多孔轻质莫来石陶瓷制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Al_2O_3-SiO_2体系为粘结剂,空心球作为造孔剂,利用凝胶注模成型方法制备出一种新型的多孔莫来石材料。空心球在烧结过程中可以起到烧结助剂的作用,大大的降低了Al_2O_3-SiO_2体系的烧结温度。
     实验分别研究添加百分比为25%、50%、75%、100%的空心球进行研究,结果表明空心球含量越多,总气孔率越大;其中烧成温度较低的是75%空心球添加量,其在1200℃能烧成轻质多孔莫来石陶瓷。XRD分析表明温度的增加,莫来石衍射峰增强,Al_2O_3的衍射峰降低,说明温度升高促进了Al_2O_3-SiO_2烧成莫来石相。随着空心球含量减少,Al_2O_3-SiO_2粉末含量相对增加,其烧结温度增加,抗弯强度增大。50%空心球1300℃下制备的多孔陶瓷密度在1.09 g/cm~3左右,抗弯强度为15 MPa。25%空心球添加量在1400℃烧结得到的多孔陶瓷强度达到38 MPa,密度1.43 g/cm~3,孔径结构多为闭气孔,闭气孔率为35%。
     在上述基础上,实验选取50%的空心球作第一类造孔剂,另外添加B_2O_3和CaCO3作为第二类造孔剂进行研究。实验表明,当添加B_2O_3含量较少时(2.5%左右),气孔率降低,B_2O_3能够促进烧结。B_2O_3的含量从2.5%开始增加到10%,陶瓷的收缩率反常的降低,总气孔率越来越大。SEM分析其原因为CaCO3和B_2O_3在有水浆料中反应产生CO_2气泡,从而使坯体产生微孔,另一原因为B_2O_3的加入加速孔壁中氧化物液化,使孔中露出凹凸不平的针状莫来石,从而提高气孔率。B_2O_3的加入促进Al_2O_3-SiO_2在低温下烧成莫来石相,烧结温度降低了100~200℃左右。10% B_2O_3添加量在1200℃烧结后,气孔率增加到81%,密度降低到0.64 g/cm~3。
     从热学上来分析,本实验所制备的多孔莫来石陶瓷具有较低的导热系数(0.09-0.30 W.(m.k)~(-1))。而且材料的导热存在一定的弛豫时间,导热系数越小,弛豫时间越长,说明这种多孔材料具有良好的隔热性能。
In this paper, a novel porous mullite was fabricated by means of gelcasting method using Al_2O_3-SiO_2 and fly ash cenosphere as basic materials, as well as binder and foaming a gent. The main crystalline phases of fly ash cenosphere are mullite and SiO_2 besides a small amount of amorphous glassy phase. The amorphous glassy phase during sintering can play the role of sintering aids; greatly lower the sintering temperature of Al_2O_3-SiO_2 system. Experiment studied the effect of adding 25%, 50%, 75%, 100% amount of cenospheres. The results showed that the more content of cenospheres, the lower sintering temperature, and the higher the total porosity it was. More than 75% cenospheres adding, light porous mullite ceramics can be sintered at as low as 1200℃. From XRD (X-Ray Diffraction) patterns we knew as the sintering temperature increased, mullite diffraction peaks intensified, and Al_2O_3 diffraction peaks shrinked, indicating that high temperature promotes the growth of mullite crystals. SEM images showed that after 1200℃sintering, the re was glassy phase starting to liquify to accelerate sintering. When the amount of cenospheres decreased, the sintering temperature and flexural strength would obviously increase. And with 50% cenospheres addition, flexural strength and bulk density of porous mullite respectively resulted in 15MPa and 1.09 g/cm~3 at 1300℃. The maximum flexural strength reaches 38 MPa with 25% cenospheres in it, which also has a highest closed porosity (35%) and bulk density (1.43 g/cm~3).
     A small amount of CaCO3 and B_2O_3 are added as sintering aid, as well as second foaming agent, which based on formula of 50% cenospheres. As a result, when adding less than 2.5% amount of B_2O_3, B_2O_3 can promote sintering, but decrease the porosity. The amount of B_2O_3 added from 2.5% to 10%, both of bulk shrinkage and density would decline abnormally because of the second foaming agent. On the other hand, B_2O_3 would eutecticevaporate with other oxides in pore shell, so that needle-like mullite presented in the inner pore. That is why more B_2O_3 resulted in higher porosity. When B_2O_3 added to 10% wt, a higher total porosity rate is up to 81%, and lower density is down to 0.64 g/cm~3.
     The light porous mullite ceramics was prepared in this experiment with low thermal conductivity (0.09~0.30 W.(m.k)~(-1)). And thermal conductivity was characterized by a relaxation time. The lower the thermal conductivity, the longer relaxation time it is, indicating that the porous material with good heat insulation properties.
