时域有限差分和时域有限元电磁数值计算的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要针对时域有限差分(FDTD)方法和时域有限元(TDFEM)方法做了一系列的研究。
     文中首先针对一种新型的可用于毫米波通信的带有磁化铁氧体球的微带环行器结构,从磁矩进动方程和麦克斯韦旋度方程出发,派生出计算包含铁氧体材料的电磁场的数学模型,用三维FDTD方法分析了这种带有铁氧体球的微带环行器结构。针对运用FDTD方法仿真分析该结构过程中时域波形出现的后期发散问题,文中分别运用两种时域外推技术:改良的矩阵束(Modified Matrix Pencil,MMP)方法与最小二乘的支持向量机(Least-Square Support Vector Machines,LSSVM)方法对获得的早期稳定时域波形进行外推,避免时域波形后期不稳定性。并详细的分析和阐述了这两种方法的数学原理和应用,且运用粒子群优化算法(PSO)对LS-SVM算法的参数进行优化选取,以减少人工干预,提高鲁棒性。
     论文提出将短开路校准(SOC)技术与FDTD方法相结合来分析微带不连续性结构,SOC技术可以去除由电压源的近似以及微带线在传输信号过程中所引起的寄生误差,提高计算效率以及计算结果的准确度。运用此混合方法分析三维微带不连续性结构以及有限周期结构。与普通FDTD方法相比,运用该混合方法整个有限周期结构的散射参量可以仅通过计算一个周期单元得到。
     传统FDTD方法时间步长的选取受到Courant-Friedrich-Levy(CFL)稳定性条件的约束,而无条件稳定的三维交替方向隐格式FDTD(ADI-FDTD)方法,随着时间步长的增大,其数值色散误差也增大,因此文中研究了一种三维无条件稳定的迭代ADI-FDTD(Iterative ADI-FDTD)方法。该方法不仅克服了传统FDTD方法时间步长的选取必须满足CFL稳定性条件的局限,并且随着时间步长的增大,可以消除ADI-FDTD方法所产生的分裂误差,能达到Crank-Nicolson FDTD(CN-FDTD)方法的计算精度,而不用像CN-FDTD方法一样每一个时间步都求解一次大型稀疏矩阵。迭代ADI-FDTD方法使得时间步长即使在取的很大的情况下也可以保持较高的精度。
     针对FDTD方法分析复杂电磁问题时处理非规则边界的局限性,对TDFEM方法开展研究,实现对所研究对象的任意网格剖分,利用棱边基函数及其叠层(Hierarchical)矢量基函数,采用完全匹配层(PML)吸收边界条件,分析任意结构谐振腔、波导及微带等复杂结构。针对TDFEM方法中需要求解大型稀疏矩阵的问题,研究了Jacobi、SAI、SSOR、ILU0、SAI-SSOR等预条件Krylov子空间迭代算法(CG、GMRES),分析不同预条件迭代算法的收敛特性,同时将双步预条件技术与压缩矩阵带宽技术(reversing Cuthill-McKee RCM)相结合。v不仅仅为了解决处理不规则边界问题,同时为了避免求解TDFEM方法产生的大型稀疏矩阵,论文还研究了一种区域分解(DDM)TDFEM方法。该方法将整个计算区域分为多个互不重叠的子区域,在每个子域内基于二阶矢量波动方程来求解电场和磁场,电场和磁场基于相同的网格划分,在时间域上类似于FDTD方法的电场和磁场“蛙跳”格式交替求解。在时间步进前将每个子域的系统矩阵进行分解并存储,从而每个时间步计算时,各个子域场量的求解就可以利用预先分解好的矩阵有效的通过直接求解得到。与不区域分解的TDFEM方法相比节省了大量计算时间,可以分析较大结构。与保角映射(Conformal Mapping)后的CN-FDTD方法相比也有一定优势。
The research of this dissertation is focus on the Finite-Difference Time-Domain (FDTD) Method and Time-Domain Finite-Element Method (TDFEM).
     A novel microstrip circulator with a magnetized ferrite sphere for millimeter wave communications is analyzed. The electromagnetic fields inside the ferrite junction are calculated using special updating equations derived from the equation of motion of the magnetization vector and Maxwell's curl equations in consistency. A three-dimensional FDTD method for the analysis of this ferrite sphere based microstrip circulator is presented.
     The Modified Matrix Pencil (MMP) method and the Least-Squares Support Vector Machines (LS-SVM) technique are used in the FDTD method to eliminate the late time instability of time domain responses and extrapolate the time domain responses. The Particle Swarm Optimization (PSO) method is used to optimize the hyperparameterγ,σof the LS-SVM algorithm, which should be tried again and again randomly. By modeling the novel microstrip circulator, some of the instabilities that arise in late times in the time domain are eliminated.
     The application of FDTD algorithm combined with the short-open calibration (SOC) technique to three-dimensional microstrip discontinuity is firstly studied. This SOC technique is directly accommodated in the FDTD algorithm. It is used to remove the unwanted parasitic errors brought by the approximation of the impressed voltage sources and the feed lines. This new method is used to analyze microstrip discontinuities and finite periodic structures. The scattering parameters of the whole periodic structure can be approximately obtained through analyzing only one cell of it.
     The conventional FDTD method is limited by the Courant-Friedrich-Levy (CFL) condition while the unconditionally stable alternating-direction-implicit FDTD (ADI-FDTD) method has worse accuracy with the increase of the time step size. The iterative alternating-direction-implicit FDTD (Iterative ADI-FDTD) method is reseached here. This method is exactly the same as the original Crank-Nicolson (CN) method while recognizing the ADI-FDTD method as a special case of a more generalized iterative approach to solve the CN-FDTD method, which can reduce the splitting error of the ADI-FDTD method and no matrix need to be solved. Numerical results demonstrate that this 3D iterative ADI-FDTD method can improve the accuracy of the ADI-FDTD method by using the time step size greatly exceeding the CFL limit within several iterations.
