碱式硫酸镁晶须的合成及表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱式硫酸镁晶须因其增强、阻燃、抑烟、填充等功能而被广泛应用于塑料等复合材料中,是一类极有发展前景的镁盐升级换代产品。本文以氯化镁或海水制盐副产卤水为原料,加入硫酸镁和氨水,采用无模板水热法一步合成152型碱式硫酸镁(MHSH, MgSO4·5Mg(OH)2·2H2O)晶须。利用X射线衍射(XRD)、差热-热重分析(TG-DTA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对MHSH晶须合成过程中温度和时间诱导的相变、形态演化和生长机理等进行了较为系统的研究,通过考察改性前后MHSH晶须表面接触角的变化以及晶须对聚丙烯(PP)复合材料力学和阻燃性能的影响,对晶须的表面改性方法进行了评价。
     研究结果表明,在190℃下,采用一步法,无模板水热反应5h所合成的MHSH晶须呈纤维状,直径为0.5-2μm,长径比为50-200,且一端聚集成扇形。晶须表面光滑且纤细匀整,选区电子衍射(SAED)和能谱(EDS)分析表明扇形晶须的尖端与束状处的结构与组成一致。以氯化镁或海水制盐副产卤水作为原料所合成的晶须外观形貌以及晶须长度和长径比差别不大;一步法与两步法合成的晶须组成一致,形貌差别亦不大;添加乙醇作为晶形控制剂的晶须分散性较好,聚集成扇形的数量明显减少;添加乙酸作为晶形控制剂的晶须扇形聚集更加明显,并且晶须的长度有了明显的增加,长径比增长较大。
     对不同反应时间所得的产品进行SEM分析发现,晶须尖端的二维台阶是由晶须生长过程中螺型位错形成的,这些台阶可作为晶须晶体的生长点。MHSH晶须的生长过程实质上就是生长基元Mg-O6从周围环境中不断通过界面进入晶格位点的过程,晶体生长是晶体内部缺陷——螺型位错延伸的结果,位错的延伸促使了晶须的生长。
     从晶体生长热力学角度分析,MHSH晶须的水热合成属于溶解再结晶机制,MgCl2、MgSO4和氨水反应所得的Mg(OH)2在水热体系中随温度的升高首先溶解,然后溶液中的Mg2+、SO42与OH-发生反应生成MHSH晶须。从动力学角度,通过对晶体几种可能的生长机理模型进行分析发现,低温和高温反应的动力学模型不同,反应温度为170℃、180℃、190℃时的结晶机理为多核控制表面生长,结晶速率由表面反应控制;反应温度为200℃和210℃时,结晶机理为单核控制表面生长。
     利用热重法研究了MHSH晶须在程序升温条件下的热降解失重过程,并用Satava法对其热分解机理进行了分析,发现三步分解反应的反应机理是不同的,其积分函数分别为Avrami-Erofeev方程G(α)=[-ln(1-α)]1/2、Prout-Tomkins方程G(α)=ln[α/(1-α)]和Mampel power方程G(α)=α1/2;分别对应于成核与生长、无规则成核和成核机理。利用Kissinger法对热重数据进行分析处理,获得了热分解反应的动力学参数,结果表明,在MHSH的三步热分解反应中,第一步脱除结晶水的表观活化能Ea最小,为277.6 kJ/mol,第二步分子内水的脱除和第三步脱除S03所需的活化能较大,分别为492.3和797.6 kJ/mol。第一步反应较快,第二步反应较慢,第三步是热分解反应的控制步骤,反应最慢。
     首次采用甲基丙烯酸甲酯(MMA)乳液原位聚合包覆法改性MHSH晶须,获得了表面包覆聚甲基丙烯酸甲酯(PMMA)的晶须。傅里叶变换红外光谱(FT-IR)、SEM、EDS、TG表征结果表明,原位聚合成功获得了以MHSH晶须为核,PMMA为壳的核壳式结构。与表面活性剂硬脂酸(SA)和硅烷偶联剂KH-570的改性相比,乳液原位聚合包覆法改性效果最好,改性后的晶须与水的表面接触角由12.71°增加为87.32°,增长幅度最大。三种方法改性后的MHSH晶须表面均由亲水性向亲油性转变。
     通过对MHSH晶须/PP复合材料的力学和阻燃性能的分析,评价比较了三种方法的表面改性效果。添加晶须后PP复合材料的拉伸和弯曲性能均明显提高,改性晶须的增强效果要优于未改性晶须,添加改性晶须的复合材料力学性能增强幅度可达到80%。但由于镁盐晶须是高强度脆性材料,自身伸长率较小,复合材料的断裂伸长率随晶须含量的增加而呈下降趋势。在不影响PP复合材料力学性能的情况下,晶须在复合材料中的含量越高阻燃效果越好;表面改性对晶须阻燃性能影响不大。
     上述研究结果表明,利用海水制盐副产卤水、氨水和硫酸镁制备的镁盐晶须材料对聚合物基体具有较好的增强阻燃性能和广阔的潜在应用前景。
     本研究首次以海水制盐副产卤水作为原料,采用一步法制得了MHSH晶须,为多途径开发利用苦卤镁资源和高值化、精细化镁盐产品的生产提供了新思路。
Magnesium hydroxide sulfate hydrate (MHSH) whiskers have attracted much attention because of their potential application as resin additives of flame retardant, fillers, or reinforcers. In this thesis, we report preparation of MHSH whiskers using one-step hydrothermal synthesis with magnesium chloride (or bittern), ammonia and magnesium sulfate as raw materials and no additional template. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (TG-DTA), and scanning electron microscope (SEM) were employed to characterize the phase transition induced by temperature and time, morphology evolution and growth mechanism during the hydrothermal process. The products were modified to enhance the compatibility with polypropylene (PP). The surface modification methods were evaluated by investigating the changes of surface contact angle of whiskers, mechanical and flame retardant properties of the composites.
