SiO_2(AG)/ZnO的制备及其吸附和光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种典型的宽禁带直接带隙半导体材料(约3.37eV),因其具有良好的生物相容性和环境安全性,作为一种很有前景的光催化材料而受到环境污染治理领域的广泛关注。众所周知,催化剂材料的结构、形貌、表面状态等因素对其性能和应用有重要的影响。近年来,已能控制制备多种不同形貌的ZnO,但深入分析形貌对其光催化活性影响的研究工作却开展较少。本论文针对催化剂形貌对其光催化活性影响的相关科学问题,选择不同形貌的ZnO开展光催化实验,深入分析了ZnO形貌对其光催化活性的影响。此外,考虑到ZnO对有机物的吸附行为对其光催化活性有显著影响,选用高吸附性能的SiO2气凝胶(英文缩写SiO2(AG))作为改性材料,制备了SiO2(AG)/ZnO的复合材料,以提高ZnO对有机物的吸附性能,探讨光催化剂吸附性能对其光催化活性的影响。
     以四针状ZnO晶须(T-ZnO)、纳米ZnO (n-ZnO)和微米ZnO (c-ZnO)三种不同形貌的ZnO为催化剂,硝基苯、苯酚、亚甲基蓝三种不同性质的有机物为目标物,进行了光催化降解对比实验。结果表明,三种不同形貌的ZnO对硝基苯、苯酚、亚甲基蓝的光催化降解活性均表现为T-ZnO最好,c-ZnO次之,n-ZnO最差。导致这一结果的原因主要有三方面:一是不同形貌的ZnO,其结构中的氧空位浓度存在差异,导致典型活性氧.OH的产率不同,表现在其光催化活性的显著差异。本课题组前期研究表明,T-ZnO氧空位浓度明显高于c-ZnO和n-ZnO,能产生更多的.OH,使其具有更好的光催化活性。二是生成.OH的过程中对光生空穴的消耗,可抑制光生空穴与ZnO表面的氧原子发生反应溶出Zn2+, T-ZnO光催化过程中产生的.OH最多,光催化反应过程中溶出Zn2+浓度最低,其光稳定性最好。三是T-ZnO具有特殊四针状结构,针尖尺寸为纳米级,使其具有纳米材料的活性,同时又克服了纳米材料容易发生团聚现象的缺陷,具有很好的分散性。n-ZnO的氧空位浓度高于c-ZnO,但光催化活性却更差,这是因为两种ZnO的氧空位浓度差异不大,但颗粒尺寸更小的n-ZnO在反应过程中更易发生团聚现象,导致光催化活性降低。
     采用溶胶凝胶法,在常压条件下通过溶剂交换法制备了SiO2(AG)及不同负载量的SiO2(AG)/T-ZnO复合材料。材料的表征结果表明,SiO2(AG)样品为由细微颗粒形成的疏松多孔结构,样品粒径分布均匀,比表面积为902m2/g,平均孔径为8.91nm,孔体积为2.01ml/g,具有很好的疏水性能,经500℃热处理,SiO2(AG)可以由疏水性转化为亲水性;SiO2(AG)/T-ZnO复合材料的BET和孔体积随着SiO2(AG)负载量的增加而增大,复合材料保持了SiO2(AG)和T-ZnO原有的材料学特性,SiO2(AG)/T-ZnO对紫外光的吸收强度与T-ZnO相比,无明显变化。
     以硝基苯、苯酚、亚甲基蓝三种不同性质的有机物为吸附质,SiO2(AG)、T-ZnO及SiO2(AG)/T-ZnO为吸附剂,系统研究了材料对有机物的吸附性能。结果表明,SiO2(AG)对硝基苯、苯酚、亚甲基蓝的吸附过程,吸附剂和吸附质之间的亲疏水作用起主导作用,疏水的SiO2(AG)对疏水的难溶有机物硝基苯有很好的吸附性能,而对亲水的易溶有机物苯酚和亚甲基蓝吸附会比较困难;500℃热处理后,疏水性SiO2(AG)转变为亲水性,对苯酚和亚甲基蓝表现出了较好的吸附性能,对硝基苯的吸附量明显降低。SiO2(AG)/T-ZnO复合材料对硝基苯的吸附性能相对于T-ZnO,明显改善,经500℃热处理后,对苯酚和亚甲基蓝的吸附性能明显改善。
     以硝基苯、苯酚、亚甲基蓝三种不同性质的有机物为目标物,T-ZnO及SiO2(AG)/T-ZnO为光催化剂,开展了有机物光催化降解动力学研究,系统探讨了材料吸附性能改善对有机物光催化降解效果的影响。结果表明,不同负载量的SiO2(AG)/T-ZnO复合材料相比,SiO2(AG)负载量为8.0%的SiO2(AG)/T-ZnO对硝基苯的光催化活性最好,经500℃热处理后,对苯酚和亚甲基蓝表现出更好的光催化活性。SiO2(AG)/T-ZnP、500℃热处理SiO2(AG)/T-ZnO和T-ZnO对硝基苯、苯酚、亚甲基蓝光催化反应过程的动力学研究结果表明,三种有机物在催化剂上的光催化降解过程符合准一级反应动力学方程。在考虑初始反应动力学时,硝基苯和苯酚的反应符合Langmuir-Hinshelwood动力学模型,催化剂对有机物吸附性能的改善使光催化剂对有机物具有更好的光催化活性;随着亚甲基蓝浓度增大,考虑初始动力学时,光催化初始反应速率与初始浓度线性相关性变差,亚甲基蓝浓度增大,使其色度增加,影响光源的吸收和利用,使光催化活性明显降低;此时,催化剂对有机物吸附性能的改善对其光催化活性的发挥不起作用。这一结果说明光催化技术不适宜处理高浓度的染料废水。
     以硝基苯溶液为模拟废水,SiO2(AG)负载量为8.0%的SiO2(AG)/T-ZnO为催化剂,对硝基苯废水光催化反应影响因素进行了深入分析。结果表明,常温条件下,硝基苯的表观反应速率常数随着其初始浓度的增大而降低;对硝基苯初始浓度为24.0mg/1的溶液,SiO2(AG)/T-ZnO的最佳投放量为2.0g/1,硝基苯去除率达82.1%;反应温度对光催化去除率无明显影响;按1.5ml/1的量向反应体系中加入30.0%的H2O2,硝基苯的去除率可由82.1%提高到85.8%;工业废水常见的阴离子中,Cl-、SO42-使硝基苯的光催化去除率明显降低,且SO42-的抑制作用比Cl-更大,而NO3-对硝基苯的光催化去除率基本没有影响;在处理硝基苯和亚甲基蓝的混合废水时,亲水性的亚甲基蓝对硝基苯的光催化降解影响较小;相反,亚甲基蓝的光催化降解受到明显抑制,其原因是SiO2(AG)/T-ZnO表面负载了疏水性SiO2,能优先吸附疏水性的硝基苯,实现有机物的选择性降解。可重复性实验结果表明,SiO2(AG)/T-ZnO重复使用三次,仍能保持较好的光催化性能。
ZnO is a semiconductor with direct wide band gap of3.37eV. Owing to its good biocompatibility and environmental safety, ZnO has received enormous attention to be a promising photocatalyst for degradation of environmental pollutants. It is well known that the structure, morphology and sufacial character, et al. of the catalyst are confessed to have great effects on their properties and applications. In recent years, different morphologies of ZnO have been synthesized, but there are few report about the effects of the morphology of ZnO on the photocatalytic activity of ZnO. In this dissertation, we systematically investigated this kind of effects on the photocatalytic activity of ZnO due to the morphological differences. Considering that the adsorption process of organic compounds in ZnO had a significant impact to the photocatalytic activity during the process of the ZnO photocatalytic degradation of organic compounds, we prepared SiO2aerogel/ZnO (SiO2(AG)/ZnO) composite materials to improve the ZnO adsorption to the organic compounds. Additionally, it was of important to investigate the effect of the adsorption of organic compounds in the photocatalyst on photocatalytic activity.
