电子组装元器件半导体激光无铅软钎焊技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子元器件微、小型化以及绿色环保无铅钎料的应用,给传统的电子组装工艺带来了很大的挑战。研发新型钎焊技术,以适应微、小型电子元器件“无铅”组装的需要,显得尤为重要。本文着重研究采用短波长、高效率的半导体激光进行电子元器件的无铅钎焊连接的技术,选用两种最具有代表性的表面组装电子元器件——矩形片式电阻元件和QFP器件进行了较为深入、细致的研究。
     激光软钎焊方法具有其它再流焊方法不可比拟的优点,诸如局部加热、快速加热、快速冷却等,局部加热使得在高密度基板上钎焊热敏感和吸热元器件成为可能,并可以减少焊点间的桥连;而快速加热、快速冷却可在钎焊时产生良好的显微组织从而提高焊点的抗疲劳性能。由于半导体激光比CO_2激光、Nd:YAG激光的波长更短、电光转换效率更高、结构更紧凑、维护更方便,更适合于微、小型电子元器件的“无铅”组装,具有广阔的应用前景。
     通过研究半导体激光钎焊无铅钎料的钎焊性能,发现激光钎焊时间固定(如0.5s)时,随着激光输出功率的增加,Sn-Ag-Cu无铅钎料的钎焊性能明显改善,并在激光输出功率为17.5W左右时达到最佳,此后随激光输出功率的继续增大,无铅钎料的钎焊性能开始变差。激光输出功率不同,获得最佳钎焊性能所对应的最佳激光钎焊时间不尽相同:激光输出功率越高,最佳激光钎焊时间越短。当激光输出功率过低(P≤13W)或过高(P≥19W)时,无论怎样改变激光钎焊时间,无铅钎料在Cu基体上的润湿铺展效果均很差。激光软钎焊可以获得比红外再流焊更加优异的无铅钎料的钎焊性能,这是因为激光软钎焊具有快速加热的优点,增大了液态金属的表面张力,从而显著改善了钎料的钎焊性能。
     研究了片式电阻元件的半导体激光无铅软钎焊工艺,对片式电阻元件采用半导体激光软钎焊系统在PCB基板上进行组装,得到了表面光亮、无氧化、成型良好的焊点。研究结果表明,采用半导体激光软钎焊的方法钎焊片式电阻元件所得钎焊焊点接头成型好,能够获得比红外再流焊方法更加优异的焊点力学性能。其中半导体激光钎焊片式电阻元件Sn-Ag-Cu无铅焊点强度比红外再流焊提高达18.13%,而半导体激光钎焊片式电阻元件Sn-Pb焊点强度比红外再流焊提高了38.81%。激光软钎焊可以获得比红外再流焊更加优异的钎料/基体的显微组织。而采用半导体激光软钎焊的方法钎焊片式电阻元件,钎料在焊盘金属Cu和片式电阻金属化端的润湿性更好,钎焊接头焊点成型美观,焊点强度较其它方法显著提高。对焊点的断口显微组织的观察、分析发现,断口现典型的剪切伸长韧窝形貌,表明焊点的塑性变形能力强。
     采用半导体激光软钎焊工艺在PCB基板上进行QFP器件的组装,通过对QFP器件半导体激光无铅软钎焊工艺的研究,得到了无桥连、无钎料球等外观缺陷的优良焊点。焊点力学性能测试结果表明,半导体激光钎焊QFP32器件Sn-Ag-Cu无铅焊点的强度比红外再流焊提高了10.39%,而半导体激光钎焊QFP100器件Sn-Ag-Cu无铅焊点的强度比红外再流焊提高了12.61%。试验研究表明,这主要与半导体激光能够显著改善钎料的钎焊性能、优化焊点的显微组织有关。通过对半导体激光钎焊QFP器件焊点宏观、微观组织分析,除了发现QFP器件焊点内部组织细微、均匀外,特别是观察到了钎料/焊盘和钎料/引线之间均出现了细小、平缓的金属间化合物层,正是这一“金属间化合物层”,确保了焊点具有良好冶金结合,从而使焊点的力学性能得到了改善与提升。这一“金属间化合物层”属于焊点中的强化区,从而使半导体激光软钎焊焊点的拉伸断裂方式表现为韧性断裂。
     通过研究发现,与Nd:YAG激光和CO2激光相比,波长更短的半导体激光更容易被钎料金属吸收,钎料合金快速加热、快速冷却的效果更加明显。由于钎料合金是Sn基有色金属合金,快速的加热、冷却过程能够更显著地实现固溶强化的效果并细化合金的显微组织,不仅大幅度提高了微电子元器件焊点的强度,而且显著改善了焊点的塑性。半导体激光钎焊提高电子元器件无铅焊点力学性能的机制主要是细晶强化和第二相弥散强化。由于快速加热、快速冷却使得在焊点内部产生了均匀细小的晶粒和细小弥散的第二相金属间化合物,给位错运动带来了很大的阻力,这是半导体激光钎焊改善无铅焊点力学性能的内因。
     对无铅焊点进行了热循环试验研究,结果表明激光钎焊无铅焊点的可靠性优于红外再流焊焊点。对焊点显微组织的系统分析表明,由于半导体激光加热快速加热、快速冷却的特点,从而在焊点内部获得均匀细小的钎料组织和薄而平缓的界面金属间化合物组织,形成了良好的冶金结合。对焊点显微组织的系统研究表明在相同的热循环次数条件下,半导体激光软钎焊无铅焊点中钎料/Cu焊盘界面上的金属间化合物厚度小于红外再流焊无铅焊点;同时半导体激光软钎焊无铅焊点中体钎料内部的金属间化合物颗粒要比红外再流焊无铅焊点组织更细小、均匀。本文研究结果不仅从理论上阐明了微电子元器件半导体激光软钎焊技术的微观机理,而且对于在研课题“××××组件批量制造技术”和“××××多芯片系统组装”采用半导体激光软钎焊技术提高产品合格率、延长其使用寿命提供了理论依据、技术储备和数据支持。
The increasing miniaturization of electronic components/devices and the use of green environmental protection lead-free solders have resulted in many challenges in conventional electronic assembly processes, and it is particularly important to develop new soldering processes to meet the demand of miniaturization and lead-free mounting and packaging. In this thesis, a lead-free soldering technology of electronic components/devices has been emphasized, which is diode laser soldering with short wavelength and great efficiency. In order to meet the needs of mounting high density packaging components/devices, selected two kinds of typical, i.e. rectangle chip resistor component and quad flad pack (QFP) device, a new soldering method was developed with diode laser system.
