量子光纤信道和相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何安全的传输数据是目前通信系统面临的难题,而现有的加密系统却只能提供有条件的安全。量子通信的出现改变了这一局面。量子密钥分发的安全性由量子力学基本定律保证从而具有无条件安全的优点。但光纤信道中传输的光子偏振态的随机改变或是附加相移导致量子密钥分发产生大量误码。
     论文从两个方面进行研究:光纤的传输特性和偏振控制技术。首先研究了光纤信道特性对相位编码和偏振编码的影响,然后提出了几种偏振控制方案。得到如下结果:
     1、建立了BB84密钥分发模型并仿真了系统传输效率、暗电流误码和通信距离的关系,分析表明忽略暗电流数误码并不影响信道特性分析从而在此基础上建立了光纤信道相位编码和偏振编码两种密钥分发系统的信道模型。
     2、利用双折射影响下的相位差模型对偏振编码BB84进行了分析仿真,结果表明在铺设光纤时应尽量避免小曲率的弯曲,另外应力双折射对单光子的影响甚于纤芯椭圆度。建立了偏振模色散影响下的量子比特误码率模型并进行数值分析,结果表明偏振模色散的存在会导致误判。建立了磁光效应作用下的误码率模型并进行仿真分析,表明磁光效应对偏振方向的旋转导致量子比特到达错误的探测器并最终引起误码甚至使系统不能工作。
     3、建立了温度变化时的双不等臂M-Z干涉仪误码模型并进行数值分析,结果表明温度的变化会引起误判概率的波动。分析了横向压力对双不等臂M-Z干涉仪密钥分发的影响,结果表明横向压力的存在仅仅会使双不等臂M-Z干涉仪密钥分发效率下降。针对法拉第旋转镜的时分复用干涉仪方案,建立了磁场作用和法拉第旋转镜的时分复用干涉仪密码分发系统的关系模型,结果表明磁场的干扰可能会使法拉第旋转镜时分复用干涉仪系统无法正常工作。而对Sangac方案的理论分析则表明该方案不会受到环境因素慢变的影响。
     4、针对偏振编码方案,提出一种自动偏振控制补偿方案,分析结果证明该方案可以抵消双折射对偏振态的影响,但会使系统传输效率下降。
The ongoing booms of modern communications require the development of new methods and techniques to secure data transmission, but current cryptography implementations provide only conditional security. Quantum key distribution provides a way to distribute a secret key between two distant parties. The security of this new way of key distribution has been proved to be unconditional because its security is guaranteed by the laws of quantum mechanics. The main problem in quantum key distribution via fiber is the polarization variation of single photon during its propagation in quantum fiber channel.
     This dissertation investigates quantum key distribution in both the performance of fiber channel and the restoration of polarization.
     1.The model of BB84 is eslablished and the relationship between the length of fiber and the efficiency of channel transmission and dark current is analyzed. The numerical analysis shows the dark current has nothing to do with the performance of channel.The theoretical model of polarization encoded and phase encoded on fiber is established.
     2.The polarization encoded scheme of BB84 is analyzed with the model of phase variation when filber is affected by briefingence.The result shows the little curvature bend should be avoid when laying fiber, and stress birefringence has more affection on quantum bit than core ellipticity. A QBER model under polarization mode dispersion is built and numerical analysis is made. The QBER model under magneto-optic effect is built and numerical analysis shows the variantion of polarization will lead to system error.
     3.The QBER model of collapsed M-Z interferometer with changing temperature is built and analyzed. The result shows the fluctuations of error probability varying with the change of temperature. The impact of transversal pressure on collapsed M-Z interferometer scheme is analysed and the result shows transversal pressure will decrease the efficiency of QKD.The model of the effection of magnetic field on 'Plug&Play'scheme is built. The result shows whether'Plug&Play'scheme will work depends on magnetic field around the fiber. And the theoretical analysis shows slow-varying of environmental factors have no effect on Sangac model.
     4.A method of polarization auto-compensation is presented.The analysis shows this method can eliminate the effect of biefriengence, but the efficiency of transmission will decrease.