     We conducted the comparison experiments of photocatalytic degradation of different kinds of organic compounds such as nitrobenzene, phenol and methylene blue using tetrapod-like ZnO whisker (T-ZnO), nano-sized ZnO (n-ZnO) and micro-sized ZnO (c-ZnO) as the catalysts which had different morphologies. The results showed that T-ZnO had the best photocatalytic activity against the mentioned organic compounds, and c-ZnO exhibited the second, n-ZnO displayed the worst activity. Firstly, ZnO with different morphologies had different oxygen vacancy concentration in their crystals, which directly caused different amount of-OH generation and lead different photocatalytic activity. The oxygen vacancy concentration of T-ZnO was significantly higher than those in c-ZnO and n-ZnO. Accordingly, T-ZnO generated more-OH in its suspension, displaying better photocatalytic activity than the other two kinds of ZnO. Secondly, the process of-OH generating could restrain the dissolving Zn2+which was reacted by the photogenerated holes and the oxygen atoms of the ZnO surface. T-ZnO generated the most amount of-OH, and had the lowest Zn2+concentration in photocatalytic reaction process, resulting in the best light stability. Thirdly, T-ZnO had a special four needle-like structure, whose needles'tip were in nano-scale, which let it exhibit features of nanomaterials. Meanwhile, it overcame the shortcomings that nanomaterials usually had such as aggregation and worse dispersal. The n-ZnO had higher amount of oxygen vacancy concentration than c-ZnO, but it displayed worse photocatalytic activity. This was because n-ZnO had smaller particle size, resulting in stronger inclination of aggregating, which lead to decrease of photocatalytic activity, even the oxygen vacancy concentrations of these two types of ZnO were similar.
     By using sol-gel method, we prepared SiO2(AG) and SiO2(AG)/T-ZnO with different loading amount by solvent exchange under ambient pressure. The result of material characterization shows that SiO2(AG) sample is the micro-porous structure formed by numerous fine particles, whose particle size distributed evenly, Its specific surface area is902m2/g, and the average pore size is8.91nm, and the pore volume is2.01ml/g. Further experiment illustrates SiO2(AG) is hydrophobic. SiO2(AG) can be transformed from hydrophobic to hydrophilic after500℃treatment. The specific surface area and the pore volume of SiO2(AG)/T-ZnO composite materials increase as the amount of the loaded SiO2(AG) increase. The composite materials preserve the original material characteristics of SiO2(AG) or T-ZnO. As it is compared to T-ZnO, SiO2(AG)/T-ZnO have no obviously change in the UV absorptions.
     We systematically studied the materials'absorption performance of organic compounds.The results show that, in the absorption of nitrobenzene, phenol and methylene blue, the hydrophobic and hydrophilic interaction of adsorbent and adsorbate plays a dominant role, and the SiO2(AG) which is hydrophobic has good adsorption capability on hydrophobic and insoluble organic compounds nitrobenzene, though it shows few absorption capabilities on hydrophilic and soluble organic compounds phenol and methylene blue. After500℃treatment, SiO2(AG) turns hydrophilic, and it shows good adsorption capacities on phenol and methylene blue, and the adsorption capacity on nitrobenzene drops significantly. The adsorption performance of SiO2(AG)/T-ZnO for nitrobenzene improved significantly compared to T-ZnO. After500℃treatment, its adsorption performance on phenol and methylene blue also improved significantly.
     We studied the photocatalytic degradation kinetics of organic compounds, and explored the effect of the improvement of adsorption performance for organic compounds photocatalytic degradation of nitrobenzene, phenol and methylene blue. The result shows that SiO2(AG)/T-ZnO having8.0%loading of SiO2(AG) on T-ZnO has the best photocatalytic activity for nitrobenzene. SiO2(AG)/T-ZnO having8.0%loading of SiO2(AG) shows better photocatalytic activity for phenol and methylene blue after500℃treatment. The process of SiO2(AG)/T-ZnO and T-ZnO photocatalytic reactions for nitrobenzene, phenol and methylene blue display a pseudo first-order kinetics process. Considering the initial reaction kinetics, the reactions of nitrobenzene and phenol are fitted to the Langmuir-Hinshelwood kinetics model, but methylene blue is unfitted. The experimental result also shows that catalyst improves the performance of organic compounds adsorption which beneficial to the photocatalytic degradation of organic pollutants. The high colorimetry of dye wastewater with high concentration affects the light absorption and utilization of catalyst, which makes photocatalytic activity decrease.