     The TDFEM method, which solves the second-order vector wave equations using Galerkin's method, is studied. Compared to FDTD, TDFEM can easily handle both complex geometry and inhomogeneous media by using tetrahedral edge elements. Edge basis function and its hierarchical vector basis functions are used while perfectly matched layers (PML) are used to terminate the waves when simulating different structures of cavity, waveguides and microstrips. Several preconditioning techniques, such as Jacobi、SSOR ILU0 and SAI-SSOR, are used to accelerate the convergence of iterative methods, such as CG and GMRES, which are used to solve the large system of linear equations resulted from TDFEM. Convergence properties and the time used of these conventional preconditioning techniques are compared and analyzed. Also the reversing Cuthill-McKee (RCM) ordering method is used to reorder the sparse matrices created by the hierarchical implicit TDFEM scheme in order to makes SAI-SSOR-CG method more efficient.
     Not only to solve the starecasing limitation but also to avoid solving large sparse matrix, a new domain-decomposition TDFEM method (DDM TDFEM) is researched for numerical simulation of electromagnetic phenomena. The method divides the computation domain into several non-overlapping subdomains and computes both the electric and magnetic fields in each subdomain using the sparse direct solver solving second-order vector wave equations. Similar to FDTD method, a leapfrog-like scheme is employed in the time marching to update the alternating electric and magnetic fields. The system matrix for each subdomain is pre-factorized and stored before time marching, so the subdomain problems are solved efficiently using the local pre-factorized matrices at each time step. It could save much time compared to TDFEM method and could analyze big problems. It also has advantages compared to the comformal mapping CN-FDTD method.
引文
1.K.S.Yee,Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,IEEE Trans.Antennas Propagat.,vol.14,pp.302-307,May 1966.
    2.王秉中编著,“计算电磁学”,科学出版社,2002.
    3.王长清编著,“现代计算电磁学基础”,北京大学出版社,2005.
    4.王长清,祝西里编著,“电磁场中的时域有限差分法”,北京大学出版社,1994.
    5.高本庆编著,“时域有限差分法”,国防工业出版社,1995.
    6.刘圣民,“电磁场的数值方法”,武汉,华中理工大学出版社,1991.
    7.葛德彪,阎玉波,“电磁波时域有限差分方法”,西安,西安电子科技大学出版社,2002
    8.Y.Qian and T.Itoh,FDTD Analysis and Design of Microwave Circuits and Atennas,Tokyo,Japan;Realize Inc.,1999.
    9.A.Taflove,Computational Electrodynamics:The Finite Difference Time Domain Method,second edition.Norwood,MA:Artech House,2000.
    10.A.Taflove and M.E.Brodwin,Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,IEEE Trans.Microwave Theory Tech,vol.23,pp.623-630,Aug.1975.
    11.A.Taflove,Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems,IEEE Trans.Electromagnetic Compatibility,vol.22,pp.191-202,1980.
    12.G.Mur,Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagmetic-field equations,IEEE Trans.Electromagnetic Compatibility,vol.23,pp.77-382,Nov.1981.
    13.J.P.Berenger,A perfectly matched layer for the absorbing of electromagnetic waves,J.Computational Physics,vol.144,pp.185-200,1994.
    14.B.Chen,D.G.Fang,and B.H.Zhou.Modified Berenger PML absorbing boundary condition for FDTD meshes,IEEE Microwace and Guided Wave Letters,vol.5,no.11,pp.399-401,1995.
    15.D.S.Kauz,E.T.Thiele,and A.Taflove,Validation and extension to three dimension of the Berenger PML absorbing boundary condition for FDTD mesh,IEEE Microwave and Guided Wave Letters,vol.4,no.8,pp.268-270,1994.
    16. S. D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation FDTD lattices, IEEE Trans. Antennas Propagat., vol. 44, no. 12, pp. 1630-1639, 1996.
    