     The MHSH whiskers prepared at 190℃for 5 hours exhibited a randomly arranged, fanlike morphology with an average diameter of 0.5-2μm and aspect ratios between 50 and 200. The SAED and EDS analysis showed that the elementary composition at the intersection point was consistent with that in the main body of the fanlike whiskers. The morphology of whiskers prepared using magnesium chloride or bittern as raw materials was very similar without obvious difference. Moreover, no distinct difference was observed for products from one-step and two-step techniques.
     When using ethanol as crystal control agent, most of the whiskers presented as single fibers, while the whiskers aggregated more severely with increased aspect ratios when adding acetic acid as crystal control agent.
     In the synthesis process, many two-dimensional steps were observed at tips of the whiskers, as seen from SEM images. It was speculated that these steps were formed during crystal growth as a result of crystal dislocations. The growth of MHSH whiskers was essentially the process of Mg-06 entering the crystal lattice through the interface. It was exactly the extension of dislocations that made the growth of the whiskers.
     From a thermodynamic view, the formation of MHSH whiskers might follow the dissolution-recrystallization mechanism in which the interaction of Mg2+, SO42- and OH- ions, after the dissolution of the initially formed particulate Mg(OH)2, resulted in the production of the whiskers. From a dynamic point of view, the mechanism for crystal growth was different when the products were synthesized at different temperatures. When the reaction occurred at 170℃,180℃and 190℃, the crystallization was controlled by multi-core surface growth, while it changed to be controlled by single-core surface growth when the reaction temperature was 200℃or 210℃.
     Thermo-gravimetric analyzer was used to characterize the thermal behavior of the whisker products. It was indicated from Satava method that the first step of the thermal decomposition of the MHSH whiskers was in accord with the equation of Avrami-Erofeev with integral form of G(a)=[-ln(1-a)]1/2. The second step was in accord with the equation of Prout-Tomkins with integral form of G(a)=ln[a/(1-a)], and the final step was Mampel power with integral form of G(a)=a1/2. The corresponding mechanism was nucleus formation and growth, branching nuclei and nucleus formation, respectively. Based on DTA data, the kinetic parameters for each step were calculated using a non-isothermal Kissinger method. The activation energy of the first decomposition step was 277.6 kJ/mol, indicating the crystal water moieties can be easily lost. The activation energies of the second and third decomposition steps were 492.3 and 797.6 kJ/mol.
     This paper fist reported the method of surface-initiated in-situ polymerization to prepare PMMA modified MHSH whiskers with a well defined core-shell hybrid structure. SEM, EDS, TG and FT-IR were used to characterize the effect of surface modification. Compared with the modified effect of stearic acid (SA) and KH-570, the surface contact angle of the PMMA modified whiskers increased most greatly and the whiskers surface was all changed from hydrophilic to lipophilic after modification.
     The mechanical and flame retardant properties of the composites were investigated in order to evaluate the three different modification method. It was found that the mechanical properties of PP composites can be improved by 80 percent after adding modified whiskers, and the reinforce effect of modified whiskers was better compare to those unmodified. While the elongation at break of PP composites decreased because of the brittleness of MHSH whiskers. The flame retardant effect was better when the content of whiskers was higher. The main impact of surface modification on the composite materials was improvement of mechanical properties, and the effect on flame retardancy of the whisker was little.
     The research above showed that MHSH whiskers prepared using bittern, ammonia and magnesium sulfate as starting raw materials had wide potential application prospect due to its good flame retardant effect and reinforce properties for polymer matrix.
     In this paper, the MHSH whiskers were prepared for the first time using one-step method with bittern as raw material. It also provided a new approach for multi-channel development and utilization of magnesium in the bittern resources and production of magnesium products with high additional value.
引文
[1]S.S. Brenner. Growth and Properties of "Whiskers":Further research is needed to show why crystal filaments are many times as strong as large crystals. Science,1958,128(3324):569-575.
    [2]周祚万,胡书春.晶须的特点及其产业化前景分析.新材料产业.2002,(6):18-20.
    [3]盂季茹,赵磊,梁国正.无机晶须在聚合物中的应用.化工新型材料,2001,29(12):1-6.
    [4]沃丁柱.复合材料大全.北京.化学工业出版社,1999.
    [5]袁建君,方琪,刘智恩.晶须的研究进展.材料科学与工程,1996,14(4):2-8.
    [6]孙新华.硼酸铝晶须的应用与制备.化工新型材料,1998,26(4):33-35.
    [7]Wanger R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physical Letters,1964,4(5):89-90.
    [8]Krishnarao R V, Mahajan Y R. Formation of SiC whisker from raw rice husks in argon atmosphere. Ceramics International,1996,22(5):353-358.
    [9]Nair N G. Synthesis of silicon carbide whiskers from rice husk and coconut shell. Metal Power Report,1999,54(3):39-42.
    [10]Evnas C C. Whiskers. London:Mill&Boon Limited,1972.
    [11]Albert P Levitt. Whisker Technology. New York:John Wiley,1970.
    [12]. Fusheng Sun, F.H. Sma Froes. Effect of Mg on the microstructure and properties of TiAl alloys. Materials Science and Engineering A,2003,345(1-2):255-261.
    [13]Katsumi Yamaguchi, Iwao Horaguchi. Development of directionally aligned SiC whisker wheel. Precision Engineering,1995,17(1):5-9.
    [14]Sears G W. A growth mechanism for mercury whiskers. Acta Metallurgica,1955,3:361-366.
    [15]F.C. Frank. The influence of dislocations on crystal growth. Discussions of the Faraday Society,1949,5:48-54.
    [16]Younan Xia, Peidong Yang, Yugang Sun, et al. One-Dimensional Nanostructures:Synthesis, Characterization and Applications. Advanced Materials,2003,15(5):353-389.