     The advantages of laser soldering arise from its properties of localized heating and the rapid rise and fall in temperature of the soldered joints. Localized heating makes it possible to solder heat sensitive devices and heat sink assemblies in densely populated boards, while also reducing bridging between the solder pads. A rapid rise and fall in temperature creates a fine microstructure in the solder giving improved fatigue properties. Diode lasers have been playing more and more important role in the fields of electronic packaging as a result of its shorter wavelength than CO2 and Nd:YAG lasers, higher electro-optical efficiency, compactness and long operational lifetime.
     Solderability of lead-free solder was investigated using diode laser soldering method, it is found that when the laser soldering time is fixed (for instance, 0.5s), as the laser output power increases, the solderability of Sn-Ag-Cu lead-free solder gets significant improvement, the optimal solderability is obtained while the laser output power increase to about 17.5W. Different laser output power is corresponding to different optimal soldering time, the larger the laser output power is, and the smaller the optimal soldering time is. While the laser output power is too low (P≤13W) or too high (P≥19W), the solderability of Sn-Ag-Cu lead-free solder on Cu substrate is always poor whatever the laser soldering time is short or long. Laser soldering Sn-Ag-Cu lead-free solder acquires more excellent solderability than IR reflow soldering, as a result of the rapid temperature rise of soldered joint using laser soldering method which increaces the surface tension of liquid solder alloys.
     Diode laser soldering process of rectangular chip resistors was studied using lead-free solders, and good soldered joints with bright surface, non-oxidation and good forming were obtained using diode laser soldering system. The results show that laser soldering chip resistor soldered joints gain better mechanical properties than IR reflow soldering process, and the shear strength of chip resistor Sn-Ag-Cu soldered joints soldered by diode laser soldering system is 18.13% higher than that soldered with IR reflow method, while the shear strength of chip resistor Sn-Pb soldered joints soldered by diode laser soldering system is 38.81% higher than that soldered with IR reflow method. Better microstructures of solder/substrate metal are gained soldered by diode laser system than these soldered by IR reflow soldering method, excellent wettability of solders on Cu pads and chip resistor metallized end is gained, and the soldered joints show good shape and better mechanical properties. Fracture microstructure observations indicate that fracture morphologies of laser soldered joints show typical shear elongation dimples, which indicates that intence plastic deformation appears before fracture and excellent plastic property.