     We deeply analyzed the factors that affect the photocatalytic reaction of nitrobenzene wastewater using SiO2(AG)/T-ZnO having8.0%loading of SiO2(AG) on T-ZnO as the catalyst. The results show that, at the room temperature, the apparent rate constant of nitrobenzene decreases as the initial concentration increases. The best quantity of SiO2(AG)/T-ZnO is2.0g/1for the nitrobenzene solution of24.0mg/1. And the degradation ratio of nitrobenzene is as high as82.1%and there are few effects on degradation ratio by reaction temperature. The nitrobenzene degradation ratio increases to85.8%from82.1%by adding30.0%H2O21.5.0ml/1. It is also found that the common anions of industrial wastewater, such as Cl-,SO42-make nitrobenzene degradation ratio decrease significantly, SO42-exhibit greater restraints than Cl-, but NO-3has no obvious effects on nitrobenzene degradation ratio. As to the treatment of mixed wastewater containing nitrobenzene and methylene blue, SiO2(AG)/T-ZnO preferentially adsorbs hydrophobic nitrobenzene, and makes it degrade preferentially. The hydrophilic methylene blue has small effects on the photocatalytic degradation of nitrobenzene. Conversely, the photocatalytic degradation of methylene blue is restrained significantly. In addition, it is experimentally proved that, after3times of usage, SiO2(AG)/T-ZnO exhibits photocatalytic performance almost the same as the original sample.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [2]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. B. Environ. Contam. Tox, 1976,16:697-701.
    [3]S.N.Frank, A.J.Bard. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders.J. Phys.Chem.,1977,81:148 4-1488.
    [4]P.V.Kamat. Photochemistry on nonreactive and reactive(semiconductor) surface. Chem.Rev.,1993,93:267-300.
    [5]A.Hagfeldt, M.Gratzel. Light-induced redox reactions in nanocrystalline systems. Chem Rev.,1995,95:49-68.
    [6]M.Noorjahan, K.V. Durga. M.Subrahmanyam, et al. A novel and efficient photo-catalyst:TiO2-HZSM-5 combinate thin film. Appl. Catal. B:Env.,2004,47:209-213.
    [7]S.Ohno, D.Sato, M.Kon, et al. Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films. Thin Solid Films,2003,445:207-212.
    [8]C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata. P. Peralta-Zamora. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere,2000,40:433-440.
    [9]C. Lizama, J. Freer, J. Baeza, H. D. Mansilla. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catal. Today,2002,76:235-246.
    [10]A. Akyol, H. C. Yatmaz, M. Bayramoglu. Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Appl. Catal. B-Environ.,2004,54:19-24.
    [11]A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res.,2008,42: 386-394.
    [12]R. A. Palominos, M. A. Mondaca, A. Giraldo, G. Penuela, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today, 2009,144:100-105.
    [13]Z. L. Wang. Nanostructures of zinc oxide. Mater. Today,2004,7:26-33.
    [14]J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan. Control of ZnO morphology via a simple solution route. Chem. Mater.,2002,14:4172-4177.
    [15]N. Daneshvar, D. Salari, A. R. Khataee. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2.J. Photoch. Photobio. A, 2004,162:317-322.
    [16]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009.
    [17]K.Maasumeh, A.Zahra. Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites. Desalination,2012,286: 428-253.
    [18]吴俊升,李晓刚,杜伟,陈华.纳米多孔气凝胶材料在催化和吸附领域的应用.功能材料,2004,35:2682-2688.
    [19]钱易,汤鸿霄,文湘华.水体颗粒物和难解有机物的特性与控制技术原理下卷·难降解有机物.北京:中国环境科学出版社.2000.
    [20]杨书名,黄长盾.纺织印染工业废水治理技术北京:化学工业出版社.2002.
    [21]D.J.Li, Y.S.Wu, L.Feng, L.Q.Zhang. Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene. Bioresource Technol.,2012,113:121-126.
    [22]H.J.Liu, W.Sha, A.T.Cooper, M.H.Fan. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids and Surfaces A: Physicochem.Eng.Aspects,2009,347:38-44.
    [23]T.N.Nakai. Supercritical CO2 extraction treatment of organic compound in aqueous solution by counter current extraction.J.Society on Water Environ.,1999,22:854-858.
    [24]J.J.Porter, C.Brandon. Zero discharge as exemplified by textile dyeing and finishing. Chenm.tech.,1976,6:402-407.
    [25]王学松.反渗透膜技术及其在化工和环保中的应用.北京:化学工业出版社.1988.
    [26]E.Khelifi, H.Gannoun, Y.Touhami. Aerobic decolourization of the indigo dyecontaining textile wastewater using continuous combined bioreactors. J.Hazar.Mater.,2008,152:683-689.
    [27]E.Sahinkaya, N.Uzal, U.Yetis. Biological treatment and nanofiltration of denim textile wastewater for reuse. J.Hazar.Mater.,2008,153:1142-1148.
    [28]C.Sopa, T.Munsin, P.Thongchai. Anaerobic decolorization of reactive dyebatheffluents by a two-stage UASB system with tapioca as a co-substrate. Water Res.,2000,34:2223-2232.
    [29]M.Isik, D.T.Sponza. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater. Process Biochem.,2005, 40:1189-1198.
    [30]孙剑辉,魏瑞霞,杨明耀.缺氧/好氧SBR工艺去除亚铵法造纸废水中有机物的研究.水处理技术,2005,31:53-56.