引文
[1] Gibson L J, Ashby M F. Cellar solids: structure and properties (Second Edition), 1997
    [2]贾学军,基于ANSYS的多孔材料微结构设计与分析:硕士学位论文,大连:大连理工大学,2006
    [3] http://www.corporate.basf.com/en/innovation/labors/polymerforschung/Arbeitsgebiete/ Polyurethane.htm?id=V00-Hpmsg8UOdbcp*e0
    [4] http://www.aeroflexusa.com/images/secondary/pal.jpg
    [5]钱军民,多孔陶瓷制备技术研究进展,兵器材料科学与工程,2005,9(5):61~64
    [6]张鹏程,吴承伟,空心球轻质结构的力学性能研究,硕士学位论文,大连:大连理工大学,2006
    [7]朱小龙,苏雪筠,多孔陶瓷材料,中国陶瓷,2000,36(4):36~39
    [8]刘渊伟,高气孔率、高强度多孔氧化铝陶瓷的制备及表征,清华大学硕士学位论文,北京:清华大学,2009,5
    [9]刘培生等,多孔材料引论,清华大学出版社,2004:49~51
    [10] Schaefer D W, Engineered porous Materials EXPO’93, Conference Report, SAND93-2096(1993), Availabale from National Technical Information Service, U.S.Dept of commerce, 5285 Port Royal Rd,Springfield,VA 22161
    [11] SONG I H, KIM MJ, KIM H D, et al. Processing of microcellular cordierite ceramics from a preceramic polymer, Scripta Mater, 2006, 54 (4): 1521~1525
    [12]张晓霞,山玉波,李伶,多孔陶瓷的制备与应用,现代技术陶瓷,2005,(4) :37~40
    [13] ALTINKOKN, KOKER R, Mixture and pore volume fraction estimation in Al_2O_3/ SiC ceramic cake using artificial neural networks, Mater Des, 2005, 26 (6): 305~311
    [14]李靓,王建江,李俊寿,郭焕升,多孔陶瓷制备技术的进展,化学试剂,2008,30(2):95~98
    [15]曾令可,王慧,罗民华等,多孔陶瓷实用技术,北京:化学工业出版社,2006:127
    [16]刘辉,孙伟,覃文庆等,多孔陶瓷材料的应用及发展前景,矿冶工程,2003,23 (6) :69~71
    [17]罗民华,多孔陶瓷实用技术,北京:中国建材工业出版社,2006:1~12
    [18] DENG Zhen-yan, FERREIRA J M F, TANAKA Y,et al.Microstructure and thermal conductivity of porous ZrO_2 ceramics . Acta Mater, 2007, 14 (2): 1~7
    [19] TULYAGANOV D U, TUKHTAEV M E, ESCALANTE J I, et al, Processing of cordierite based ceramics from alkaline earth aluminosilicate glass, kaolin, alumina and magnesite, J Eur Ceram Soc, 2002, 22 (3): 1775~1782
    [20] CHEN Yungfeng, CHANG Yuhsein, WANG Moochin, et al, Effects of Al_2O_3 addition on the phases, flow haracteristics and morphology of the porous kaolin ceramics, Mater Sci Eng A, 2004, 373 (3): 221~228
    [21] Deng ZY, Fukasawa T, Ando M,et al, High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)+3, J Am Ceram Soc, 2001, 84(3): 485~491
    [22] FUJIM, SHIROKIY, MENCHAVEZ RL, et al, Fabrication of cordierite filter by in situ solidification for high temperaturedust collection, Powder Technol, 2007, 172(1): 57~62
    [23] ALTINKOKN, DEMIRA, OZSERTI, Processing of Al_2O_3/SiC ceramic cake preforms and their liquid Al metal infiltration, Composites Part A, 2003, 34 (4): 577~582
    [24] ALTINKOKN, KOKER R, Mixture and pore volume fraction estimation in Al_2O_3/ SiC ceramic cake using artifcial neural networks, Mater Des, 2005, 26 (2): 305~311
    [25] Hirschfeld D A, Li T K, Liu D M. Processiong of porous oxide ceramics, Key Engineering Materials, 1996, 115: 65~80
    [26] DING Shu-qiang, ZHU Su-min, ZENG Yu-ping, et al. Effect of Y_2O_3 addition on the properties of reaction-bonded porous SiC ceramics, Ceram Int, 2006, 32 (1): 461~466