    [17]Yumoto H., Sako T., Gotoh Y, et al. Growth mechanism of Vapor-Liquid-Solid(VLS) grown indium tin oxide(ITO) whiskers along the substrate, Journal of Crystal Growth,1999, 203(1-2):136-140.
    [18]R.S. Wagner, W.C. Ellis. Vapor-Liquid-Solid mechanism of single crystal growth. Applied Physics Letters,1964,4(5):89-90.
    [19]W. Chang, G. Skandan, S.C. Danforth, et al. Chemical vapor processing and applications for nanostructured ceramic powders and whiskers. Nanostructured Materials,1994,4(5):507-520.
    [20]Woo Sik Jung, Tae Jin lee, Bong Ki Min. Growth mechanism of aluminum nitride whiskers prepared from a (glutarato)(hydroxo) aluminum (Ⅲ) complex. Materials Letters,2003,57(26-27): 4237-4242.
    [21]F.C. Frank. The influence of dislocations on crystal growth. Discussions of the Faraday Society,1949,5:48-54.
    [22]韩敏芳,李伯涛,郭梦熊.碳化硅晶须品质及影响因素.人工晶体学报,1996,25(4):343-347.
    [23]田雅娟,陈尔凡,程远杰,等.四脚状氧化锌晶须及应用.硅酸盐学报,2000,28(2):165-168.
    [24]Cook J G. Whiskers, M ills & Boon. London,1972.12-13.
    [25]C.H. Hsueh, H. Tsuda, M. Enoki, et al. Theoretical and experimental studies of fiber pull-out of SiC fiber-reinforced glasses. Journal of the European Ceramic Society,1994,13(1):47-52.
    [26]N. Amdouni, H. Sautereau, J. F. Gerard. Epoxy composites based on glass beads. Ⅱ. Mechanical properties. Journal of Applied Polymer Science,1992,46(10):1723-1735.
    [27]Tiegs T. N., Alexander K. B., Plucknett K. P., et al. Ceramic composites with a ductile Ni3Al binder phase.1996,209(1-2):243-247.
    [28]Sigl L. S. Microcrack toughening in brittle materials containing weak and strong interfaces. Acta materialia,1996,44(9):3599-3609.
    [29]M. G. Jenkins, A. S. Kobayashi, K. W. White, et al. A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials. International Journal of Fracture,1987,34(4):281-295.
    [30]Faber K T, Evans A G. Crack deflection processes—Ⅰ. Theory. Acta Metallurgica,1983, 31(4):565-576.
    [31]葛启录,雷廷权,周玉Al2O3-ZrO2-SiCw陶瓷复合材料的断裂特点和韧化机理.材料科学进展,1992,6(2):180-184.
    [32]Liang S H C, Gay I D. A 13C solid-state NMR study of the chemisorption and decomposition of ethanol on MgO. Journal of Catalysis,1986,101(2):293-300.
    [33]Yang P D, Lieber C M. Nanorod-superconductor composites:A pathway to materials with high current densities. Science,1990,273(5283):1836-1840..
    [34]周相廷,张兴利,陈汝芬,等.氧化镁晶须的制备.河北师范大学学报(自然科学版),1997, 21(1):76-82.
    [35]Metushevskii A S. Magnesium oxide whiskers and their properties. Fizika i Khimiya Obrabotki Materialov,1975, (1):54-56.
    [36]Sears G W. Twist in alumina Whiskers. The Journal of Chemical Physics,1961,34(6): 2142-2143.
    [37]Hayshi, Shinuke. Influence of starting materials on the chemical reaction process during the vapor growth of magnesia. Yogyo Kyokaishi Shi,1974,82(4):229-233.
    [38]S. hayashi. H. Saito. Growth of magnesia whiskers by vapor phase reactions. Journal of Crystal Growth.1974,24(25):345-349.
    [39]Hayshi, Shinsuke. Growth of fibrous magnesia via vapor phase. Yogyo Kyokai Shi,1972, 80(8):319-323.
    [40]Hayashi S, Saito H. Initial stage in the deposition of MgO whiskers and their growth rates. Yogyo Kyokai Shi,1973,81(12):549-554.
    [41]Peihua Ma, Zhongqing Wei, Gang Xu, et al. Dehydration and desulfuration of magnesium oxysulfate whisker. Journal of Materials Science Letters.2000,19(3):257-258.
    [42]Zhongqing Wei, Hua Qi, Peihua Ma。A new route to prepare magnesium oxide whisker. Inorganic Chemistry Communications,2002,5(2):147-149.
    [43]Wolff E G, Coskren T D. Growth and Morphology of Magnesium Oxide Whiskers. Journal of the American Ceramic Society,1965,48(6):279-285.
    [44]Jia Grace Lu, Paichun Chang, Zhiyong Fan. Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering:R:Reports, 2006,52(1-3):49-91.
    [45]Ma R Z, Bando Y. Uniform MgO nanobelts formed from in situ Mg3N2 precursor. Chemical Physics Letters,2003,370(5-6):770-773.
    [46]胡庆福.镁化合物生产与应用.北京:化学工业出版社,2004.
    [47]Chen Y J, Li J B, Han Y S, et al. Growth and characterization of dumbbell-shapped MgO nanowhiskers. Ceramics International,2003,29(6):663-666.
    [48]李强,周启立,宋晓莉.硼酸镁晶须的制备及应用.无机盐工业,2004,36(2):13-14.
    [49]李武,靳治良.无机晶须材料的合成与应用.化学进展,2003,15(4):264-274.
    [50]马正先,陈来保,闫平科.硼酸镁晶须制备研究进展.中国非金属矿工业导刊, 2008,(4):21-24.
    [51]Hua Gui, Xiaohong Zhang, Weifu Dong. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer Communication,2007,48(9):2537-2541.