    17. S. D. Gedney, An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media, Electromagnetics, vol. 6, no. 3, pp. 399-415,1996.
    
    18. J. F. Lee, "WETD-A Finite Element Time-Domain Approach for Solving Maxwell's Equations," IEEE Microwave and Guided wave letters, vol. 4, no. 1, pp. 11-13, Jan.1994.
    
    19. Stephen D. Gedney, Umesh Navsariwala, "An Unconditionally Stable Finite Element Time-Domain Solution of the Vector Wave Equation," IEEE Microwave and Guided wave letters, vol. 5, no. 10, pp. 332-334, Oct. 1995.
    
    20. J. F. Lee, R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propagat., vol. 45, pp. 430-442, Mar. 1997.
    
    21. J. M. Jin, The Finite Element Method in Electromagnetics, second edition. New York: Wiley, 2002.
    
    22. Masoud Movahhedi, Abdolali Abdipour, "Alternation-Direction Implicit Formulation of the Finite-Element Time-Domain Method," IEEE Tran. Microwave Theory Tech.,vol. 55, no. 6, pp. 1322-1331, June 2007.
    
    23. Masoud Movahhedi, Abdolali Abdipour, "Optimization of the Perfectly Matched Layer for the Finite-Element Time-Domain Method," IEEE microwave and wireless components letters, vol. 17, no. 1, pp. 10-12, Jan. 2007.
    
    24. Salah Benhassine, Walter P. Carpes, Jr., and Lionel Pichon, "Comparison of Mass lumping Techniques for solving the 3D Maxwell's Equations in the Time Domain,"IEEE Transactions on magnetics, vol. 36, no. 4, pp. 1548-1552, July 2000.
    
    25. Bo He, F.L. Teixeira, "Sparse and Explicit FETD via Approximate Inverse Hodge (Mass) Matrix," IEEE microwave and wireless components letters, vol. 16, no. 6, pp. 348-350, June 2006.
    
    26. Daniel A. White, "Orthogonal vector basis functions for time domain finite element solution of the vector wave equation", IEEE Transactions on magnetics, vol. 35, no. 3,pp. 1458-1461, May 1999.
    