引文
[1]G.S.Vernam. Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic Communications[J].Journal of the IEEE, Vol 55,pp109-115,1926
    [2]Whitfield Diffie,Martin E Hellman.New directions in cryptography[J].IEEE Trans on Information Theory, Nov.1976,Vol22(6):644-654,
    [3]http://www.lhtelecom.com/knowlodge/zyjs/wlaq/1/sf.htm
    [4]Shor P W.Algorithms for quantum computation discretelog and factoring[C].In Proceedings of the 35th Annual Symposium on the Foundations of Computer Science(IEEE Computer Society Press,Los Alamitos,CA),1994:124-133
    [5]L.K.Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys.Rev. Lett.1997,79(2):325-328
    [6]W.K. Wooters, W.H. Zurek. A Single Quantum cannot be Cloned[J].Nature. 1982,299:802~803
    [7]S Wiesner.Conjugate coding[J].Sigact News.1983,15(1):78-88
    [8]C H Bennett,G Brassard.Quantum Cryptography:Public Key Distribution and Coin Tossing[C].Proceedings of IEEE International Conference on Computers Systems and Signal Processing,Bangalore India, December 1984:175-179
    [9]Samuel J.A quick glance at quantum cryptography.quant-ph/9811056
    [10]D.Mayers,Lect. Notes Comput.Sci.1109,1996,343-357
    [11]Peter W Shor, John Preskill.Simple Proof of the BB84 Quantum Key Distribution Protocol.Phys.Rev.Lett. July,2000,85(2):441-444
    [12]http://arxiv.org/abs/quant-ph/0107017.
    [13]http://arxiv.org/abs/quant-ph/0212066
    [14]http://arxiv.org/abs/quant-ph/0308048
    [15]Daniel Gottesman,Hoi-Kwong Lo,et al.Security of Quantum Key Distribution with Imperfect Devices[J]. Quant Infom Comput,2004,4:325
    [16]Hoi-Kwong lo.Efficient quantum key distribution schemen and a proof of its unconditional security[J]. J.Cryptology.2005,18:133-165
    [17]韩宝彬,裴昌幸等.磁光效应对BB84协议的影响分析[J].量子电子学报.2007,24(5):575-578
    [18]C H Bennett.Quantum cryptography using any two nonorthogonal states [J].Phys Rev Lett,1992,68(21):3121-3124
    [19]A K Ekert.Quantum cryptography based on Bell theorem [J].Phys Rev Lett,1991,67(6):661-663
    [20]C.H Bennett, G Brassard, et al. Quantum cryptography without Bell's theorem. Phys.Rev.Lett.1992,68(5):557-559
    [21]Dagmar Bruss.Optimal eavesdropping in quantum cryptography with six states[J]. Phys. Rev.Lett.1998,81(14):3018-3021
    [22]H. Bechmann-Pasquinucci and N. Gisin. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review A,59:4238-4248, 1999.
    [23]L Goldenberg,L Vaidman.Quantum Cryptography Based on Orthogonal States[J]. Phys.Rev.Lett.1995,75(7):1239-1243
    [24]K Inoue,E Waks et al.Differential Phase Shift Quantum Key Distribution[J]. Phys.Rev.Lett.2002,89(3):037902-037904
    [25]C H Bennet,F Bessette et al.Experimental quantum cryptography. Journal of Cryptography.1992,5:3-28
    [26]P D Townsend, J G Rarity,et al.Single photon interference in 10km long optical fibre interferometer. Electronic Letters,1993,29:634-635
    [27]P D Townsend,A Ougazzaden, et al.Enhanced single photon fringe visibility in a 10km-long prototype quantum cryptography channel. Electronic Letters.1993,29:1291-1293
    [28]C Marand,P D Townsend. Quantum key distribution over distances as long as 30km.Optics Letters[J].1995,20:1695-1697
    [29]A Muller, J Breguet, N Gisin.Experimental demonstration of quantum cryptography using polarized photons in optical fibre over more than 1 km [J].Europhysics Letters,August 1993,23(6):383~388
    [30]A Muller, H Zbinden, N Gisin.Underwater Quantum Coding[J].Nature.