     Diode laser soldering process of QFP was studied using lead-free solders, and excellent soldered joints without appearance defects such as solder bridging or solder balls were obtained using diode laser soldering method. Mechanical properties tests show that the tensile strength of QFP32 Sn-Ag-Cu soldered joints soldered by diode laser soldering system is 10.39% higher than that soldered with IR reflow method, while the tensile strength of QFP100 Sn-Ag-Cu soldered joints soldered by diode laser soldering system is 12.61% higher than that soldered with IR reflow method. The theoretical analysis and test results indicate that laser soldering QFP soldered joints can gain better mechanical properties than IR reflow soldering process, as a result of the improvement solderability and optimized microstructures obtained by diode laser soldering system. Fine and homogeneous microstructures are gained in QFP micro-joints soldered by diode laser soldering system, and fine flat intermetallic compound layer also exist between solder and Cu pad, between solder and lead, which insures good metallurgical bonding of QFP soldered joints. The fracture type of diode soldered QFP micro-joints is toughness fracture.
     Diode laser with shorter wavelength than Nd:YAG and CO2 lasers is easy to be absorbed by solder alloys, and the rapid rise and fall in temperature is more obvious. The solder alloy is Sn-based nonferrous metals, the rapid rise and fall in temperature is helpful to solid solution strengthening and fine-grain strengthening, which not only improves mechanical properties of soldered joints greatly, but also improves plasticity of soldered joints significantly. The main strengthening mechanism of soldered joints mechanical properties is fine-grain strengthening and second phase dispersion strengthening. The rapid rise and fall in temperature results in fine homogeneous grains and fine dispersed second phase IMC that are attributed to the hindrance of dislocation movement, which is why mechanical properties are improved after diode laser soldering.
     The thermal cycling reliability of lead-free micro-joints soldered by diode laser soldering system is superior to micro-joints soldered by IR reflow soldering methods, that is because the rapid rise and fall in temperature results in fine homogeneous grains and thin mild interfacial IMC, then good metallurgical bonding is gained. Systematic study of microstrutures indicates that with the same thermal cycling times, IMC thickness of diode laser soldered joints is smaller than that of IR reflow soldered joints, at the same time smaller and more homogeneous IMC particles also exist in diode laser soldered joints.
     All the results not only theoretically illustrates the microscopic mechanism of diode laser soldering process, but also gives theoretical basis, technical reserve and data support to practical application of diode laser soldering technology in batch manufacture of××××modules and assembly technology of××××multi-chip-module (MCM) systems.
引文
[1] Maiman T H. Stimulated Optical Radiation in Ruby. Nature, 1960, 187: 493~494.
    [2]李志远,钱乙余,张九海,等.先进连接方法.北京:机械工业出版社, 2000: 1~88, 230~265.
    [3]中国机械工程学会焊接学会.焊接手册第1卷焊接方法及设备. 2版.北京:机械工业出版社, 2001: 440~476.
    [4]常青.微电子技术概论.北京:国防工业出版社, 2006: 1~7.
    [5]张兴,黄如,刘晓彦.微电子学概论. 2版.北京:北京大学出版社, 2005: 1~14.
    [6] Tummala R R.微系统封装基础.黄庆安,唐洁影,译.南京:东南大学出版社, 2005: 44~55.
    [7]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社, 1999: 1~24.
    [8] Hong J K, Park J H, Park N K, et al. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Journal of Materials Processing Technology, 2008, 201(1-3): 515~520.
    [9]伍强,陈根余,王贵,等.高强度镀锌钢的CO2激光焊接.中国激光, 2006, 33(8): 1133~1138.
    [10] Wang R R, Welsch G E. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing. The Journal of Prosthetic Dentistry, 1995, 74(5): 521~530.
    [11] Chen W, Ackerson P, Molian P. CO2 laser welding of galvanized steel sheets using vent holes. Materials & Design, 2009, 30(2): 245~251.
    [12] Png D, Molian P. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils. Materials Science and Engineering: A, 2008, 486(1-2): 680~685.
    [13] Berretta J R, Rossi W, Neves M D M, et al. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Optics and Lasers in Engineering, 2007, 45(9): 960~966.
    [14] Liao Y C, Yu M H. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet. Journal of Materials Processing Technology, 2007, 190(1-3): 102~108.
    [15] Iqbal S, Gualini M M S, Grassi F. Laser welding of zinc-coated steel with tandem beams: Analysis and comparison. Journal of Materials Processing Technology, 2007, 184(1-3): 12~18.
    [16] Liu L M, Wang H Y, Zhang Z D. The analysis of laser weld bonding of Al alloy to Mg alloy. Scripta Materialia, 2007, 56(6): 473~476.
    [17] Shi Y, Zhong F, Li X, et al. Effect of laser beam welding on tear toughness of a 1420 aluminum alloy thin sheet. Materials Science and Engineering: A, 2007, 465(1-2): 153~159.