    [31]李莹,张宏伟,朱文亭.厌氧-好氧工艺处理制药废水的中试研究.环境工程学报2007,1:50-53.
    [32]丁华,金若菲,周集体.基因工程菌在厌氧膜生物反应器中对偶氮染料废水的脱色.环境工程学报,2007,1:25-29.
    [33]Koichih, Kazunorin. Decolorization of mixtures of different reactive textile dyes by the white-rot-basidiomycete phaner-ochaete sordida and inhibitory effect of polyvinyl alcohol. Chemosphere,2005,59:63-68.
    [34]L.A.Castillo, A.Sillet, J.Roussy, et al. Treatment of high organic-loaded industrial effluents rivera. Water.Sci.Technol,2000,11:115-118.
    [35]L.H.Zhang, P.J.Li, Z.Q.Gong, X.M.Li. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J.Hazard. Mater.,2008,158:478-484.
    [36]S.Y.Lu, D.Wu, Q.L.Wang, J.H.Yan, A.G..Buekens, K.F.Cen.Photocatalytic de-composition on nano-TiO2:Destruction of chloroaromatic compounds. Chemosphere,2011,82:1215-1244.
    [37]A.Hakki, R.Dillert, D.Bahnemann. Photocatalytic conversion of nitroaromatic compounds in the presence of TiO2, Cataly. Today,2009,144:154-159.
    [38]I.K.Konstantinou, T.A.Albanis.TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review, Appl. Cataly.B.Environ.,2004,49:1-14.
    [39]E.Pelizzetti, C.Minero,V.Maurino, et al. Photocatalytic degradation of nonylphenol ethoxylated surfactants,viron.Sci. Technol,1989,23:1380-1385.
    [40]P.A.Di, L.E.Garcia, G.Marci, et al. A survey of photocatalytic materials for environmental remediation. J.Hazard.Mater.,2012,211-212:3-29.
    [41]X.Chen, S.S.Mao.Titanium dioxide nanomaterials:synthesis,properties, modifications,and applications. Chem.Rev.,2007,107:2891-2959.
    [42]S.Ghasemi, S.Rahimnejad, S.R.Setayesh, et al. Synthesis,characterization and evaluation of efficiency of new hybrid P/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. J.Hazar.Mater., 2009,172:1573-1578.
    [43]X.X.Yang, C.D.Cao, L.Erickson, et al. Synthesis of visible-light-active TiO2 based photocatalysts by carbon and nitrogen doping. J.Catal.,2007,252:296-302.
    [44]Y.Bessekhouad, D.Robert, J.V.Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollution. J.Photochem.Photobio.A:Chem.,2004,163:569-580.
    [45]M.W.Xiao, L.S.Wang, Y.D.Wu, et al. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology,2008,19:No.015706.
    [46]O.Rosseler, M.V.Shankar, M.K.L.Du, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 photocatalysts Influence of noble metal and porogen promotion.J.Catal.,2010,269:179-190.
    [47]P.F.Fu, P.Y.Zhang. Uniform dispersion of Au nanoparticles on TiO2 film via electrostatic self-assembly for photocatalytic degradation of bisphenol A. Appl. Catal.B:Environ,2010,96:176-184.
    [48]X.J.Wang, Z.H.Hu,Y.J.Chen et al. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl.Surf. Sci.,2009,255:3953-3958.
    [49]Y.Z.Zhong, S.H.Deng,.B.Y.Sun et al. Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of methyl orange.J. Colloid Interf.Scl,2010,347:260-266.
    [50]K.S.Yao, D.Y.Wang, C.Y.Chang, et al. Characteristics and photocatalytic activity of TiO2 thin film sensitized with a porphyrin dye.J.Nanosci.Nanotechno.,2008,8: 2699-2702.
    [51]D.Li, W.J.Dong, S.M.Sun, et al. Photocatalytic degradation of acid chrome blue K with porphyrin-sensitized TiO2 under visible light.J.Phys.Chem.C,2008,112:14878-14882.
    [52]S.Sakthivel, B.Neppolian, M.V.Shankarb, et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2. Sol.Energ.Mat.Sol.C,2003,77:65-82.
    [53]J. P. Percherancier, R. Chapelon, B. Pouyet. Semiconductor-sensitized photo-degradation of pesticides in water-the case of carbetamide.J. Photoch. Photobio. A,1995,87:261-266.
    [54]V.K.Prashant, H.Rebecca, N.Roxana. A "sense and shoot" approach for photocatalytic degradation of organic contaminants in water. J.Phys.Chem.B, 2002,106:788-794.
    [55]V.K.Prashant, M.Dan. Nanoparticles in advanced oxidation processes. Curr.Opin. Colloid Interface Sei,2002,7:282-287.
    [56]Y.Zhang, B.Deng, T.Zhang, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J.Phys.Chem.C,2010,114:5073-5079.
    [57]D.Chen, J.Ye. Hierarchical WO3 hollow shells:Dendrite,sphere, dumbbell, and their photocatalytic properties. Adv.Funct.Mater.,2008,18:1922-1928.
    [58]X.Xie, H.Yang, F.Zhang, et al. Synthesis of hollow microspheres constructed with a-Fe2O3 nanorods and their photocatalytic and magnetic properties. J.Alloy. Comp., 2009,477:90-99.
    [59]C.Wang, C.Shao, Y.Liu, et al. Photocatalytic properties BiOC1 and Bi2O3 nanofibers prepared by electrospinning. Scrip Ta Mate.,2008,59:332-335.
    [60]K.Hayat, M.Gondal, M.M.Khaled, et al. Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol-gel method.J. Mol. Catal. A:Chem,2011,336:64-71.
    [61]A.G.Prado, L.B.Bolzon, C.P.Pedroso, et al. Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl.Catal.B:Environ., 2008,82:219-224.
    [62]Y.Zhu, F.Yu, Y.Man, et al. Preparation and performances of nanosized powder photocatalyst.J. Solid. State Chem,2005,178:224-229.