    1995,378:449
    [31]A Muller, H Zbinden, N Gisin.Quantum cryptography over 23km in installed under-lake telecom fibre[J].Europhys. Lett.,1996,33(5):335~339
    [32]Muller A, Herzog T, Huttner B,Tittel W, Zbinden H, and Gisin N.'Plug and play' systems for quantum cryptography[J].Applied Physical Letters.1997,70:793-795
    [33]R. Hughes, R G Morgan,et al.Quantum key distribution over a 48km optical fibre network[J],J..Mod.Opt,20004,7:533-547
    [34]http://cme.ce.cn/shou/jygl/200707/06/t20070706_12085216.shtml
    [35]D Stucki, N Gisin.et al.Quantum Key Distribution over 67km with a Plug & Play System[J]. New Journal of Physics.2002,4:41.1-41.8
    [36]http://imailab-www.iis.u-tokyo.ac.jp/MegroCrypt04/03quant/QuantumCrypto_.pdf
    [37]http://www.cs.nchu.edu.tw/-s9156040/chap3.htm
    [38]Gobby C, Yuan Z L,et al.Quantum Key Distribution Over 122km Standard Telecom Fiber[J],Appl Phys Lett 2004,84(19):3762-3764
    [39]T Kimura, Y Nambu, et al.Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography[J].Japan.Journal of Appl.Phys.,2004,43(9):1217-1219
    [40]http://news.ustc.edu.cn/zh_CN/?article=00016450
    [41]http://ccs.sjtu.edu.cn/gfile.php?dt=f&id=179
    [42]Buttler W T, Hughes R J, Kwiat P G, et al. Practical free-space quantum key distribution over 1 km.Physical Review Letters,1998,81(15):3283-3286
    [43]Buttler W T, Hughes R J, Lamoreaux S K, et al. Daylight quantum key distribution over 1.6 km.Physical Review Letters,2000,84(24):5652~5655
    [44]Rarity J G, Gorman P M, et al. Secure key exchange over a 1.9 km free-space range using quantum cryptography. Electron Lett,2001,37(8):512~514
    [45]Hughes R J, Nordholt J E, Derkacs D, et al.Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics,2002,4: 43.1-43.14
    [46]http://www.gsdkj.net:90/-kjqk/zrkxjz/zrkx2006/0602pdf/060206.pdf
    [47]http://ccs.sjtu.edu.cn/gfile.php?dt=f&id=179
    [48]Markus Aspelmeyer,Hannes R. Bohm et al.Long-distance free-space distribution of quantum entanglement.Nature,2003,301:621-623
    [49]Cheng-Zhi Peng,Tao Yang,et al.Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 km:Towards Satellite-Based Global Quantum Communication[J],Phys.Rev.Lett.2005,94:150501
    [50]C Elliott,Dr.D Pearson,et al.Quantum Cryptography in Practice.quant-ph/0307049
    [51]J.Shao,L.A.Wu. Demonstration of Quantum Cryptography with Single Photon Polarization[J].Acta Sinica Quantum Optica(in Chinese).1995(1):41-44
    [52]CHEN Zhi-Xin TANG Zhi-Lie,et al.QUANTUM CRYPTOGRAPHY AND SECURITY COMMUNICATIONS.(http://lk.hfcas.ac.cn/021996.pdf)
    [53]Jun Zhang,Cheng-Zhi Peng, et al.New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13km[J].Physics in Chinese.2005,34(10):701-707
    [54]Xiao-fan Mo,Bing Zhu, et al.Intrinsic-Stabilization Uni-Directional Quantum Key Distribution Between Beijing and Tianjin. Arxiv.org/pdf/quant-ph/0412023v1
    [55]Samuel L.Braunstein,A. Mann,et al.Maximal violation of Bell inequalities for mixed states[J].Phys.Rev.Lett.1992,68:3259-3261
    [56]Bennett, C.H.Quantum cryptography:Uncertainty in the service of privacy [J]. Science.1992,257(7):752-753.