    [27] DING Shu-qiang, ZHU Su-min, ZENG Yu-ping, et al, Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding, J Eur Ceram Soc, 2007, 27(2): 2095~2102
    [28] DING Shu-qiang, ZENG Yu-ping, JIANG Dong-liang, In-situreaction bonding of porous SiC ceramics, Mater Charact, 2007, 15 (10): 1016~1020
    [29] Zhu Su-min, Ding Shu-qiang, Xi Hong-an, et al, Preparation and characterization of SiC/cordierite composite porousceramics, Ceram Int, 2007, 33(1): 115~118
    [30] GREGOROVA, PABST, Porous ceramics prepared usingpoppy seed as a pore-forming agent. Ceram Int, 2006, 19 (5): 19~23
    [31] SCHWARTZALDERK, ARTHUR H, SOMERSV, et al, Method of making porous ceramic articles: US, 3090094, 1963-05-21
    [32] SENGUTTUVAN.T.D, KALSI.H.S, SHARDA S K, et al, Sintering behavior of alumina rich cordierite porous ceramics, Mater Chem Phys, 2001, 67 (3):146~150
    [33] TIAN Chong, ZHANG Jin-song, CAO Xiao-ming, et al, Highstrength silicon carbide foams and their deformation behavior, Mater Sci Technol, 2006, 22(2): 269~272
    [34]赵杰,赵经贵,高山,等. SnO_2纳米薄膜的制备、显微结构及气敏性能,应用化学,2004,21 (2):122~125
    [35]李爱武,全宝富,刘凤敏等,Sol-Gel法制备低阻SnO_2薄膜,功能材料,2001,32(6):645~646
    [36]刘培生,黄林国,多孔金属材料制备方法,功能材料,2002,33(1):5~8
    [37] MORANCAIS A, LOUVET F, SMITH D S, et al, High porosity SiC ceramics prepared via a process involving an SHS stage, J Eur Ceram Soc, 2003, 23(3): 1949~1956
    [38]张学军,郑永挺,韩杰才等,稀释剂含量对自蔓延高温合成Si3N4-SiC-TiN陶瓷的影响,硅酸盐学报,2006,34(6):708~712
    [39]高亚政,史旭莲,多孔陶瓷的制备工艺,佛山陶瓷,1999,(4):19~20
    [40]杨坤,齐荣,绿色多功能材料-多孔陶瓷,陶瓷,2005,2:15~20
    [41]周水仙,特种陶瓷在现代工业中的应用现状,江苏陶瓷,1998,31(1):30~31
    [42]张健,李程,吴贤,康新婷,张文彦,奚正平,金属纤维多孔材料在机动车尾净化器中的应用,稀有金属材料与工程,2007,9(36):378~382
    [43]吴庆祝,汽车柴油机排气颗粒泡沫陶瓷过滤器的研制,河北陶瓷,1997,25(2):3~8
    [44]王连星,宁青菊,姚治才,多孔陶瓷材料,硅酸盐通报,1998,1:41~45
    [45]刘海燕,多孔陶瓷二次干燥技术与应用研究:硕士学位论文,武汉:武汉理工大学,2006
    [46] Seike S, Seike A, Porous ceramics used as building materials have glaze with predetermined thickness and have predetermined moisture release amount, JP: 2008133153, 2008-06-12
    [47]王思青,张长瑞,周新贵等,重复使用运载器陶瓷热防护系统,导弹与航天运载技术,2004,3:37~41
    [48]李贵佳,张伟儒,尹衍升等,无机纤维隔热材料在航空航天热防护工程中的应用,陶瓷,2004,2:28~31
    [49]杨亚政,杨嘉陵,方岱宁,高超声速飞行器热防护材料与结构的研究进展,应用数学和力学,2008,29(1):47~56
    [50]韩鸿硕,国外航天运输系统防热系统、结构和材料的总体分析研究,宇航材料工艺,1997,4:1~4
    [51]赵毅,朱振峰,贺瑞华等,多孔陶瓷材料的研究现状及应用,陶瓷,2008,7:27~30
    [52]王圣威,金宗哲,黄丽容,多孔陶瓷材料的制备及应用研究进展,硅酸盐通报,2006,25(4):124~129
    [53]陈俊彦,最新精细陶瓷技术,北京:中国建筑工业出版社,1986:81~86
    [54]陆婵娟,潘晓,焦永峰,多孔陶瓷的制备及应用研究现状,江苏陶瓷,2008,41(1):23~25
    [55]鞠银燕,宋士华,陈晓峰,多孔陶瓷的制备、应用及其研究进展,硅酸盐通报,2007,26(5):969~974
    [56] Mendes S C, Sleijster M, Muysenberg A V D, et al, Cultured living bone equvalents enhance bone formation when compared to a cell seeding approach, Key Engineering Materials, 2002: 218~220
    [57]周益春,新材料科学及其实用技术,清华大学出版社,2004:260~261
    [58]杜晶,高纯莫来石的合成研究:硕士学位论文,西安:西安建筑科技大学,2006,7
    [59]彭永烽,非水解溶胶-凝胶法合成莫来石粉体及晶须的工艺研究:硕士学位论文,景德镇:景德镇陶瓷学院,2010,4
    [60]杜春生,莫来石的工业应用,硅酸盐通报,1998,(2),57~60
    [61]江东亮等主编,中国机械工程学会,中国材料研究学会,中国材料工程大典编委会编,中国材料工程大典第8卷无机非金属材料工程上,北京市:化学工业出版社,2006:72~73
    [62]郭海珠,余森等编著,实用耐火原料手册,北京:中国建材出版社, 2000:104~110