    [52]Zhenzhong Li, Baojun Qu. Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polymer Degradation and Stability,2003,81(3):401-408.
    [53]Xiaotang Lv, Hari-Bala, Minggang Li. In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,296(1-3): 97-103.
    [54]Ding Yi, Zhang Guangtao, Wu Hao, et al. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powers:Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chemistry of Materials,2001,13(2):435-440.
    [55]吴健松,李财花,李海民.有机溶剂-水热法制备阻燃球形氢氧化镁.无机盐工业,2006,38(3):40-42.
    [56]Michael J. Mottl, Heinrich D. Holland, Rosamund F. Corr. Chemical exchange during hydrothermal alteration of basalt by seawater—Ⅱ. Experimental results for Fe, Mn, and sulfur species. Geochimica et Cosmochimica Acta,1979,43(6):869-884.
    [57]William E Seyfried Jr., Michael J Mottl. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochimica et Cosmochimica Acta,1982,46(6):985-1002.
    [58]Lwanaga H, Iwasaki T, Reizen K, etc. Method for Tensile Experiments with Ceramic Fibers Having a Diameter of a Few Micrometers. Journal of the American Ceramic Society,1992,75 (5): 1297-1299.
    [59]Zhang T W, Ellis G S, Walters C C, et al. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments. Organic Geochemistry,2008,39(3): 308-328.
    [60]司徒杰生.化工产品手册-无机化工产品[M].北京:化学工业出版社,1994.34.
    [61]马志岭,贾巍,高文贵,等.碱式硫酸镁晶须的合成及应用.无机盐工业,2006,38(4):40-41.
    [62]魏钟晴,马培华,保积庆等.水合碱式硫酸镁晶须材料的水热合成.盐湖研究,1997,5(3-4):16-23.
    [63]魏钟晴,马培华,徐刚等.水合碱式硫酸镁晶须的物理化学性能表征.盐湖研究, 1998,6(2-3):1-9.
    [64]董殿权,王军,杨静漪等.碱式硫酸镁晶须的研制.功能材料,1999,30(5):559-560.
    [65]李慧青,张旖,孙萱等.若干无机盐晶须的研究状况与展望.无机盐工业,2002,34(2):17-19.
    [66]隗学礼,赵宽放.镁盐晶须的制备方法.中国专利,CN1288860A,2001.
    [67]Zhu Li-xia, Yue tao, Gao Shi-yang, et al. Hydrothermal synthesis and the effect of reaction time on morphology of MgSO4-5Mg(OH)2-3H2O.无机化学学报,2003,19 (1):99.
    [68]朱黎霞,岳涛,高世扬,等.Mg(OH)2·2MgSO4·2H2O晶体的水热生长过程.物理化学学报,2003,19(3):212-214.
    [69]高世扬,岳涛,朱黎霞,等.制备硫氧镁晶须的新方法.中国专利,CN1346800A,2002.
    [70]岳涛,朱黎霞,高世扬,等.硫氧镁化合物的水热合成、FTIR光谱和Raman光谱表征.光谱学与光谱分析,2003,23(6):1115-1118.
    [71]Xiaoxing Yan, Dongli Xu, Dongfeng Xue. SO42- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O. Acta Materialia,2007,55(17):5747-5757.
    [72]Yue Tao, Gao Shiyang, Zhu Lixia, et al. Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4·Mg(OH)2·2H2O. Journal of Molecular Structure,2002,616(1-3):247-252.
    [73]Yi Ding, Guangtao Zhang, Shuyuan Zhang, et al. Preparation and Characterization of Magnesium Hydroxide Sulfate Hydrate Whiskers. Materials Chemistry & Physics,2000,12(10): 2845-2852.
    [74]Nishio T, Tamashina N, Ueno K, et al. Polypropylene resin composition.United States Patent, US5283267,1994.
    [75]J.L. Bischoff, W.E. Seyfried. Hydrothermal chemistry of seawater from 25℃ to 350℃. American Journal of Science,1978,278(6):838-860.
    [76]L. Xiang, F. Liu, J. Li. Hydrothermal formation and characterization of magnesium oxysulfate whiskers. Mater. Chem. Phys.,2004,87 (2-3):424-429.
    [77]Ueno K, Akagawa T, Obana K. Fibrous magnesium oxysulfate granular form and thermoplastic resin composition containing the magnesium oxysulfate. United States Patent, 4997871,1991.
    [78]Nishiyama Atsushi, Yamada Masaharu, Ohinata Yoshihiro, et al. Magnesia whisker and its production. Japan Patent, JP1313400,1989.
    [79]Otaka S, Mataunami T, Tasaka Y. Fibrous anhydrous magnesium oxysulfate and process for the preparation thereof. United States Patent,5326548,1994.
    [80]张峻珩,熊丽君,吴璧耀.PP镁盐晶须复合材料的性能研究.化工新型材料,2006,34(7):51-54.
    [81]张峻珩,陈瑶,吴璧耀.PP镁盐晶须复合材料阻燃性能的研究.武汉工程大学学报,2007,29(2):57-59.
    [82]鲁红典,于晓灵,邵建果,等.聚乙烯/碱式硫酸镁晶须复合材料的研究.化工新型材料,2007,35(10):65-67.
    [83]傅丽玲,范宏,卜志杨.镁盐晶须、聚烯烃弹性体增强增韧聚丙烯研究.中国塑料,2004,18(9):34-37.
    [84]常志宏,郭奋等.镁盐晶须增强阻燃LDPE/EVA/ATH复合材料的研究.高分子材料科学与工程,2006,22(5):217-220.
    [85]刘伯元,隗学礼,许浩坤.镁盐晶须在塑料改性和涂料工业中的应用.中国非金属矿业导刊,2003,4:44-46.
