸有机硅共聚物液聚合及性能研究[J].涂料工业, 2000(10): 1-5.
    [15]邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社, 2003, p:131.
    [16]林贤福.现代波普分析方法[M].上海:华东理工大学出版社, 2009, P:92.
    [1]赵丽,余加国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报, 2003,61(4): 562-566.
    [2]赵瑞玉,董鹏,梁文杰,等.单分散SiO2体系制备中正硅酸乙酯水解与成核及颗粒生长的关系[J].石油大学学报(自然科学版): 1995, 19(5): 89-92.
    [3] Brinker C. J.. Sol-Gel Science [M]. New York: Academic Press INC. , 1990,p:212.
    [4]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报, 1997, 12(3): 363-369.
    [5] Sugahara Y., Inouea T., Kuroda K., et al. 29Si NMR study on co-hydrolysis processes in Si(OEt)4–RSi(OEt)3–EtOH–water–HCl systems (R=Me, Ph): effect of R groups[J]. Journal of material chemistry, 1997, 7(1): 53-59.
    [6] Sanchez J., McCormick A, et al. Kinetic and Thermodynamic Study of the Hydrolysis of Silicon Alkoxides in Acidic Alcohol Solutions[J]. The Journal of Physical Chemistry, 1992, 96(22): 8973-8979.
    [7] Hook R. J.. A 29SiNMR study of the sol-gel Proeess Polymerization Rates of Substituent Ethoxysilanes[J]. Journal of Non-Crystal Solids, 1996, 195: 1-15.
    [8] Rankin S. E., Macosko C. W., McCormick A. V., et al. Copolymerization kinetics of a model siloxane system[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35(7): 1293-1302.
    [9] Prabakar S., Assink R. A., Raman N. K.,et al. Identification of self- and cross-condensation products in organically modified silica sols by 29Si and 17O NMR spectroscopy[J]. Journal of Non-Crystal Solids, 1996, 202(1-2): 53-60.
    [10]何永佳,胡曙光. 29Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程学报, 2007, 25(1): 147-153.
    [1] Anthony. Paint pretreatment for aluminum[J]. Metal Finishing, 2000, 98(6): 74-79.
    [2] Emregül K. C., Aksüt A. A.. The effect of sodium molybdate on the pitting corrosion of aluminum [J]. Corrosion Science, 2003, 45(11): 2415-2433.
    [3] Kiehl A., Brendel H. Corrosion inhibited metal pigments[J]. Macromolecular Symposia, 2002, 187(1): 109-120.
    [4] Kiehl A., Greiwe K. Encapsulated aluminium pigments[J]. Progress in Organic Coating., 1999, 37(3-4): 179-183.
    [5] Yang X. F., Tallman D. E., Gelling V. J., et al. Use of a sol-gel conversion coating for aluminum corrosion protection [J]. Surface and Coatings Technology, 2001, 140(1):44-50.
    [6] Nishikawa S.. Silica-coated Aluminum Pigment and Its Manufacturing Method [P]. JP2002088274, 2002-3-27.
    [7] Koyanagi T., Yamada K.. Polymer Coated Aluminum Pigment Having Water Dispersible Property and Method for Producing the Same [P]. JP2004292690, 2004-10-21.
    [8] Nishikawa S, Kojo K.. Resin Coated Aluminum Pigment[J]. JP2005146111A, 2005-6-9.
    [9] Liu H., Ye H. Q., Zhang Y. C., et al. Preparation of PMMA grafted aluminum powder by surface-initiated in situ polymerization[J]. Application Surface Science, 2007, 253(17): 7219-7224.
    [10] Liu H., Ye H. Q., Tang X. D., et al, Aluminum pigment encapsulated by in situ copolymerization of styrene and maleic acid[J]. Application Surface Science, 2007, 254(2): 616-620.
    [11]费雅思.应用于水性涂料的铝颜料[J].中国涂料工业, 2004(5): 16-19.
    [12] Russell L., Ferguson. Surface-Treated Aluminum Pigments for Environmental Compliance[J]. www.pcimag.com, 2005.
    [13]刘辉,叶红齐,林天齐,等.双层包覆对铝粉耐腐蚀性能的影响[J].材料保护, 2008, 141(1): 38-41.
    [14]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,北京,2005,p184.
    [15] Karlsson P., Palmqvist A. E. C., Holmberg K., et al. Surface modification for aluminium pigment inhibition[J]. Advance in Colloid Interface, 2006, 128:121-134.
    [16] Wei Y., Yang D. C., Tang L. G., et al. Synthesis, characterization, and properties of new polystyrene-SiO2 hybrid sol-gel materials[J]. Journal of Material Research, 1993, 8:1143.
    [17] Joshua Du Y., Damron M., Tang G., et al. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates[J]. Progress of Organic Coating, 2001, 41(4): 226-232.
    [18] Kloprogge J. T., Duong L. V., Wood B. J.. XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite[J]. Journal of Colloid Interface Science, 2006, 296 (2): 572-576.
    [19]李利君,皮丕辉,文秀芳,等.溶胶-凝胶法制备纳米SiO2包覆的铝颜料[J].华南理工大学学报(自然科学版): 2007, 35(11): 72-76.
    [20] Li L. J., Pi P. H., Wen X. F., et al. Optimization of sol-gel coatings on the surface of aluminum pigments for corrosion protection[J]. Corrosion Science, 2008, 50(3): 795-803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700