    [63]A.A.Ashkarran, S.A.A.Afshar, S.M.Agligh. Photocatalytic activity nanoparticles prepared by electrical are discharge method in water. Polyhedron. 2010,29:1370-1374.
    [64]P.Ji, J.Zhang, F.Chen, et al. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. AppLCatal. B:Environ.,2009, 85:148-154.
    [65]B.Zhao, P.Zhang. Photocatalytic decomposition of perfluorooctanoic with β-Ga2O3 wide bandgap photocatalyst. Catal.Commun.,2009,10:1184-1187.
    [66]J.S.Hu, L.L.Ren, Y.G.Guo, et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chemie,2005,117:1295-1299.
    [67]Y.H.Yang, N.Ren, Y.H.Zhang, et al. Nanosized cadmium sulfide in polyelectrolyte protected mesoporous sphere:A stable and regeneratable photocatalyst for visible-light-induced removal of organic pollutants. J.Photoch.Photobio.A, 2009,201:111-120.
    [68]M.Sun, D.Li, W.Li, et al. New photocatalyst Sb2S3 for degradation of methyl orange under visible-light irradiation. J.Phys.Chem.C,2008,112:18076-18081.
    [69]H.He. Comparison study of photocatalytic properties of SrTiO3 and TiO2 powders in decomposition of Methyl Orange. Int. J. Environ. Res.,2009,3:57-60.
    [70]D.F.Wang, Z.G.Zou, J.H.Ye. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem.Phys.Lett.,2003,373:191-196.
    [71]J.F.Luan, Z.Zou, M.Lu, et al. Growth,structural and photophysical properties of Bi2GaTaO7.J.Cryst.Growth, 2004,273:241-247.
    [72]W.F.Yao, H.Wang, X.H.Xu, et al. Photocatalytic property of bismuth titanate Bi2Ti207. Appl.Catal.A:Gen.,2004,259:29-33.
    [73]Z.Ai, L.Zhang, S.Lee. Efficient visible light photocatalytic oxidation of NO on aerosol flow-synthesized nanocrystalline InVO4 hollow microspheres. J.Phys.Chem.C,2010,114:18594-18600.
    [74]Y. P. Xie, Y. P. He, P. L. Irwin, T. Jin, X. M. Shi. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microb.,2011,77:2325-2331.
    [75]A. L. Linsebigler, G. Q. Lu, J. T. Yates. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev.,1995,95:735-758.
    [76]U. Sirimahachai, N. Ndiege, R. Chandrasekharan, S. Wongnawa, M. A. Shannon. Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2):synthesis and photocatalytic activities.J. Sol-gel. Sci. Techn.,2010,56:53-60.
    [77]V.Ischenko, S.Polarz, D.Grote, et al. Zinc oxide nanoparticles with defects. Adv.Funct.Mater.,2005,15:1945-1954.
    [78]L.Q.Jing, Z.L.Xu, X.J.Sun, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci.,2001,180:308-314.
    [79]Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, et al. Luminescence and photocatalytic activity of ZnO nanocrystals:Correlation between structure and property.Inorg. Chem.,2007,46:6675-6682.
    [80]J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir,2009,25:1218-1223.
    [81]Y Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. A. Zapien, Ⅰ. Bello, et al. Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations. Cryst. Growth Des.,2009,9:3222-3227.
    [82]S. Baruah, S. S. Sinha, B. Ghosh, S. K. Pal, A. K. Raychaudhuri, J. Dutta. Photo-reactivity of ZnO nanoparticles in visible light:Effect of surface states on electron transfer reaction. J.Appl. Phys.,2009,105.
    [83]Y.L.Lai, M.Meng, Y.F.Yu, et al. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prapared by a facile hydrothermal method with or without ultrasonic assistance. Appl.Catal.B:-Environ.,2011,105:335-345.
    [84]Y Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y Xiang, et al. Comparison of dye photo-degradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir,2010,26:591-597.
    [85]G. Colon, M. C. Hidalgo, J. A. Navio, E. P. Melian, O. G. Diaz, J. M. D. Rodriguez. Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Appl. Catal. B-Environ.,2008,83:30-38.
    [86]H. H. Wang, C. S. Me. The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles. Physica. E,2008,40: 2724-2729.
    [87]P.V.Kamat. Photochemistry on nonreactive and reactive(Semiconductor) surfaces, Chem.Rev.1993,93:207-300.
    [88]E. S. Jang, J.-H. Won, S.-J. Hwang, J.-H. Choy. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater.,2006,18: 3309-3312.
    [89]A.Fujishima, X.T.Zhang, D.A.Tryk. TiO2 Photocatalysis and related surface phenomena, Surf.Sci.Rep.,2008,63:515-582.
    [90]GR.Li, GL.Pan, T.Y.Yan, et al. Morphology function relationship of ZnO:polar planes,oxygen vacancies.and activity, J.Phys.Chem.C,2008,112:11859-11864.
    [91]A. McLaren, T. Valdes-Solis, G. Li, S. C. Tsang. Shape and size effects of ZnO nanocrystals on photocatalytic activity.J. Am. Chem. Soc.,2009,131:12540-12541.
    [92]N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, M. Batzill. Photo-catalytic degradation of methyl orange over single crystalline ZnO:Orientation dependence of photoactivity and photo stability of ZnO. Langmuir,2009,25: 3310-3315.
    [93]J. Becker, K. R. Raghupathi, J. St Pierre, D. Zhao, R. T. Koodali. Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation.J. Phys. Chem. C, 2011,115:13844-13850.
    [94]D.Li, H.Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere,2003,51:129-137.
    [95]H.C.Yatmaz, A.Akyol, M.Bayramoglu. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind.Eng,Chem.Res.,2004,43:6035-6039.
    [96]A. Akyol, M. Bayramoglu. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst.J. Hazard. Mater.,2005,124:241-246.
    [97]C. S. Turchi, D. F. Ollis. Mixed reactant photocatalysis:Intermediates and mutual rate inhibition. J. Catal,1989,119:483-496.