    [86]王贵恒,汪建军,钱忠良,等.利用晶须制备埋地排水管用改性聚烯烃母料的方法.中国专利,CN1781981A,2006.
    [87]高绪国,张涛,丛卫军,等.一种无卤低烟阻燃ABS功能母粒及加工工艺.中国专利,CN1908062A,2007.
    [88]辛敏琦,陈晓东,孙洲渝.一种镁盐晶须增强阻燃聚丙烯组合物.中国专利,CN1536012A,2004.
    [89]Bo Liu, Yong Zhang, Chaoying Wan. Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polymer Bulletin, 2007,58(4):747-755.
    [90]时虎,张锦丽,时晨旭,等.晶须材料在涂料中的应用.中国涂料,2007,22(5):54-55.
    [91]乃学瑛,叶秀深,崔香梅,等.无机晶须研究进展Ⅲ:碱式硫酸镁晶须的制备及应用盐湖研究,2005,13(3):22-28.
    [92]刘曙光,刘保安.非金属矿物表面改性及应用.山东建材学院学报,1995,9(1):90-97.
    [93]林海,松全元,李定一.超细非金属矿物颗粒表面的无机化改性.矿产综合利用,1997,(5):29-32.
    [94]Janos H Fendler, Fiona C Meldrum. The colloid chemical approach to nanostructure materials. Advanced Materials,1995,7(7):607-632.
    [95]刘伯元.硅灰石的深加工及在塑料工业中的应用.现代塑料加工应用,1997,9(23):49-53.
    [96]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
    [97]丁浩,卢寿慈,张克仁,等.矿物表面改性研究的现状与前景展望(Ⅰ):方法与装置设备.矿产保护与利用,1996,(3):27-30.
    [98]毋伟,陈建峰,卢寿慈.超细粉体表面改性[M].北京:化学工业出版社,2004.
    [99]郑水林.粉体表面改性[M].第二版.北京:中国建材工业出版社,2003.
    [100]王广阔,杨英贤.不同超声频率与温度对纳米ZnO颗粒分散性能的影响.纺织科技进展,2005,(2):24-26.
    [100]Shouheng Sun, Simone Anders, Hendrik F. Hamann, et al. Polymer Mediated Self-Assembly of Magnetic Nanoparticles. Journal of the American Chemical Society,2002, 124(12):2884-2885.
    [101]A. Kondo, H. Fukuda. Effects of Adsorption Conditions on Kinetics of Protein Adsorption and Conformational Changes at Ultrafine Silica Particles. Journal of Colloid and Interface Science, 1998,198(1):34-41.
    [102]A.B. Lowe, B.S. Sumerlin, M.S. Donovan, et al. Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. Journal of the American Chemical Society, 2002,124(39):11562-11563.
    [103]K. Ohno, K.M. Koh, Y. Tsujii, et al. Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules,2002,35(24):8989-8993.
    [104]Y. Zhang, N. Kohler, M. Zhang. Surface modification of superparamagnetic magnetite nanoparticles and their intracellu-lar uptake. Biomaterials,2002,23(7):1553-1561.
    [105]I. Koh, X. Wang, B. Varughese, et al. Magnetic Iron Oxide Nanoparticles for Biorecognition: Evaluation of Surface Coverage and Activity. Journal of Physical Chemistry B,2006, 110(4):1553-1558.
    [106]E. Marutani, S. Yamamoto, T. Ninjbadgar, et al. Surface-Initiated Atom Transfer Radical Polymerization of Methyl Mthacrylate on Magnetic Nanoparticles. Polymer,2004,45(7): 2231-2235.
    [107]Masami Kamigaito, Tsuyoshi Ando, Mitsuo Sawamoto. Metal-Catalyzed Living Radical Polymerization. Chemical Reviews,2001,101(12):3689-3746.
    [108]B. Hu, A. Fuchs, S. Huseyin, et al. Atom transfer radical polymerized MR fluids. Polymer, 2006,47(22):7653-7663.
    [109]N. Ayres, S.G. Boyes, W.J. Brittain. Stimuli-Responsive Polyelectrolyte Polymer Brushes Prepared via Atom-Transfer Radical Polymerization. Langmuir,2007,23(26):182-189.
    [110]K. Matyjaszewski, J. Xia. Atom transfer radical polymerization. Chemical Reviews,2001, 101(9):2921-2990.
    [111]Erjun Tang, Guoxiang Cheng, Xiaolu Ma. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technology,2006,161(3):209-214.
    [112]Xiaowu Fan, Lijun Lin, Phillip B. Messersmith. Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator:A new route toward polymer-matrix nanocomposites. Composites Science and Technology,2006,66(9):1198-1204.
    [113]Hui Liu, Hongqi Ye, Yingchao Zhang. Preparation of PMMA grafted aluminum powder by surface-initiated in situ polymerization. Applied Surface Science,2007,253(17):7219-7224.
    [114]Enis Dzunuzovic, Katarina Jeremic, Jovan M. Nedeljkovic. In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. European Polymer Journal,2007,43(9):3719-3726.
    [115]Aiping Zhu, Cai, Aiyun, Zhou, Weidong. Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites. Applied Surface Science,2008, 254(13):3745-3752.
    [116]Sooyeon Kim, Eunhye Kim, Sungsoo Kim. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. Journal of Colloid and Interface Science,2005,292(1):93-98.
    [117]Andrzej Krysztafkiewicz, Teofil Jesionowski, Sawomir Binkowski. Precipitated silicas modified with 3-aminopropyltriethoxysilane. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,173(1-3):73-84.
    [118]Teofil Jesionowski, Andrzej Krysztafkiewicz. Comparison of the techniques used to modify amorphous hydrated silicas. Journal of Non-Cyrstalline Solids,2000,277(1):45-57.
    [119]王慧玲,宁延生.新型疏水二氧化硅的制备.无机盐工业,2002,34(2):33-34.