    27. D. Jiao, Jian-Ming Jin, "Three-Dimensional Orthogonal Vector Basis Functions for Time-Domain Finite Element Solution of Vector Wave Equations", IEEE Transactions
    
    144 on antennas and propagation,vol.51,no.1,pp.59-66,Jan.2003.
    28.R.S.Chen,E.K.N.Yung,C.H.Chan,D.X.Wang,and D.G.Fang,"Application of the SSOR Preconditioned CG Algorithm to the Vector FEM for 3-D Full-Wave Analysis of Electromagnetic-Field Boundary-Value Problems;" IEEE Trans.Microwave Theory Tech.,vol.50,no.4,pp.1165-1172,April 2002.
    29.J.P.Webb and B.Forghani,"Hierarchal scalar and vector tetrahedra," IEEE Trans.Magn.,vol.29,pp.1495-1498,Mar.1993.
    30.L.S.Andersen and J.L.Volakis,"Hierarchical tangential vector finite elements for tetrahedra," IEEE Microwave Guided Wave Lett.,vol.8,pp.127-129,Mar.1998.
    31.J.S.Savage and A.F.Peterson,"Higher-order vector finite elements for tetrahedral cells," IEEE Trans.Microwave Theory Tech.,vol.44,pp.874-879,June 1996.
    32.Jon P.Webb,"Hierarchal Vector Basis Functions of Arbitrary Order for Triangular and Tetrahedral Finite Elements," IEEE Transactions on Antennas and Propagation,vol.47,no.8,pp.1244-1253,August 1999.
    33.Zheng Lou,Jian-Ming Jin,"A Novel Dual-Field Time-Domain Finite-Element Domain-Decomposition Method for Computational Electromagnetics," IEEE Transactions on Antennas and Propagation,vol.54,no.6,pp.1850-1862,June 2006.
    34.Zheng Lou,Jian-Ming Jin,"A new explicit time-domain finite-element method based on element-level decomposition," IEEE Transactions on Antennas and Propagation,vol.54,no.10,pp.2990-2999,Oct.2006.
    35.窦文斌,孙中良,“毫米波铁氧体器件理论与技术”,北京,国防工业出版社,1996.
    36.张登国编著,“波导环行器概论”,科学出版社,1998.
    37.梁昌洪,谢拥军,官伯然,“简明微波”,北京,高等教育出版社,2006.
    38.胡淑新,“不规则形状铁氧体波导结环行器分析”,硕士论文,东南大学,2003.
    39.张肇仪,周乐柱,吴德明等译,“微波工程(第三版)”,北京,电子工业出版社,2006.
    40.吴群,宋朝晖,“微波技术”,哈尔滨,哈尔滨工业大学出版社,2004.
    41.Davis J B.An Analysis of the m-port Symmetrical H-Plane Waveguide Junction with Central Ferrite Post.IRE Trans,vol.MTT-10,no.11,pp.596-604,1962.
    42.EL-Shandwily M E,Kamal A A,Abdallah E A F.General Field Theory Treatment of H-Plane Waveguide Junction Circulators.IEEE Trans,vol.MTT-21,no.6,pp.392-403,1973.
    43.EL-Shandwily M E,Kamal A A,Abdallah E A F.General Field Theory Treatment of E-Plane Waveguide Junction Circulators-Part Ⅰ : Full-Height Ferrite Configuration. IEEE Trans, vol. MRR-25, no. 9, pp. 784-793, 1977.
    
    44. EL-Shandwily M E, Kamal A A, Abdallah E A F. General Field Theory Treatment of E-Plane Waveguide Junction Circulators-Part Ⅱ: Two-Disk Ferrite Configuration. IEEE Trans, vol. MRR-25, no. 9, pp. 794-803, 1977.
    
    45. Akaiwa Y, A Numerical Analysis of Waveguide H-Plane Y-Junction Circulators with Circular Partial Height Ferrite Post. The Trans. Of the IECE of Japan, vol. E61, no. 8, pp. 609-617,1978.
    
    46. J.A.Pereda et al, "FDTD analysis of magnetized ferrite: an approach based on the roteted Richtmyer difference scheme", IEEE Microwave Guided Wave Lett., vol. 3, no. 9, pp. 322-324, Sept. 1993.
    
    47. W.B.Dou, Edward K.N.Yung, "FDTD analysis for multiple arbitrarily shaped posts in a waveguide", Microwave and Optical Technology Letters, vol.27, no.3, pp. 216-220, November 2000.
    