    [98]L. Le Campion, C. Giannotti, J. Ouazzani. Photocatalytic degradation of 5-Nitro-1,2,4-Triazol-3-one NTO in aqueous suspention of TiO2. Comparison with fenton oxidation. Chemosphere,1999,38:1561-1570.
    [99]S. Chakrabarti, B. K. Dutta. Photocatalytic degradation of model textile dyes in waste water using ZnO as semiconductor catalyst.J. Hazard. Mater.,2004,112: 269-278.
    [100]M. A. Behnajady, N. Modirshahla, R. Hamzavi. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater.,2006, 133:226-232.
    [101]S. K. Pardeshi, A. B. Patil. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide.J. Hazard. Mater.,2009,163: 403-409.
    [102]O. A. Fouad, A. A. Ismail, Z. I. Zaki, R. M. Mohamed. Zinc oxide thin films prepared by thermal evaporation deposition and its photo catalytic activity. Appl. Catal.B-Environ.,2006,62:144-149.
    [103]M.L.Zhang, T.C.An, X.H.Hu, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide, Appl. Catal. A Gen.,2004,260:215-222.
    [104]D.D.Lin, H.Wu, R.Zhang, et al. Enhanced photocatalysis of electro spun Ag-ZnO heterostructured nanofibers, Chem.Mater.,2009,21:3479-3484.
    [105]J.H.Murray, E.P.Sotiris, M.Okom, et al. Ag-ZnO catalystes for UV-photodegradation of methylene blue. Appl.Catal.B:Environ.,2006,63:305-312.
    [106]V.Subramanian, E.E.Wolf, P.V.Kamat. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles charge distribution and Fermi-level equilibration, J.Phys.Chem.B,2003,107:7479-7485.
    [107]S.Sakthivel, M.V.Shankar, M.Palanichamy, et al. Enhancement of photocatalytic activity by metal depositon:characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Wat.Res.,2004,38:3001-3008.
    [108]H.B.Zeng, P.S.Liu, W.P.Cai, et al., Controllable Pt/ZnO porousn nanocages with improved photocatalytic activity. J.Phys.Chem.C,2008,112:19620-19624.
    [109]M.Yoshinaga, H.Takahashi, K.Yamamoto, et al. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method, Appl.Catal.B:Environ.,2007,309:149-154.
    [110]冯洁.掺铁纳米ZnO粉体的软化学法合成及其表征.浙江师范大学学报(自然群学版),2005,28:417-420.
    [111]于伟娜,刘素文,潘杰等.La3+,Ce3+及Fe3+的共掺杂对TiO2粉末光催化性能的影响.中国陶瓷,2006,24:18-21.
    [112]S.Anandan, A.Vinu, T.Mori, et al. Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension.Catal. Commun.,2007,8:1377-1382.
    [113]S.Ekambaram, Y.Iikubo, A.Kudo. Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J.Alloy Comp.,2007,433:237-240.
    [114]K.C.Hsiao, S.C.Liao, Y.J.Chen. Synthesis,characterization and photocatalytic property of nanostructured Al-doped ZnO powders prepared by spray pyrolysis. Mate.Sci.Eng.A,2007,447:71-76.
    [115]徐晓玲.氧化锌抗菌及降解有机污染物活性研究.西南交通大学博士学位论文,2012.
    [116]S.Yin, K.Ihara, Y.Aita, et al. Visible-light induced photocatalytic activity of TiO2-xAy(A=N,S)prepared by precipitation rout. J.Photochem.Photobio.A:Chem, 2006,179:105-114.
    [117]L.Di, H.Hajime. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J.Photochem.Photobiol.A:Chem.,2003,155:171-178.
    [118]H.F.Lin, S.C.Liao, S.W.Hung. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J.Photochem.Photobiol. A:Chem.,2005,174:82-87.
    [119]J.F.Lu, Q.W.Zhang, J.Wang, et al. Synthesis of N-doped ZnO by grinding and sub-quent heating ZnO-urea mixture. Powder Technol.,2006,162:33-37.
    [120]H.F.Yu. Photocatalytic abilities of gel-derived P-doped TiO2. J.Phys.Chem.Solid, 2007,68:600-607.
    [121]S.W.Hsu, T.S.Yang, T.K.Chen, et al. Ion-assisted electron-beam evaporation of carbon-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films, 2007,515:3521-3526.
    [122]S.K.Kansal, M.Singh, D.Sud. Studies on TiO2/ZnO photocatalysed degradation of lignin,J.Hazard.Mater.,2008,153:412-417.
    [123]L.K.IV William, A.A.Ismail, D.W.Mazyck. Impact of heat treatment and composition of ZnO-TiO2 nanoparticles for photocatalytic oxidation of an azo dye Ind.Eng.Chem.Res.,2008,47 1483-1487.
    [124]Z.Y.Liu, H.W.Bai, S.P.Xu, D.L.Sun. Hierarchical CuO/ZnO "corn-like" architecture for photocatalytic hydrogen generation, IntJ. Hydrogen energy.,2011,36:13473-13480.
    [125]S.Panneerselvam, S.Ramaswamy, J.W.Jerry, A.Sambandam. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution,Chem.Eng.J.,2011,171:136-140.
    [126]D.P.Wu, Y.Jiang, Y.F.Yuan, et al. ZnO-ZnS heterostructures with enhanced optical and photocatalytic properties, J.Nanopart. Res.,2011,13:2875-2886.
    [127]H.C.Ma, J.h.Han, Y.H.Fu, et al. Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction. Appl. catal. B:Environ.,2011,102: 417-423.
    [128]H.X.Sang, X.T.Wang, C.C.Fan, F.Wang, Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route, Int.J.Hydrogen energy.,2012,37:1348-1355.
    [129]M.L.Zhang, G.Y.Sheng, J.M.Fu, et al. Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-pracipitation method.Mater. Lett.,2005,59:3641-3644.
    [130]Z.J.Yang, L.L.Lu, Y.L.Dai, et al. Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties, Appl.Surf.Sci.,2010, 256:2898-2902.