    [120]Teofil Jesionowski, Jolanta Zurawska, Andrzej Krysztafkiewicz. Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification. Applied Surface Science,2003,205(1-4):212-224.
    [121]Andrzej Krysztafkiewicz, Sawomir Binkowski and Teofil Jesionowski. Adsorption of dyes on a silica surface. Applied Surface Science,2002,199(1-4):31-39.
    [122]Andrzej Krysztafkiewicz, Rados aw Werner, Lidia K. Lipska. Effect of silane coupling agents on properties of precipitated sodium-aluminium silicates. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,182(1-3):65-81.
    [123]Teofil Jesionowski, Andzrej Krysztafkiewicz. Influence of silane coupling agents on surface properties of precipitated silicas. Applied Surface Seience,2001,172(1-2):18-32.
    [124]Sawomir Binkowski, Teofil Jesionowski, Andrzej Krysztafkiewicz. Preparation of pigments on modified precipitated silicas. Dyes and Pigments,2000,47(3):247-257.
    [125]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用.上海生物医学工程,2006,26(1):14-17.
    [126]赵心怡,叶明泉,韩爱军.无机超细粒子表面改性技术研究进展.塑料工业,2006,34(B05):16-19.
    [127]陈德宏,陈鸣才.一步法制备硬脂酸盐改性的氢氧化镁及其性能.精细化工,2006,23(2):170-173.
    [128]陈德宏,陈鸣才.氢氧化镁的制备及其表面接枝改性.无机盐工业,2006,38(7):14-17.
    [129]H. G. Bruil, J. J. van Aartsen. The determination of contact angles of aqueous surfactant solutions on powders. Colloid & Polymer Science,1974,252(1):32-38.
    [130]沈钟,赵振国,王果庭编著.胶体与表面化学[M].北京:化学工业出版社,2004.
    [131]Edward W. Washburn. The Dynamics of Capillary Flow. Physical Review,1921, 17(3):273-283.
    [132]David Dunstan, Lee R. White. A capillary pressure method for measurement of contact angles in powders and porous media. Journal of Colloid and Interface Science,1986,111(1): 60-64.
    [133]D.D.Eley, D.C.Pepper. A dynamical determination of adhesion tension. Transactions of the Faraday Society,1946,42:697-702.
    [134]R.F. Giese, P.M. Constanzo, C.J. van Oss. The surface free energies of talc and pyrophyllite. Physics and Chemistry of Minerals,1991,17(7):611-616.
    [135]D. Nees, M. Blenkle, A. Koschade, et al. Switching flow and phase behavior in surfactant systems via photochemical reactions. Progress in Colloid and Polymer Science,1996,101:75-85.
    [136]L. Hoysz, M. Chibowski, E. Chibowski. Time-dependent changes of zeta potential and other parameters of in situ calcium carbonate due to magnetic field treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,208(1-3):230-240.
    [137]P. M. Costanzo, W. Wu, R. F. Giese, C. J. van Oss. Comparison between Direct Contact Angle Measurements and Thin Layer Wicking on Synthetic Monosized Cuboid Hematite Particles. Langmuir,1995,11(5):1827-1830.
    [138]C. J. van Oss, J. O. Naim, P. M. Costanzo, et al. Impact of different asbestos species and other mineral particles on pulmonary pathogenesis. Clays and Clay Minerals,1999, 47(6):697-707.
    [139]Emil Chibowski, Lucyna Holysz. Use of the Washburn equation for surface free energy determination. Langmuir,1992,8 (2):710-716
    [140]K. Grundke, T. Bogumil, T. Gietzelt. Wetting measurements on smooth, rough and porous solid surfaces. Progress in Colloid and Polymer Science,1996,101:58-68.
    [141]C. J. van Oss, R. F. Giese. The hydrophilicity and hydrophobicity of clay minerals clay minerals. Clays and Clay Minerals,1995,43(4):474-477.
    [142]Emil Chibowski, Rafael Perea Carpio. Problems of contact angle and solid surface free energy determination. Advances in Colloid and Interface Science,2002,98(2):245-264.
    [143]Samad Ahadian, Mohsen Mohseni, Siamak Moradian. Ranking proposed models for attaining surface free energy of powders using contact angle measurements. International Journal of Adhesion & Adhesives,2009,29(4):458-469.
    [144]艾德生,李庆丰.用透过高度法测定粉体的润湿接触角.理化检验-物理分册,2001,37(3):110-112.
    [145]崔正刚,Binks B P, Clint J H薄层毛细渗透技术测定多孔性固体颗粒的表面能力成分.日用化学工业,2004,38(4):207-210.
    [146]宋华杰,董海山.氟聚物与TATB界面作用的XPS评价.南京理工大学报(自然科学版),2002,26(3):303-307.
    [147]Elaine G. Shafrin, William A. Zisman. Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. Journal of Physics and Chemistry,1960,64(5):519-524.
    [148]Siboni S., Della C. VolPe, Maniglio D., et al. The solid surface free energy calculation:The limits of the Zisman and of the "equation-of-state" approaches. Journal of colloid and Interface science,2004,271(2):454-472.
    [149]Bemett M.K., Zisman W.A.. Relation of Wettaility by aqueous solutions to the surface Constitution of low-energy solids. Journal of Physics and Chemistry,1959,63(8):1241-1246.
    [150]DK Owens, RC Wendt. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science,1969,13(8):1741-1747.
    [151]Li D, Neumann A. W.. Contact angles on hydrophobic solid surfaces and their interpretation. Journal of colloid and interface science,1992,148(1):190-200.
    [152]Carel J. Van Oss, Manoj K. Chaudhury, Robert J. Good. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Review,1988,88(6):927-941.
    [153]van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. Journal of colloid and interface science,1986, 111(2):378-390.