    48. Edward K. N. Yung, R. S. Chen, and Ke Wu, "Analysis and development of millimeter-wave waveguide junction circulator with a ferrite sphere," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1721-1734,November 1998.
    
    49. R. S. Chen, Z. B. Ye, Edward.K.N.Yung, K.F.Tsang and W.B.Dou, "A New Ka-Band Microstrip Y-Junction Circulator with a Ferrite Sphere," International Journal of Electronics, vol.90, no.2, pp.121-132, February 2003.
    
    50. R. S. Chen, Z. B. Ye, Edward.K.N.Yung and K.F.Tsang, "CAD of millimeter wave Y-junction circulators with a ferrite sphere," International Journal of Infrared and Millimeter Waves, vol. 24, no. 8, pp. 1325-1339, August 2003.
    
    51. R. S. Chen, Edward K. N. Yung, "An efficient method to analyze the H-plane waveguide Junction Circulator with a ferrite sphere", IEEE Transaction on MTT, vol. 49, no. 5, pp. 928-937, May 2001.
    
    52. Y. Hua, T. K. Sarkar. "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Transactions on Acoustics Speech and signal Processing, vol. 38, no. 5, pp. 814-824, May 1990.
    
    53. B. Lu, D. Wei, B.L. Evans, and A.C. Bovik, "Improved matrix pencil methods 1998," 32nd Asilomar Conf, Signals, Syst Computers, pp. 1433-1437, 1998.
    
    54. Y. Yang, S. M. Hu, R. S. Chen, "FDTD Analysis with Modified Matrix Pencil Method for the UC-EBG Low-Pass Filters", Microwave and Optical Technology Letters, vol. 44,no.1,pp.37-41,January 2005.
    55.Z.B.Ye,Wanchun Tang,S.S.Li,"Analysis of Millimeter Wave Microstrip Circulator with a Magnetized Ferrite Sphere by FDTD Method with Modified Matrix Pencil Method," International Journal of Infrared and Millimeter Waves,vol.20,no.8,pp.1109-1117,Aug.2006.
    56.杨阳,“电磁场时域有限差分数值方法的研究”,博士论文,南京理工大学,2006.
    57.Vapnik.V.N.Statistical Learning Theory.New York.Springer.1998
    58.J.A.K.Suykens,L.Lukas,P.Van Dooren,B.DeMoor,and J.Vandewalle,Least Squares Support Vector Machine Classifiers:a Large Scale Algorithm,ECCTD'99European Conf.on Circuit Theory and Design,pp.839-842,August 1999.
    59.J.A.K.Suykens,Least squares support vector machines for classification and nonlinear modeling,Neural Network World,vol.10,pp.29-48,2000.
    60.Y.Yang,S.M.Hu,and R.S.Chen,"A Combination of FDTD and Least-Squares Support Vector Machines for Analysis of Microwave Integrated Circuits," Microwave Opt Technol Lett,vol.44,no.3,pp.296-299,March 2005.
    61.S.L.Ho,H.C.Wong.A particle swarm optimization-based method for multiobjective design optimizations,IEEE transactions on machines,vol.5,pp.1756-1759,2005.
    62.J.Kennedy,R.Eberhart.Particle swarm optimization,IEEE international conference on neural networks,pp.1942-1948,1995.
    63.J.Robinson and Y.Rahmat-Samii,Particle swarm optimization in electro- magnetics,IEEE Trans.Antennas and Propagation,vol.52,no.2,pp.397-407,2004.
    64.Y.Yang,R.S.Chen,Z.B.Ye,Combination of Particle Swarm Optimization with Least Squares Support Vector Machine for FDTD Time Series Forecasting,Microwave and Optical Technology Letters,2006,vol.48,no.1,pp.141-144,January 20.
    65.Zhu L,Wu K."Unified equivalent-circuit model of planar discontinuities suitable for field theory-based CAD and optimization of M(H)MIC's," IEEE Transactions on Microwave Theory and Technology,vol.47,no.9,pp.1589-1602,September 1999.
    66.R.S.Chen,Wang DX,Edward K.N.Yung,"Analysis of microstrip discontinuity by edge-based FEM combined with SOC technique," Microwave and Optical Technology Letters,vol.31,no.3,pp.169-174,November 2001.
    67.R.S.Chen,Wang DX,Edward K.N.Yung,"Application of the short-open calibration technique to vector finite element method for analysis of microwave circuits,"International Journal of Numerical Modeling:electronic networks,devices and fields, vol. 16, no. 4, pp. 367-385, April 2003.
    