    [18] Sierra G, Peyre P, Beaume F D, et al. Steel to aluminium key-hole laser welding. Materials Science and Engineering: A, 2007, 447(1-2): 197~208.
    [19] Hu B, Richardson I M. Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys. Materials Science and Engineering: A, 2006, 429(1~2): 287-294.
    [20] Cao X, Jahazi M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 2006, 171(2): 188~204.
    [21] Quan Y J, Chen Z H, Yu Z H, et al. Characteristics of laser welded wrought Mg–Al–Mn alloy. Materials Characterization, 2008, 59(12): 1799~1804.
    [22] Quan Y J, Chen Z H, Gong X S, et al. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31. Materials Characterization, 2008, 59(10): 1491~1497.
    [23] Coelho R S, Kostka A, Pinto H, et al. Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds. Materials Science and Engineering: A, 2008, 485(1-2): 20~30.
    [24] Al-Kazzaz H, Medraj M, Cao X, et al. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations. Materials Chemistry and Physics, 2008, 109(1): 61~76.
    [25] Noolu N J, Kerr H W, Zhou Y, et al. Laser weldability of Pt and Ti alloys. Materials Science and Engineering A, 2005, 397(1-2): 8~15.
    [26] Uysal H, Kurtoglu C, Gurbuz R, et al. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs. The Journal of Prosthetic Dentistry, 2005, 93(3): 235~244.
    [27] Du H, Hu L, Liu J, et al. A study on the metal flow in full penetration laser beam welding for titanium alloy. Computational Materials Science, 2004, 29(4): 419~427.
    [28]田艳红,王春青.微电子封装与组装中的再流焊技术研究进展.焊接, 2002, (6): 5~9.
    [29]徐聪,吴懿平,陈明辉.电子封装与组装中的激光再流焊.电子工艺技术, 2001, 22(6): 252~259.
    [30] Zsolt I V. Laser processing for microelectronics packaging applications. Microeletronics Reliability. 2001, 41(4): 563~570.
    [31]王家金.激光加工技术.北京:中国计量出版社, 1992: 99-127, 361~369.
    [32]魏柯BЛ,麦捷夫C M.激光工艺与微电子技术.吴安国,邓存熙,译.北京:国防工业出版社, 1997: 185~191.
    [33] Jeon M K, Kim W B, Han G C, et al. A study on heat flow and temperature monitoring in the laser brazing of a pin-to-plate joint. Journal of Materials Processing Technology, 1998, 82(1-3): 53~60.
    [34] Li L, Feng X, Chen Y. Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1065~1070.
    [35] Li M G, Sun D Q, Qiu X M, et al. Effects of laser brazing parameters on microstructure and properties of TiNi shape memory alloy and stainless steel joint. Materials Science and Engineering: A, 2006, 424(1-2): 17~22.
    [36]李明高,孙大千,邱小明. TiNi形状记忆合金与不锈钢激光钎焊接头界面组织特征.中国有色金属学报, 2007, 17(3): 373~377.
    [37] Rohde M, Südmeyer I, Urbanek A, et al. Joining of alumina and steel by a laser supported brazing process. Ceramics International, 2009, 35(1): 333~337.
    [38] Mathieu A, Pontevicci S, Viala J, et al. Laser brazing of a steel/aluminium assembly with hot filler wire (88% Al, 12% Si). Materials Science and Engineering: A, 2006, 435-436: 19~28.
    [39] Markovits T, Takács J, Lovas A, et al. Laser brazing of aluminium. Journal of Materials Processing Technology, 2003, 143-144: 651~655.
    [40]封小松,陈彦宾,李俐群.镀锌板激光钎焊温度场的数值模拟.金属学报, 2006, 42(8): 882~886.
    [41]何云峰,都东,陈强,等.压电陶瓷变压器的激光钎焊.清华大学学报(自然科学版), 2002, 42(4): 494~497.
    [42]姜光强,吴爱萍,任家烈.极薄钛板的激光钎焊.中国激光, 1999, 26(10): 955~960.
    [43]曾乐.精密焊接.上海:上海科学技术出版社, 1996: 57~69.
    [44]周德俭,吴兆华.表面组装工艺技术.北京:国防工业出版社, 2002: 135~189.
    [45]王春青. SMT激光软钎焊接合部热过程和溶解过程的计算机数值模拟, [博士学位论文].哈尔滨:哈尔滨工业大学, 1989.
    [46] Vianco P T. Solder alloys: a look at the past, present and future. Welding Journal, 1997, 76(3): 45~49.