    [131]S.Sakthivel, S.U.Geissen, D.W.Bahnemann, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3,WO3 and CdS deposited on ZnO, J.photochem.Photobio.A:Chem.,2002,46:561-570.
    [132]X.W.Wang, G.Liu, Z.G.Chen, F.Li, L.Z.Wang, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures, Chem.Commun.,2009,23:3452-3454.
    [133]C.Wang, B.Q Xu, X.M.Wang, et al. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J.Solid State Chem.,2005,178:3500-3506.
    [134]S.A.Naman, Z.A.A.Khammas, F.M.Hussein. Photo-oxidative degradation of insecticide dichlorovos by a combined semiconductors and organic sensitizers in aqueous media, J.Photochem.Photobio.A:Che,.,2002,153:229-236.
    [135]J.W.Moon, G.Coon, M.C.Hidalgo, et al. Photocatalytic activation of TiO2 under visible light using Acid Red44. Catal.Today,2003,87:77-86.
    [136]S.Kaur, V.Singh. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2-Ultrason.Sonochem.,2007,14:531-537.
    [137]A.C.Arango, S.A.Carter, P.J.Brock. Charge transfer in photovoltaics consisting of interpenetration networks of conjugated polymers and TiO2 nanoparticles. Appl. Phys.Lett.,1999,74:1698-1700.
    [138]L.Song, R.L.Qiu, Y.Q.Mo, et al. Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. CataLCommun.,2007,8:429-433.
    [139]B.Tryba, T.Tsumura, M.Janus, A.W.Morawski, M.Inagaki. Carbon-coated anatase: adsorption and decomposition of phenol in water. Appl. Catal. B-Environ., 2004,50:177-183.
    [140]M. Toyoda, Y. Nanbu, T. Kito, M. Hirano, M. Inagaki. Preparation and performance of anatase-loaded porous carbons for water purification. Desalination, 2003,159:273-282.
    [141]Z. Ding, G.Q. Lu, P.F. Greenfield. A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles. J. Colloid Interf. Sci, 2000,232:1-9.
    [142]S.J.Yang, J.H.Im, T.Kim, K.Lee, C.R.Park. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity J.Hazar.Mater.,2011,186:376-382.
    [143]J. Chen, L. Eberlein, C.H.Langford. Pathways of phenol and benzene photooxidation using TiC2 supported on a zeolite.J. Photochem. Photobiol,2002, 148:183-189.
    [144]J.Chen, Zh.Ch. Feng, P.L.Ying, C.Li. ZnO Clusters Encapsulated inside Micropores of Zeolites studied by UV raman and laser-induced luminescence spectroscopies. J.Phys. Chem. B,2004,108:12669-12676.
    [145]J.Y.Shi, J.Chen, Zh.Ch.Feng, T.Chen, et al. Time-Resolved Photoluminescence Charact-eristics of subnanometer ZnO clusters confined in the micropores of Zeolite.J. Phys. Chem. B,2006,110:25612-25618.
    [146]P.B.Sarawade, J.K.Kim, A.Hilonga, et al. Production of low-density sodium silicate based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci,2010,12:911-918.
    [147]S.S.Kistler. Coherent expanded aerogels and jellies. Nature,1931,127:741-745.
    [148]史非.常压干燥制备Si02气凝胶及其结构、性能研究.大连理工大学博士学位文.2006.
    [149]C.J.Brinker,.S.S.Prakash, A.J.Hurd. Silica aerogel films at ambient pressure, J.Non-Cryst.Solids,1995,190:264-275.
    [150]S.K.Kang, S.Y.Choi. Synthesis of low-density silica gel at ambient pressure:Effect of heat treatment. J.Mater.Sci,2000,35:4971-4976.
    [151]M.Reim, A.Beck, W.Komer, et al. Highly insulating aerogel glazing for solar energyusage. Solar Engergy,2002,72:21-29.
    [152]G.S.Kin, S.H.Hyun. Synthesis of window glazing coated with silica aerogel films via ambient drying. J,Non-Cryst,Solids,2003,320:125-132.
    [153]李涛.绿色建筑-可持续发展的建筑观.林业科技情报,2000,4:19-20.
    [154]邓蔚.纳米孔硅质绝热材料.宇航材料工艺,2002,1:1-7.
    [155]Y.K.Akimov. Fields of Application of Aerogels. Instrument and Experimental Techniques,2003,46:287-299.
    [156]L.Forest, V.Gibiat, A.Hooley. Inpedance matching and acoustic absorption in granular layers of silica aerogels. J.Non-Cryst.Solids,2001,285:230-235.
    [157]S.Jun, Q.Y.Ling, X.J.Lin, et al. Preparation of low-K and low-n mesoporous silica film via sol-gel process. Rare metal mat. and eng.,2008,37:76-79.
    [158]S.A.Cahill. Optical and electronic characterization of sol-gel-derived silica aerogels for display and imaging application:[Dissertation].Davis:University of California,1999.
    [159]X.Xiao, R.Streiter, R.Ruan. Modelling and simulation for dielectric constant of aerogel. Microelectron.Eng.,2000,54:295-301.
    [160]L.W.Hrubesh, P.R.Coronado, J.H.Satcher. Solvent removal from water with hydrophobic aerogels. J.Non-Cryst.Solid,2001,285:328-332.
    [161]J.G.Reynolds, P.R.Coronado, L.W.Hrubesh. Hydrophobic aerogels for oil-spill clean up synthesis and characterization. J.Non-Cryst.Solid,2001,292:127-137.
    [162]T.Woignier, J.Reynes, J.Phalippou, et al. Sintered silica aerogel:a host matrix for long life nuclear wastes. J.Non-Cryst.Solid,1998,225:353-357.
    [163]J.Reynes, T.Woignier, J.Phalippou. Permeability measurement in composity aerogels:application to nuclear waste storage. J.Non-Cryst.Solid,2001,285:323-327.