    68. J. G. Yook, N. I. Dib and L. P. B. Katehi, "Characterization of high frequency interconnects using finite difference time domain and finite element methods," IEEE MTT Trans. Microwave Theory Tech., vol. 42, no. 9, pp. 1727-1736, September 1994.
    
    69. W. Wertagen and R. H. Jansen, "Efficient direct and iterative electrodynamic analysis of geometrically complex MIC and MMIC structures," International Journal of Numerical Modeling, vol. 2, no. 11, pp. 153-186, November 1989.
    
    70. Ji Chen, Chen Wu, K. Y. Lo, Ke-Li Wu and John Litva, "Using linear and nonlinear predictors to improve the computational efficiency of the FDTD algorithm," IEEE Microwave Theory Tech., vol. 42, no. 10, pp. 1992-1997, October 1994.
    
    71. Z.B. Ye, R.S. Chen and Y. Yang, "Analysis of finite periodic structure by FDTD and SOC technique," 2005 Asia-Pacific Microwave Conference Proceedings, vol. 3, pp. 1848-1850, December 4-7, 2005.
    
    72. T. Namiki, "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003-2007, Oct. 1999.
    
    73. T. Namiki, "3-D ADI-FDTD method-Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations, " IEEE Trans. Microwave Theory Tech.,vol. 48, pp. 1743-1748, Oct. 2000.
    
    74. F. Zheng, Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability condition," IEEE Microwave Guided Wave Lett., vol. 9, pp. 441-443,Nov. 1999.
    
    75. F. Zheng, Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Microwave Theory Tech., vol. 48, pp. 1550-1558, Sept. 2000.
    
    76. S. G. García, T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propag. Lett., vol. 1, no.1, pp. 31-34, Jan. 2002.
    
    77. S. M. Wang, F. L. Teixeira, and J. Chen, "An Iterative ADI-FDTD with Reduced Splitting Error," IEEE Microwave and wireless components letters, vol. 15, no. 2, pp.92-94, Feb. 2005.
    
    78. Shuming Wang and Ji Chen, "Pre-iterative ADI-FDTD method for conductive medium," IEEE Trans. Microwave Theory Tech., vol. 53, no. 6, pp. 1913-1918, Jun.2005.
    
    79. G. Sun and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving the two-dimensional Maxwell's equations," IEE Electron. Lett., vol. 39, pp. 595-597,Apr.2003.
    80.Y.Yang,R.S.Chen,Edward K.N.Yung,"The Unconditionally Stable Crank-Nicolson FDTD Method for Three-Dimensional Maxwell's Equations,"Microwave and Optical Technology Letters,Vol.48,no.8,pp.1619-1622,Aug.2006.
    81.G.L.Sun,and C.W.Trueman,Approximate Crank-Nicolson Schemes for the 2-D Finite-Difference Time-Domain Method for TEz Waves,IEEE Trans.Antennas Propagation,vol.52,pp.2963-2972,2004.
    82.Y.Yang,R.S.Chen,D.X.Wang and Edward K.N.Yung,"Unconditionally Stable Crank-Nicolson Finite-Difference Time-Domain Method for Simulation of 3-D Microwave Circuits," IET Proc.Microwaves,Antennas & Propagation,vol.1,pp.937-942,2007.
    83.J.Chen and J.Wang,"A Novel WCS-FDTD method with weakly conditional stability," IEEE Trans.On Electromagnetic Compatibility,vol.49,no.2,pp.419-426,2007.
    84.J.Chen and J.Wang,"3-D FDTD method with weakly conditional stability,"Electronics Letters,vol.43,2007.
    85.J.W.Thomas,Numerical Partial Differential Equations:Finite Difference Methods.Berlin,Germany;Springer-Verlag,1995.
    86.Z.B.Ye,L.Du,P.L.Rui,"Efficient analysis of resonator by the Unconditionally Stable three-dimensional Iterative ADI-FDTD method," Microwave and Optical Technology Letters,vol.49,no.6,pp.1473-1477,June 2007.
    87.Iftikhar Ahmedz and Zhizhang(David) Chen,"Accuracy improved ADI-FDTD methods",International Journal of Numerical Modelling:Electronic Networks,Devices and Fields,vol.20,pp.35-46,2007.
    88.B.D.Welfert,"Analysis of iterated ADI-FDTD schemes for Maxwell curl equation,"Journal of Computation Physics,vol.222,pp.9-27,2007.
    89.杨阳,“计算电磁学中无条件稳定的时域有限差分方法的研究”,博士后出站报告,南京理工大学,2006.
    90.孙晶,“时域有限元方法中吸收边界条件和快速求解技术的研究”,硕士论文,南京理工大学,2007.
    91.Hsiao-Ping Tsai,Yuanxun Wang,Tatsuo Itoh,"An Unconditionally Stable Extended (USE) Finite-Element Time-Domain Solution of Active Nonlinear Microwave Circuits Using Perfectly Matched Layers," IEEE Tran.Microwave Theory Tech.,vol.50,no.10,pp.2226-2232,2002.
    92. Hsiao-Ping Tsai, "Time Domain Finite Element Method for Electromagnetic Applications," Ph.D dissertation, University of California, Los Angeles, 2000.
    