    [47] Evans J W, Kwon D, Evans J Y. A Guide to Lead-free Solders: physical metallurgy and reliability. London, Springer-Verlag, 2007: 1~25.
    [48] Lane S D, Webster N J, Levandowski B A, et al. Environmental Injustice: Childhood Lead Poisoning, Teen Pregnancy, and Tobacco. Journal of Adolescent Health, 2008, 42(1): 43~49.
    [49] Bradberry S, Vale A. Lead. Medicine, 2007, 35(12): 627~628.
    [50] Pain D J, Carter I, Sainsbury A W, et al. Lead contamination and associated disease in captive and reintroduced red kites Milvus milvus in England. Science of The Total Environment, 2007, 376(1-3): 116~127.
    [51] Mateo R, Green A J, Lefranc H, et al. Lead poisoning in wild birds from southern Spain: A comparative study of wetland areas and species affected, and trends over time. Ecotoxicology and Environmental Safety, 2007, 66(1): 119~126.
    [52] Jacobs D E, Nevin R. Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010. Environmental Research, 2006, 102(3): 352~364.
    [53]张文典.实用表面组装技术. 2版.北京:电子工业出版社, 2006: 1-27, 187~221, 387~389.
    [54] Abtew M, Selvaduray G. Lead-free solders in microelectronics. Materials Science and Engineering: R: Reports, 2000, 27(5): 95~141.
    [55] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering: R: Reports, 2002, 38(2): 55~105.
    [56]中华人民共和国信息产业部、中华人民共和国国家发展和改革委员会、中华人民共和国商务部、中华人民共和国海关总署、中华人民共和国国家工商行政管理总局、中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家环境保护总局令(第39号).电子信息产品污染控制管理办法. 2006-02-28. http://www.mii.gov.cn/art/2006/03/02/art_521_7344.html.
    [57] Li Y, Moon K, Wong C P. Electronics without lead. Science, 2005, 308(5727): 1419~1420.
    [58] Suganuma K. Lead-free soldering in electronics: science, technology and environmental impact. New York: Marcel Dekker, 2004: 1~90, 243~269.
    [59] Suganuma K. Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials science, 2001, 5(1): 55~64.
    [60] Zenin V V, Belyaev V N, Segal Y E, et al. Lead-Free Solders in IC Manufacture: A Review. Russian Microelectronics, 2003, 32(4): 247~256.
    [61] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering: R: Reports, 2004, 44(1): 1~44.
    [62]全国焊接标准化技术委员会. GB/T 20422-2006无铅钎料.北京:中国标准出版社, 2006.
    [63] Zeng X. Thermodynamic analysis of influence of Pb contamination on Pb-free solder joints reliability. Journal of Alloys and Compounds, 2003, 348(1-2): 184~188.
    [64] Sharif A, Chan Y C, Islam M N, et al. Dissolution of electroless Ni metallization by lead-free solder alloys. Journal of Alloys and Compounds, 2005, 388(1): 75~82.
    [65] Miyazaki T, Omata T. Electromigration degradation mechanism for Pb-free flip-chip micro solder bumps. Microelectronics and Reliability, 2006, 46(9-11): 1898~1903.
    [66] Nai S M L, Wei J, Gupta M. Influence of ceramic reinforcements on the wettability and mechanical properties of novel lead-free solder composites. Thin Solid Films, 2006, 504(1-2): 401~404.
    [67] Roellig M, Dudek R, Wiese S, et al. Fatigue analysis of miniaturized lead-free solder contacts based on a novel test concept. Microelectronics Reliability, 2007, 47(2-3): 187~195.
    [68] Zbrzezny A R, Snugovsky P, Perovic D D. Impact of board and component metallizations on microstructure and reliability of lead-free solder joints. Microelectronics Reliability, 2007, 47(12): 2205~2214.
    [69] Amagai M, Watanabe M, Omiya M, et al. Mechanical characterization of Sn–Ag-based lead-free solders. Microelectronics Reliability, 2002, 42(6): 951~966.
    [70] Guo F, Choi S, Subramanian K N, et al. Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Materials Science and Engineering A, 2003, 351(1-2): 190~199.
    [71] Shohji I, Yoshida T, Takahashi T, et al. Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Materials Science and Engineering A, 2004, 366(1): 50~55.
    [72] Kumar A, He M, Chen Z, et al. Effect of electromigration on interfacial reactions between electroless Ni-P and Sn–3.5% Ag solder. Thin Solid Films, 2004, 462-463: 413~418.
    [73] Kerr M, Chawla N. Creep deformation behavior of Sn–3.5Ag solder/Cu couple at small length scales. Acta Materialia, 2004, 52(15): 4527~4535.