    [154]王国宏,王志刚.纳米铁黄的表面改性及表征.功能材料,2007,38(A06):2185-2188.
    [155]谭凤宜,杨小燕等.镁盐晶须改性尼龙6的研究.塑料助剂,2004,3:27-29.
    [156]Y.X.Ouyang, G.X. Sui, R. Yang. Preparation and Mechanical Properties of Magnesium Salt Whisker/ABS Composites. Materials and Manufacturing Processes,2006,21(1/2):191-197.
    [157]廖明义,隗学礼.镁盐晶须增强聚丙烯力学性能研究.工程塑料应用,2000,28(1):12-14.
    [158]雷文,张润之,顾从进,等.UPR/苎麻布/碱式硫酸镁晶须复合材料Ⅰ—偶联剂处理晶须对复合材料力学性能的影响.热固性树脂,2007,22(5):26-30.
    [159]王正洲,瞿保钧,范维澄.表面处理剂在氢氧化镁阻燃聚乙烯体系中的应用.功能高分子学报,2001,(1):46-48.
    [160]韩跃新,陈旭,印万忠.碱式硫酸镁晶须填充聚丙烯的研究.有色矿冶,2007,23(5):42-45.
    [161]李召好,马培华,李法强.阻燃型氢氧化镁表面改性研究[J].海湖盐与化工 ,2004,34(3):14-16.
    [162]姜玉芝,韩跃新,印万忠.氢氧化镁晶须表面改性及应用研究[J].金属矿山,2007,6:41-44.
    [163]范宏,傅丽玲,等PP/M-HOS/POE三元复合材料的界面改性与力学性能[J].塑料工业,2004,32(9):36-38.
    [164]赵梓年,沈惠玲.PP与镁盐晶须复合材料性能的研究[J].现代塑料加工应用,2005,17(1):35-38.
    [165]童筱莉,徐亮成,邬润德.ABS/镁盐晶须复合材料的研究.工程塑料应用,2005,33(9):20-22.
    [166]国家质量技术监督局.GB/T 9341-2000.塑料弯曲性能试验方法.北京:中国标准出版社,2000-10-27,
    [167]国家质量技术监督局.GB/T 1040-92.塑料拉伸性能试验方法.北京:中国标准出版社,2000-10-27.
    [168]国家质量技术监督局.GB/T2406—1993.塑料燃烧性能试验方法.北京:中国标准出版社,2004-10-14.
    [169]徐丽君,周仲怀.苦卤综合利用技术的研究与开发.海湖盐与化工,2001,30(4):5-8.
    [170]徐丽君,于银亭,殷丽,等.我国21世纪海水化学资源综合利用技术发展战略.海湖盐与化工,1999,28(6):21-25.
    [171]Ding Yi, Zhao Huazhang, Sun Yugang, et al. Superstructured magnesium hydroxide sulfate hydrate fibres:Photoluminescence study. International Journal of Inorganic Materials,2001,3 (2) 151-156.
    [172]岳涛,高世扬,朱黎霞,等5Mg(OH)2·MgSO4·2H2O晶须生长过程中的形貌研究.无机化学学报,,2002,18(3):313-315.
    [173]Ma Peihua, Wei Zhongqing, Xu Gang. Dehydration and desulfuration of magnesium oxysulfate whisker. Journal of Materials Science Letters,2000,19(3):257-258.
    [174]Zhou Zhengzhi, Deng Yulin. Solution synthesis of magnesium hydroxide sulfate hydrate nanobelts using sparingly soluble carbonate salts as supersaturation control agents. Journal of Colloid and Interface Science,2007,316 (1):183-188.
    [175]Yue Tao, Zhu Lixia, Liu Zhihong. Thermochemistry of magnesium oxysulfate. Thermochimica Acta,2003,402(1-2):237-240.
    [176]刘峰,向兰,金涌.水热法制备碱式硫酸镁晶须.海湖盐与化工,2003,32(4):1-4.
    [177]弥勇,陈建铭,未云华.添加有机酸水热法制备碱式硫酸镁晶须的研究.无机盐工业,2007,39(1):23-24.
    [178]弥勇,陈建铭,宋云华.制备条件对生成碱式硫酸镁晶须的影响.化工矿物与加 工,2007,(4):14-16.
    [179]刘峰,向兰,金涌.水热法制备碱式硫酸镁晶须的过程机制.无机材料学报,2004,19(4):784-788.
    [180]桑商斌,古映莹,黄可龙.锰锌铁氧体纳米晶的水热法制备及热动力学研究.功能材料,2001,32(1):27-29.
    [181]Tadao Sugimoto, Yinsheng Wang, Hiroyuki Itoh, ea al. Systematic control of size, shape and internal structure of momodisperse a-Fe2O3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1998,134(3):265-279.
    [182]张文敏,刘强,汤勇铮.添加剂对微波法制备均分散a-Fe2O3纳米粒子的影响.材料科学与工程,1999,17(2):29-32.
    [183]薛建荣.碱式硫酸镁晶须和片状粉体的制备研究:[硕士学位论文].呼和浩特:内蒙古工业大学,2007.
    [184]Arne Erik Nielsen, Jens M. Toft. Electrolyte crystal growth kinetics. Journal of Crystal Growth,1984,67(2):278-288.
    [185]I.M. Lifshitz, V.V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids,1961,19(1-2):35-50.
    [189]Arne Erik Nielsen. The kinetics of crystal growth in barium sulfate precipitation. Acta Chemica Scandinavica,1959,13(8):1680-1686.
    [190]施尔畏,夏长泰,王步国,等.水热法的应用与进展.无机材料学报,1996,11(2):193-206.
    [191]刘泽,李永祥,吴冲若.水热法制备二氧化钛晶须.硅酸盐学报,1998,26(3):392-394.