    93. D. Jiao and J. M. Jin, Eric Michielssen and Douglas J. Riley, "Time-Domain Finite-Element Simulation of Three-Dimensional Scattering and Radiation Problems Using Perfectly Matched Layers," IEEE Transactions on antennas and propagation, vol. 51, no. 2, pp. 296-305, Feb. 2003.
    
    94. Man-Fai Wong, Odile Picon and Victor Fouad Hanna, "A Finite Element Method Based on Whitney Forms to Solve Maxwell Equations in the Time Domain," IEEE Transactions on magnetics, vol. 31, pp. 1617-1621, 1995.
    
    95. Bo He, F.L. Teixeira, "Geometric finite element discretization of Maxwell Equations in primal and dual spaces," Physics Letters A, vol. 349, no. 1-4, pp. 1-14, 2006.
    
    96. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat, vol. 43, pp. 1460-1463, Dec. 1995.
    
    97. J. Zhu, R. S. Chen, "SSOR Preconditioned CG Method for Formulation of Hierarchical Vector Finite Element," 2006 IEEE Antennas and Propagation Society International Symposium with USNC/URSI National Radio Science and AMEREM Meetings, Albuquerque, NM USA, July 2006.
    
    98. W.P.Carpes Jn, L.Pichon and A.Razek, "Efficient analysis of resonant cavities by finite element method in the time domain," IEE Proc.-Microw. Antennas Propagation, vol. 147, no. 1, pp. 53-56, Feb. 2000.
    
    99. Mahadevan K., Mittra R., Vaidya P.M., "Use of Whitney's edge and face elements for finite time domain solution of Maxwell's equations," Journal of electromagnetic waves and applications vol. 8, pp. 1173 - 1191, 1994.
    
    100.Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput, vol. 7, pp. 856-869,1986.
    
    101.Y. Saad, Iterative methods for sparse linear systems. Boston: PWS publishing company, 1998.
    