    [74] Peng C T, Kuo C T, Chiang K N, et al. Experimental characterization and mechanical behavior analysis of intermetallic compounds of Sn–3.5Ag lead-free solder bump with Ti/Cu/Ni UBM on copper chip. Microelectronics and Reliability, 2006, 46(2-4): 523~534.
    [75] Lin D C, Srivatsan T S, Wang G X, et al. Microstructural development in a rapidly cooled eutectic Sn–3.5% Ag solder reinforced with copper powder. Powder Technology, 2006, 166(1): 38~46.
    [76] Hung F Y, Lui T S, Chen L H, et al. Resonant characteristics of the microelectronic Sn–Cu solder. Journal of Alloys and Compounds, 2008, 457(1-2): 171~176.
    [77] Yoon J W, Kim S W, Jung S B. Effects of reflow and cooling conditions on interfacial reactionand IMC morphology of Sn–Cu/Ni solder joint. Journal of Alloys and Compounds, 2006, 415(1-2): 56~61.
    [78] Laurila T, Vuorinen V, Kivilahti J K. Interfacial reactions between lead-free solders and common base materials. Materials Science and Engineering: R: Reports, 2005, 49(1-2): 1~60.
    [79] Moon K W,Boettinger W J,Kattner et al. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. Journal of Electronic Materials, 2000, 29(10): 1122~1236.
    [80] Kim K S, Huh S H, Suganuma K. Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Materials Science and Engineering A, 2002, 333(1-2): 106~114.
    [81] Pang J H L, Low T H, Xiong B S, et al. Thermal cycling aging effects on Sn–Ag–Cu solder joint microstructure, IMC and strength. Thin Solid Films, 2004, 462-463: 370~375.
    [82] Sundelin J J, Nurmi S T, Lepist? T K, et al. Mechanical and microstructural properties of SnAgCu solder joints. Materials Science and Engineering: A, 2006, 420(1-2): 55~62.
    [83] Kim J W, Kim D G, Jung S B. Evaluation of displacement rate effect in shear test of Sn–3Ag–0.5Cu solder bump for flip chip application. Microelectronics and Reliability, 2006, 46(2-4): 535~542.
    [84] Lu H Y, Balkan H, Ng K Y S. Microstructure evolution of the Sn–Ag–y%Cu interconnect. Microelectronics and Reliability, 2006, 46(7): 1058~1070.
    [85] Peng W, Monlevade E, Marques M E. Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu. Microelectronics Reliability, 2007, 47(12): 2161~2168.
    [86] Erinc M, Schreurs P J G, Geers M G D. Integrated numerical–experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. International Journal of Solids and Structures, 2007, 44(17): 5680~5694.
    [87] Wiese S, Wolter K J. Creep of thermally aged SnAgCu-solder joints. Microelectronics Reliability, 2007, 47(2-3): 223~232.
    [88] Vandevelde B, Gonzalez M, Limaye P, et al. Thermal cycling reliability of SnAgCu and SnPb solder joints: A comparison for several IC-packages. Microelectronics Reliability, 2007, 47(2-3): 259~265.
    [89] Suh D, Kim D W, Liu P, et al. Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Materials Science and Engineering: A, 2007, 460-461: 595~603.
    [90] Yu D Q, Wang L. The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction. Journal of Alloys and Compounds, 2008,45(1-2): 542~547.
    [91] Yoon J W, Jung S B. Effect of immersion Ag surface finish on interfacial reaction and mechanical reliability of Sn–3.5Ag–0.7Cu solder joint. Journal of Alloys and Compounds, 2008, 458 (1-2): 200~207.
    [92] Erinc M, Schreurs P J G, Geers M G D. Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder. Mechanics of Materials, 2008, 40(10): 780~791.
    [93] Miao H W, Duh J G. Microstructure evolution in Sn–Bi and Sn–Bi–Cu solder joints under thermal aging. Materials Chemistry and Physics, 2001, 71(3): 255~271.
    [94] Li J F, Mannan S H, Clode M P, et al. Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects. Acta Materialia, 2006, 54(11): 2907~2922.
    [95] Tsai Y D, Hu C C, Lin C C. Electrodeposition of Sn–Bi lead-free solders: Effects of complex agents on the composition, adhesion, and dendrite formation. Electrochimica Acta, 2007, 53(4): 2040~2047.
    [96] Shiue R K, Tsay L W, Lin C L, et al. The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate. Microelectronics Reliability, 2003, 43(3): 453~463.
    [97] Kitajima M, Shono T. Reliability study of new SnZnAl lead-free solders used in CSP packages. Microelectronics Reliability, 2005, 45(7-8): 1208~1214.