    [63] Janny M A, Method for molding ceramic powders, US: 4894194, 1990-01-16
    [64] Omatete O O, Janny M A, Srehlow R A, Gelcasting: a new ceramic forming process, Ceramics Bulletin, 1991, 70(10): 1641~1647
    [65] http://www.cerambuy.com/news/detail/2554.htm
    [66] J K Park, J S Lee, S I Lee, Preparation of porous cordierite using gelcasting method and its feasibility as a filter, J Por Mat, 2002, 9: 203-210
    [67]黄志彬,陶瓷粉末凝胶注模成型工艺研究:硕士学位论文,长沙:湖南大学,2008,6
    [68]杨金龙,谢志鹏,汤强等,a-Al_2O_3县浮体的流变性及凝胶注模成型工艺研究,硅酸盐学报,1998,2:1~2
    [69]高重辉,唐闻群,徐玲,高分子化学,北京:中国石化出版社,1997,92
    [70]刘卫华,贾成厂,郭志猛,凝胶注模成型技术理论研究,材料导报,2006,20(1):19~20
    [71]刘卫华,郭志猛,贾成厂等,凝胶注模成型的研究现状与前景展望,电工材料,2004,4:27~29
    [72]胡云香,BaTiO3基半导体陶瓷凝胶注模成型技术研究:(华中科技大学博士论文),武汉:华中科技大学,2001
    [73] Gilissen R, Erauw J P, Smolders A, et al. Gelcasting: a near net shape technique Materials and Design, 2000, 21(4): 251~257
    [74]杨亚政,杨嘉陵,曾涛等,轻质多孔材料的研究进展,力学季刊,2007,12(28):503-517
    [75] Banhart J, Manufacture, Characterisation and application of cellular metals and metal foams, Progress in Materials Science, 2001, 46: 559~632
    [76] Peter Greil, Advanced engineering ceramics, Adv Mater, 2002, 14(10): 709~716
    [77] She J H, Ohji T. Fabrication and characterization of highlyporous mullite Ceramics. Mater Chem And Phy, 2003, 80: 610~614
    [78] Aurore Morancais, Francois Louvet, David Stanley Smith, Jean Pierre Bonnet, High porosity SiC ceramics prepared via a process involving an SHS stage, J European Ceramic Society, 2003, 23: 1949~1956
    [79] Qiao Guanjun, et al, Mechanical properties and microstructure of Si/SiC materials derived from native wood. Materials Science and Engineering 2002, A323: 301~305
    [80] Sheppard L M, Corrosion-resistant ceramics for severe environments, Am Ceram Soc.Bull, 1991, 70 (7): 1146~1158
    [81]李月琴,吴基球,多孔陶瓷的制备、应用及发展前景.陶瓷工程,2000, 35 (12):44~47
    [82] Kinemuchi Y, Watari K,Uchimura S, Grading porous ceramics by centrifugal sintering, J Acta Materialia, 2003, 51: 3225~3231
    [83]司文捷,Graule T,直接凝固注模成形Si3N4及SiC陶瓷基本原理及工艺过程,硅酸盐学报,1996,245:32~36
    [84] Takayukki Fukasawa, Motohide Ando, Synthesis of porous ceramics with complex pore structure by freeze-dry processing, J Am Ceram Soc, 2001, 84 (1): 230~232
    [85] Ulrich Soltmanna, et al, Reeze gelation: a new option for theproduction of biological ceramic composites (biocers), Materials Letters, 2003, 57: 861~ 865
    [86] Shan S Y, Yang J F, Gao J Q, et al, Porous silicon nitridecer amicspr epared by reduction nitridation of silica, J Am Ceram Soc, 2005, 88(9): 2594
    [87] Guan L, Fan B B, Liu C, et al, Pr epar at ion of SiO_2-SiC composites with a precursor method, Ceram Int, 2009, 35(5): 1905
    [88] Ding S Q, Zeng Y P, Jiang D L, In-situ reaction bonding of porous SiC ceramics, Mater Charact, 2008, 59(2): 140
    [89] Gitting J P, Bowen C R, Dent A E, et al, Electrical characterization of hydroxyapatite based bioceramics, Acta Biomater, 2009, 5: 743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700