    102.R.S. Chen, X.W. Ping, Edward K.N. Yung, C.H. Chan etc, "Application of Diagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite Element Analysis of Helmholtz Equations," IEEE Trans. Antennas Propagat., vol.54, no.5, pp.1604-1608, May 2006.
    103.平学伟,“电磁场中的快速有限元分析”,博士论文,南京理工大学,2007.
    104.M.Benzi and M.Tuma,"A comparative study of sparse approximate inverse preconditioners," Appl Numer Math,vol.30,pp.305-340,1999.
    105.E.Chow,"A priori sparsity patterns for parallel sparse approximate inverse preconditioners," SIAM J Sci Comput.,vol.21,pp.1804-1822,2000.
    106.R.S.Chen,K.F.Tsang,Edward K.N.Yung "Application of SSOR Preconditioning Technique to Method of Lines for Millimeter Wave Scattering",International Journal of Infrared and Millimeter Waves,vol.21,no.8,pp.1281-1301,Aug.2000.
    107.丁振宇,洪伟,“矩形波导中插入圆腔结构的S参数计算”,东南大学学报(自然科学版),vol.30,no.1,pp.42-46,Jan.2000.
    108.R.S.Chen,X.W.Ping,D.X.Wang,Edward K.N.Yung,"SSOR preconditioned GMRES for the FEM analysis of waveguide discontinuities with anisotropic dielectric," International Journal of Numerical Modeling:Electronic Networks,Devices and Fields,vol.17,pp.105-118,2004.
    109.P.L.Rui,R.S.Chen,E.K.N.Yung,C.H.Chan,"Application of a two-step preconditioning strategy to the finite element analysis for electromagnetic problems,"Microwave and Optical Technology letters,vol.48,no.8,pp.1623-1627,Aug.2006.
    110.Zheng Lou,and Jianming Jin,"A dual-field domain-decomposition method for the time-domain finite-element analysis of large finite arrays," Journal of Computational Physics,vol.222,pp.408-427,2007.
    111.Zheng Lou,"Time-Domain Finite-Element Simulation of Large Antennas and Antenna Arrays," Ph.D dissertation,Graduate College,University of Illinois at Urbana-Champaign,2006.
    112.D.Stefanica,"Domain decomposition methods for mortar finite elements," Ph.D.dissertation,Department of Mathematics,New York University,2000.
    113.H.Schwarz,Gesammelte Mathematische Abhandlungen,Vol.2,Berlin:Springer,1890.
    114.J.Benamou and B.Despres,"A domain decomposition method for the Helmholtz equation and related optimal control problems," J.Comput.Phys.,vol.136,pp.68-82,1997.
    115.M.Dryja and O.Widlund,"Some domain decomposition algorithms for elliptic problems," Iterative Methods for Large Linear Systems,Vol.25,D.R.Kincaid and L.J.Hayes,Eds.,San Diego:Academic Press,1990,pp.273-291.
    116.B.Smith,P.Bjorstad,and W.Gropp,Domain Decomposition:Parallel Multilevel Methods for Elliptic Partial Differential Equations,Cambridge:Cambridge University Press,1996.
    117.U.Navsariwala and S.Gedney,"An efficient implementation of the finite-element time-domain algorithm on parallel computers using a finite-element tearing and interconnecting algorithm," Microwave Opt.Tech.Lett.,vol.16,no.4,pp.204-208,Nov.1997.
    118.C.Farhat,"A method of finite element tearing and interconnecting and its parallel solution algorithm," Int.J.Numer.Method Eng.,vol.32,pp.1205-1227,Oct.1991.
    119.C.Farhat,N.Maman,and G.Brown,"Mesh partitioning for implicit computations via iterative domain decomposition:Impact and optimization of the subdomain aspect ratio," Int.J.Numer.Method Eng.,vol.38,pp.989-1000,Mar.1995.
    120.C.Wolfe,U.Navsariwala,and S.Gedney,"A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium," IEEE Trans.Antennas Propagat.,vol.48,pp.278-284,Feb.2000.
    121.M.Vouvakis and J.Lee,"A fast non-conforming DP-FETI domain decomposition method for the solution of large EM problems," IEEE Antennas and Propagation Society International Symposium,vol.1,2004,pp.623-626.
    122.James R.Kuttler,"A new method for calculating TE and TM cutoff frequencies of uniform waveguides with Lunar or Eccentric Annular cross section," IEEE transactions on microwave theory and techniques,vol.32,no.4,pp.348-354,1984.
    123.Zhou Xiaojun,Yu Zhiyuan,and Lin Weigan,"Characteristic of eccentric coaxial line using Conformal Mapping and Finite-Difference Time-Doamin method," Microwave and optical technology letters,vol.16,no.4,pp.249-252,1997.
    124.周晓军,俞志远,林为干,“用Cassinian变换FDTD方法分析几种特殊截面波导传输特性”,电子学报,vol.28,no.3,pp.53-56,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700