    [98] Chang T C, Chou S M, Hon M H, et al. Microstructure and adhesion strength of Sn–9Zn–xAg lead-free solders wetted on Cu substrate. Materials Science and Engineering: A, 2006, 429(1-2): 36~42.
    [99] Shih P C, Lin K L. Interfacial microstructure and shear behavior of Sn–Ag–Cu solder balls joined with Sn–Zn–Bi paste. Journal of Alloys and Compounds, 2006, 422(1-2): 153~163.
    [100] Sharif A, Chan Y C. Retardation of spalling by the addition of Ag in Sn–Zn–Bi solder with the Au/Ni metallization. Materials Science and Engineering: A, 2007, 445-446: 686~690.
    [101] Lee J E, Kim K S, Inoue M, et al. Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. Journal of Alloys and Compounds, 2008, 454(1-2): 310~320.
    [102] Hon M H, Chang T C, Wang M C. Phase transformation and morphology of the intermetallic compounds formed at the Sn–9Zn–3.5Ag/Cu interface in aging. Journal of Alloys and Compounds, 2008, 458(1-2): 189~199.
    [103] Sharif A, Chan Y C. Liquid and solid state interfacial reactions of Sn–Ag–Cu and Sn–In–Ag–Cu solders with Ni–P under bump metallization. Thin Solid Films, 2006, 504(1-2): 431~435.
    [104] Sharif A, Chan Y C. Interfacial reactions on electrolytic Ni and electroless Ni(P) metallization with Sn–In–Ag–Cu solder. Journal of Alloys and Compounds, 2005, 393(1-2): 135~140.
    [105] Chen S, Zi A, Chen P, et al. Interfacial reactions in the Sn–Sb/Ag and Sn–Sb/Cu couples. Materials Chemistry and Physics, 2008, 111(1): 17~19.
    [106] Lin C Y, Lee C, Liu X, et al. Phase equilibria of the Sn–Sb–Ag ternary system and interfacial reactions at the Sn–Sb/Ag joints at 400℃and 150℃. Intermetallics, 2008, 16(2): 230~238.
    [107] Mahmudi R, Geranmayeh A R, Bakherad M, et al. Indentation creep study of lead-free Sn–5%Sb solder alloy. Materials Science and Engineering: A, 2007, 457(1-2): 173~179.
    [108] Mahmudi R, Geranmayeh A R, Bazzaz A R. Impression creep behavior of lead-free Sn–5Sb solder alloy. Materials Science and Engineering: A, 2007, 448(1-2): 287~293.
    [109] Bohman C F. The laser and microsoldering. Society of Manufacturing Engineers: Technical Paper No.AD74-810, 1974, Michigan, 48128.
    [110] Flanagan A, Conneely A, Glynn T J, et al. Laser soldering and inspection of fine pitch electronic components. Journal of Material Processing Technology, 1996, 56(1-4): 531~541.
    [111]栖原敏明.半导体激光器基础.周南生,译.北京:科学出版社, 2002: 1~14.
    [112]黄德修,刘雪峰.半导体激光器及其应用.北京:国防工业出版社, 1999: 1~7.
    [113] Li L. The advances and characteristics of high-power diode laser materials processing. Optics and Lasers in Engineering. 2000, 34(4-6): 231~253.
    [114] Bachmann F. Industrial applications of high power diode lasers in materials processing. Applied Surface Science, 2003. 208-209: 125~136.
    [115]友清.二极管激光在钎焊上的应用.激光与光电子学进展, 1999, (1): 33~34.
    [116]姚立华,薛松柏,王鹏,等.半导体激光软钎焊工艺参数对QFP器件微焊点强度的影响.焊接学报, 2005, 26(10): 90~92.
    [117] Wang J X, Xue S B, Fang D S, et al. Effect of diode-laser parameters on shear strength of micro-joints soldered with Sn-Ag-Cu lead-free solder on Au/Ni/Cu pad. Transactions of Nonferrous Metals Society of China, 2006, 16(6): 1374~1378.
    [118] Beckett P M, Fleming A R, Gilbert J M, et al. Numbering modeling of scanned beam laser soldering of fine pitch packages. Soldering & Surface Mount Technology, 2002, 14(1): 24~29.
    [119] Bosse L, Schildecker A, Gillner A, et al. High quality laser beam soldering. Microsystem Technologies, 2002, 7(5-6): 215~219.
    [120] Yang W, Messler R W, Felton L E. Microstructure evolution of eutectic Sn-Ag solder joints. Journal of electronic materials, 1994, 23(8): 765~772.