    [164]J.Wang, S.Uma, K.J.Klabunde. Visible light photocatalytic activities of transition metal oxide/silica aerogels. Micropor.Mesopor.Mat.,2004,75:143-147.
    [165]P.N. Kapoor, S.Uma, S. Rodriguez, K.J. Klabunde. Aerogel processing of MTi2O5 (M=Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior. J.Mol.Catal. A: Chem.,2005,229:145-150.
    [166]N. A. Kotov. Nanoparticle assemblies and superstructures. Taylor & Francis Group:Boca Raton, FL,2006.
    [167]Q.C.Li, A.Kumar, Y. Li, H.T.Zhang, et al. Fabrication of ZnO nanorods and nanotubes in Aqueous Solutions. Chem..Mater.,2005,17:1001-1006.
    [168]J.B.Cui, U.J.Gibson. Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnO Nanowires. J.Phys.Chem.B,2005,109:22074-22077.
    [169]J.J.Song, S.W.Lim. Effect of seed layer on the growth of ZnO nanorods, J.Phys. Chem.C,2007,111:596-600.
    [170]Y.H.Ni, X.W.Wei, J.M.Hong, Y.Ye. Hydrothermal preparation and optical propertiesof ZnO nanorods, MatSci.Eng.B,2005,121:42-47.
    [171]X.Y.Kong, Y.Ding, R.S. Yang, Zh.L.Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts,Science,2004,303:1348-1351.
    [172]Zh.W.Pan, Z.R.Dai, ZH.L.Wang. Nanobelts of semiconducting oxides. Science, 2001,291:1947-1949.
    [173]M.Lucas, W.J.Mai, R.S.Yang, Zh.L.Wang, E.Riedo. Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett.,2007,7:1314-1317.
    [174]Z.W.Zhou, H.Deng. A new method for preparation of ZnO oxide whiskers. Mater.Research.Bulletin.1999,34:1563-1567.
    [175]A. L.Rudd, C. B.Bresli. Photo-induced dissolution of zinc in alkaline solutions. Electrochim.Acta,2000,45,1571-1579.
    [176]H.B. Fu, T.G.Xu, S.B. Zhu, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ. Sci. Technol, 2008,42:8064-8069.
    [177]A. A. Khodja,T. Sehili, J. F. Pilichowski, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photoch. Photobio. A, 2011,141:231-239.
    [178]R.Enriquez, GAlexander, P.P.Agrios, et al. Probing multiple effects of TiO2 sintering temperature on photocatalytic activity in water by use of a series of organic pollutant molecules, Catal. Today,2007,120:196.
    [179]H. Noei, H. S. Qiu, Y. M. Wang, E. Loffler, C. Woll, M. Muhler. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem.Phys.,2008,10:7092-7097.
    [180]Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, A. Y. Nosaka. Photocatalytic-OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys. Chem. Chem. Phys.,2003,5:4731-4735.
    [181]S.H.Szczepankiewicz, A.J.Colussi, M. R. Hoffmann. Infrared spectra of photo induced species on hydroxylated titania surfaces.J. Phys. Chem. B,2000,104: 9842-9850.
    [182]J.Cunningham, S.Srijaranai. Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. J.Photoch.Photobio. A,1988,43:329-335.
    [183]X.L.Xu, D.Chen, Z.GYi, et al. Antimicrobial and H2O2 generation mechanisms based on oxygen vacancies in ZnO crystals. Langmiur,2013,29:5573-5580.
    [184]S.S.Prakash, C.J.Brinker, A.Hurd, et al. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shringkage. Nature,1995,374:439-443.
    [185]朱建军,姚晶,吕晓萌等,超疏水介孔二氧化硅气凝胶的常压制备与性能表征.硅酸盐学报,2009,37:512-515.
    [186]严继民,张继元.吸附与凝聚——固体的表面与孔.北京:科学出版社,1979.
    [187]M.P.Titus, V.GMolina, M.A.Banos, et al. Degradation of chlorophenols by means of advanced oxidation processes. Appl.CataLB.Environ.,2004,47:219-256.
    [188]顾惕人.表面化学,北京,科学出版社,1994.6.
    [189]张志华.纳米多孔SiO2气凝胶的常压制备及其吸附特性研究,同济大学博士讼文2006,博士.
    [190]刘桂芳,马军.改性活性炭对水溶液中双酚-A的吸附研究.环境科学2008,29:349-355.
    [191]R.W.Coughlin, F.S.Ezra. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Env.Sci.Tech.,1968,2:291-29.
    [192]I.A.Siddiquey, T.Furusawa, M.Sato, et al. Sonochemical synthesis,photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrason. Sonochem.,2012,19:750-755.
    [193]G. A. Parks. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev.,1965,65:177-198.
    [194]M.A.Hasnat, M.M.Uddin, A.J.F.Samed. Adsorption and photocatalytic decolorizationof a synthetic dye Erythroisine on anatase TiO2 and ZnO surfaces. J.Hazar.Mater.,2007,147:471-477.
    [195]杨泉生,聂基兰.双波长分光光度法的原理与应用.北京:化学工业出版社,1992.
    [196]雷乐成,汪大翠.水处理高级氧化技术.北京:化学工业出版社,2001.
    [197]S.Chen, Y.Z.Liu. Study on the photocataltic degradation of glyphosate by TiO2 photocatalyst. Chemosphere,2007,67:1010-1017.
    [198]M.Bekbolet, I.Balcioglu. Photocatalytic degradation kinetice of humic acid in aqueous TiO2 dispersions. Wat.Sci.Technol.,1996,34:73-80.
    [199]C.Sirori, P.K.Altvater, A.M.Freitas, et al. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis. J.Hazar.Mater.B:2006,129:110-115.
    [200]M.Muruganandham, N.Shobana, M.Swaminathan. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2. J.Mole.Catal.A:Chem.,2006,246:154-161.
    [201]W.H.Leng, H.Liu, S.A.Cheng, et al. Kinetics of photocatalytic degradation of anilinein water over TiO2 supported on porous nickel. J.Photochem.Photobiol. A: Chem.,2000,131:125-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700