    [57]Nicolas Gisin, Gregoire Ribordy,et al.Quantum Cryptography. arXiv:quant-ph/0101098v2
    [58]Darius Subacius, Anton Zavriyev,et al.Backscattering limitation for fiber-optic quantum key distribution systems[J].APPLIED PHYSICS LETTERS.2005,86: 011103
    [59]A. Poppe, H. Huebel, et al.Quantum key distribution over WDMs and optical switches to combine the quantum channel with synchronization channels, in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany,2007, 9.4.7
    [60]C.Gobby, Z. L.Yuan, et al.Quantum key distribution over 122 km of standard
    telecom fiber[J].Appl.Phys.Lett.2004,84:3762-3764
    [61]W. Maeda, A. Tajima, A. Tanaka, et al.High-speed QKD system synchronized by automatic phase-alignment mechanism," in Optical Fiber Communication Conference and Exposition (OFC),Anaheim, USA,2005,OWI4.
    [62]Akihiro Tanaka,Mikio Fujiwara,et al.Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.2008,OPTICS express,16(15):11354-11360
    [63]C H Bennett, G Brassard,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podol sky-Rosen channels [J].Phys Rev Lett,1993,70(13):1895-1899
    [64]Dirk Bouwmeester et al.The Physics of Quantum Information[M].Springer.2000
    [65]韩宝彬,裴昌幸等.战场中量子通信面临的问题[J].战术通信研究.2007
    [66]裴昌幸主编.现代通信系统与网络测量[M].人民邮电出版社.2008
    [67]Phoenix S.Y.Poon,C.K.Law.Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion.arXiv:0801.3510vl
    [68]R Noe,D Sandel.et al.PMD in high-bit-rate transmission and means for its mitigation[J].IEEE J.Sel.Top.Quantum Electrons.2004,10(2):341-355
    [69]V Chernyak,M Chertkov,et al.PMD-induced fluctuation of bit-error rate in optical fiber systems[J].J.Lightwave Technol.2004,22(4)1155-1168
    [70]R Pajntar,M Vidmar,et al.PMD penalty monitor for automatic PMD compensation of 40-Gb/s RZ data[J].Photon Technol.Lett.2004,16(4):1203-1205
    [71]H.T.Cui,K.Li,et al.Geometric phase and quantum phase transition in the Lipkin-Meshkov-Glick model[J].Physics Letters A.2006,360(2):243-248
    [72]Shi-Liang Zhu. Geometric phases and quantum phase transitions. arxiv.org/abs/0803.1914
    [73]Shi-Liang Zhu,Z.D.Wang.Nonadiabatic noncyclic geometric phase of a spin-1/2 particle subject to an arbitrary magnetic field[J].Phys.Rev. B.2000,61(2):1142-1148
    [74]A E Willner,Reza,et al.Monitoring and control of polarization-related impairments in optic fiber system [J].Journal of Lightwave Technology,2004,22(1):106~125.
    [75]ANTONELLIC, MECOZZIA, CORNICK K. PMD-induced penalty statistics in fiber links[J].IEEE Photonic Technology Letters,2005,17(5):1013~1015.
    [76]Zhi-bin Wang.Transmission properties of femtosecond soliton under the influence of polarization mode dispersion[J].Jounal of Applied Optics.2006,.27(6):19-22
    [77]P J Winzer,Kogelnikh,et al.Precise outage specifi-cations for first-order PMD [J]. IEEE Photonic Technology Letters,2004,16(2):449~451.
    [78]T Gravemann,J Kissing,et al.Signal degradation by second-order polarization-mode dispersion and noise[J].IEEE Pho-tonic Technology Letters, 2004,16(3):795~797.
    [79]Heismann. Improved optical compensator for first-and second-or-der polarization-mode dispersion [J].IEEE Photonic Technology Let-ters,2005,17(5): 1016~1018.
    [80]Heismann. Improved phase delays foroptic compensation of polarization mode dispersion[J].IEEE Photonic Technology Letters,2004,16(12):2616-2618.
    [81]K Ikeda. PMD compensatorwith second-order PMD mitigation using mode-coupled fixed delay[J].IEEE Photonic Technology Letters,2004,16(1):105~107
    [82]XIE chong-jin,Karlsson M,et al.Influence of polarization-mode dispersion on soliton transmission systems[J].IEEE J quantum electron.2002,8(3):575-590
    [83]P. D.Townsend.Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J].Electron. Lett.33,188-190(1997).