    [121] Gillner A, Holtkamp J, Hartmann C, et al. Laser applications in microtechnology. Journal of Material Processing Technology, 2005, 167(3): 494~498.
    [122] Fidan I. CAPP for electronics manufacturing case study: fine pitch SMT laser soldering. Journal of Electronic Packaging, 2004, 126(1): 173~176.
    [123] Gilbert F M, Dabestani Z. Laser soldering control using optical imaging. Soldering & Surface Mount Technology, 2006, 18(4): 3~11.
    [124] Bosse L, Boglea A, Poprawe R. Production cell for laser joining of microsystems with modular“Pick and Join”tools. Microsystem Technologies, 2006, 12(7): 604~610.
    [125] Kordás K, Pap A E, Tóth G, et al. Laser soldering of flip-chips. Optics and Lasers in Engineering, 2006, 44(2): 112~121.
    [126] Stauffer L, Würsch A, G?chter B, et al. A surface-mounted device assembly technique for small optics based on laser reflow soldering. Optics and Lasers in Engineering, 2005, 43(3-5): 365~372.
    [127] Lee J, Lee Y, Kim Y. Fluxless laser reflow bumping of Sn-Pb eutectic solder. Scripta Materialia, 2000, 42(8): 789~793.
    [128]梁旭文,王春青,桑岩,等. SMT激光软钎焊焊点质量实时检测系统的研究.电子工艺技术, 1996, (2): 13~18.
    [129]梁旭文,王春青,姜伟雁,等.基于润湿识别的SMT激光软钎焊焊点质量控制研究.机械工程学报, 1998, 34(5): 106~110.
    [130] Feng W F, Wang C Q, Li M Y, et al. Test research and mechanism analysis of vacuum fluxless laser soldering for SMD. China Welding, 1998, 7(2): 139~147.
    [131]冯武锋,王春青,李明雨,等. SMD真空无钎剂激光软钎焊试验研究与机理分析.电子工艺技术, 1999, 20(1): 1~5, 11.
    [132] Li M Y, Wang C Q, Bang H S, et al. Development of a flux-less soldering method by ultrasonic modulated laser. Journal of Materials Processing Technology, 2005, 168(2): 303~307.
    [133]李明雨,王春青,孔令超,等.激光加热控制微细焊点钎料熔融方法研究.机械工程学报, 2004, 40(10): 170~174.
    [134] Tian Y H, Wang C Q. Study on laser and hot air reflow soldering of PBGA solder ball. China Welding, 2002, 11(2): 156~160.
    [135]田艳红,王春青.激光与红外重熔对63Sn37Pb/焊盘界面微观组织的影响.中国有色金属学报, 2002, 12(3): 471~475.
    [136]田艳红,王春青.激光重熔PBGA钎料球与Au/Ni/Cu焊盘的界面反应.金属学报, 2002,38(1): 95~98.
    [137]王春青,李明雨,田艳红,等. JIS Z 3198无铅钎料试验方法简介与评述.电子工艺技术, 2004, 25(2): 47~54.
    [138]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究.机械强度, 2005, 27(3): 358~370.
    [139]石德珂.材料科学基础.北京:机械工业出版社, 2000: 246~255.
    [140] Hu Y F, Xue S B, Wu Y X. FEM analysis of stress and strain and evaluation on the reliability of soldered CBGA joints under thermal cycling. Transactions of Nonferrous Metals Society of China, 2005, 15(S3): 317~322.
    [141]肖克来提,杜黎光,孙志国,等. SnAgCu表面贴装焊点在时效和热循环过程中的组织及剪切强度变化.金属学报, 2001, 37(4): 439~444.
    [142] Xia Y H, Xie X M. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling. Journal of Alloys and Compounds, 2008, 454(1-2): 174~179.
    [143]朱奇农.电子封装中表面贴装焊点的可靠性研究, [博士学位论文].上海:中国科学院上海冶金研究所, 2000.
    [144] Vries J W C, Jansen M Y, Driel W D. On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections. Microelectronics Reliability, 2007, 47(2-3): 444~449.
    [145] Chen H T, Wang C Q, Li M Y. Numerical and experimental analysis of the Sn3.5Ag0.75Cu solder joint reliability under thermal cycling. Microelectronics and Reliability, 2006, 46(8): 1348~1356.
    [146] Qi Y, Lam R, Ghorbani H R, et al. Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints. Microelectronics and Reliability, 2006, 46(2-4) 574~588.
    [147] Shangguan D K.无铅焊料互联及可靠性.刘建影,孙鹏,译.北京:电子工业出版社, 2008: 12~19, 134~158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700