    [84]Chi-Hang Fred Fung,Bing Qi,et al.Phase-Remapping Attack in Practical Quantum Key Distribution Systems[J].2007,75(3):032314-032316
    [85]Martinelli M. Time reversal for the polarization state in optical fiber network[J]. Journal of Modern Optics.1991,39(3):533-547
    [86]Martinelli M.A universal compensator for polarization changes induced by birefringernce on a retracting system[J], Optics Communications.1989,72(6):341-344.
    [87].韩宝彬,裴昌幸等.偏振模色散对量子密钥分发影响分析[J].西安电子科技大学学报.2008,35(5):830-833
    [88]http://www.cdsei.com/product/danmol.doc
    [89]裴昌幸,韩宝彬等.光纤信道压力作用下量子密钥分发误码率建模与仿真[J].光子学报.2009
    [90]ZHANG H X,TANG F,et al.Tehoretical Analysis of Distributed Stress Sensing Based on Measurement of Polarization Coupling[J].Chinese Journal of Sensors and Actuators.2007,20(1):208-212
    [91]J Cameron,L Chen,et al.Time evolution of polarization mode dispersion in optical fibers[J].IEEE Photonics Tech.Lett.,1998,10:1265-1267
    [92]Wu Guan-hua,Ren Ji-lin,et al.Research on the Faraday magneto-opticeffect used in magneto-optic/eddy current imaging technology[J].NDT.2001,23(10):415-420
    [93]Burgmeier J,Cords A,et al.A black box model of EDFA's operating in WDM systems[J].IEEE J Lightwave Technol.1998,16(7):1271-1275
    [94]Romain Alleaume, Francois Treussart,et al.Experimental open air quantum key distribution with a single photon source[J].New Journal of Physics.2004,6:92
    [95]W T Buttler, R J Hughes, P G Kwiat, et al. Free-space quantum cryptography in daylight [J].SPIE,1998,3385:14-22.
    [96]N Gisin, G Rirordy, W Tittel, et al. Quantum cryptography [J].Reviews of Modern Phys,2002,74(1):145-195.
    [97]Cheng-Zhi Peng,Tao Yang, et al.Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 km:Towards Satellite-Based Global Quantum Communication [J].Pyhs Rev Lett.2005,94:150501
    [98]阎毅,裴昌幸等.自由空间量子通信系统研究[J].西安电子科技大学学报.2007,34(5):p708-711.
    [99]G Y Zhang, J Ma, L Y Tan, et al. Single photon acquisition probability for free space quantum key distribution [J].SPIE,2005,5631:173-180.
    [100]Ma Haiqiang,Li Yaling.A quantum key distribution system based on two polarization beam splitters[J].Chi.Phys.Soc.2005,54(11):5014-5017
    [101]K Gordon, V Fernandez, et al.A short wavelength gigahertz clocked fiber-optic quantum key distribution system[J].IEEE Journal of Quantum Electronics.2004, 40:900-908,
    [102]K.J.Gordon, V. Fernandez,et al. Quantum key distribution clocked at 2GHz,Optics Express.2005,13:3015-3020
    [103]Chen J,Li Y,et al. Stable quantum key distribution with polarization control[J].Chin.Phys.Soc.2007,56(9):5243-5247
    [104]http://www.bjcorning.com/product/3_1_4.asp
    [105]韩宝彬,裴昌幸等.环境参数变化对量子通信的影响分析[C].2008军事电子信息学术会议
    [106]D Y KIM,H J KONQet al.Fiber-optic DC magnetic field sensor with balanced deleclion technique[J].IEEE Lightwave Technology.1992,4(8):945-948
    [107]Fan Shuhua,Xu Lisha,et al. Measurement of linear polarization light rotation [J].J. Huazhong Univ. of Sci.& Tech.2007,35(2):122-124
    [108]Mosley PJ, Lundeen JS,et al.Heralded generation of ultrafast single photons in pure quantum States[J]Phys. Rev. Lett.2008,100(13):133601-133604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700