    [192]李汉军,施尔畏.水热法制备氧化锌纤维及纳米粉体.中国科学(E辑),1998,28(3):212-219.
    [193]高世扬,宋彭生,夏树屏,等.盐湖化学—新类型硼锂盐湖[M].北京:科学出版社,2007.282-286.
    [194]于锡玲.晶体生长机理研究的新近发展.中国科学基金,2002,3(4):1-4.
    [195]李武,高世扬.晶体生长机理.盐湖研究,1994,10(3):1-3.
    [196]魏钟晴,马培华.溶液系统中的晶须生长机理.盐湖研究,1995,11(4):1-4.
    [197]郑燕青,施尔畏,李汶军,王步国,胡行方.晶体生长理论研究现状与发展.无机材料学报,1998,14(3):1-4.
    [198]闫乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.339-484.
    [199]张克从,张乐惠.晶体生长[M].北京:科学出版社,1981.131-161.
    [200]Brain R.Pamplin. Crystal Growth. New York:Pergamon Press Oxford,1975
    [201]W.Burton, N.Cabrera, F.C.Frank. The Growth of Crystals and the Equilibrium Structure of their Surfaces. Philosophical Transactions of the Royal Society,1951,234(866):310-322.
    [202]Arne E. Nielsen. The kinetics of calcium oxalate precipitation. Acta Chemica Scandinavica, 1960,14(7):1654-1659.
    [203]Nyvlt J.. Nucleation and Growth rate in mass Crystallization. Progress in crystal growth and characterization,1984,9(3-4):335-369.
    [204]冯仰婕,史永强,何东明,等.固体热分解动力学的热分析法研究.高分子材料科学与工程,1997,13(2):30-34.
    [205]冯仰婕,袁军,邹文樵.热分析法研究聚苯乙烯热降解机制与反应动力学.华东理工大学学报,1996,22(2):200-205.
    [206]P. Cordeiro Lopes, Francisco A. Dias, L. R. Damasceno da Silva. Decomposition kinetics by thermogravimetry of the intercalation of kaolin with dimethylsulphoxide. Materials Letters,2003, 57(22-23):3397-3401.
    [207]Huiping Hu, Qiyuan Chen, Zhoulan Yin, et al. Thermal behaviors of mechanically activated pyrites by Thermogravimetry (TG). Thermochimica Acta,2003,398(1-2):233-240.
    [208]Nunez L, Fraga F, Nunez M. R, et al. Thermogravimetric study of the decomposition process of the system BADGE (n=2)/1,2 DCH. Polymer,2000,41(120):4635-4641.
    [209]Mayoral M. C, Izquierdo M. T, Andres J. M, et al. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta,2001,370(1-2):91-97.
    [210]Shuto Yamada, Nobuyoshi Koga. Kinetics of the thermal decomposition of sodium hydrogencarbonate evaluated by controlled rate evolved gas analysis coup led with thermogravimetry. Thermochimica Acta,2005,431(1-2):38-43.
    [211]Daniele M. S, Pedro O. L, Joaquim A. N, et al. Thermogravimetric investigations on the mechanism of decomposition of Pb compounds on a tungsten surface, Thermochimica Acta.2000, 362(1-2):161-168.
    [212]Mohamed A. M, Samih A. H. Non-isothermal decomposition of cadmium monohydrate in different atmospheres. Journal of Analytical and Applied Pyrolysis,2002,65(2):287-300.
    [213]Pengzhao Gao, Hongjie Wang, Zhihao Jin. Study of oxidation properties and decomposition kinetics of three -dimensional (3-D) braided carbon fiber. Thermochimica Acta,2004,414(1): 59-63.
    [214]蔡正千.热分析[M].北京:高等教育出版社,1993.54-66.
    [215]胡祖容,史启祯.热分析动力学[M].北京:科学出版社,2001.19-110.
    [216]Yue Tao, Zhu Lixia, Liu Zhihong, et al. Thermochemistry of magnesium oxysulfate. Thermochimica Acta,2003,402 (1-2):237-240.
    [217]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    [218]Xiaotao Sun and Lan Xiang. Hydrothermal conversion of magnesium oxysulfate whiskers to magnesium hydroxide nanobelts. Materials Chemistry and Physics,2008, 109(2-3):381-385.
    [219]Yanhua Liu, Jingzhe Zhao, Hui Zhang. Thermal decomposition of basic zinc carbonate in nitrogen atmosphere. Thermochimica Acta,2004,414(2):121-123.
    [220]J.Sestak. Thermophysical Properties of Solids:Their Measurements and Theoretical Analysis. Elsevier, Amsterdam,1984.
    [221]Wiedemann Hans G, Bayer G. Thermoanalytical Study on Ancient Materials and Light it Sheds on the Origin of Letters and Words. Thermochimica Acta,1986,100:283-314.
    [222]Bayer G, Wiedemann H G. Thermal Analysis of Chalcopyrite Roasting Reactions. Thermochimica Acta,1992,198(2):303-312.
    [223]T.P. Bagchi, P.K. Sen. Combined differential and integral method for analysis of non-isothermal kinetic data. Thermochimica Acta,1981,51(2-3):175-189.
    [224]Satava V. Mechanism and kinetics from non-isothermal TG traces. Thermochimica Acta, 1971,2 (5):423-428.
    [225]J. Sestak. Philosophy of non-isothermal kinetics. Journal of Thermal Analysis and Calorimetry,1979,16(2):503-520.
    [226]V. Satava. Fundamental principles of kinetic data evaluation from thermal analysis curves. Journal of Thermal Analysis and Calorimetry,1973,5(2-3):217-226.
    [227]J.M. Criado, A. Ortega, F. Gotor. Correlation between the shape of controlled-rate thermal analysis curves and the kinetics of solid-state reactions. Thermochimica Acta,1990,157(1): 171-179.
    [228]H.E. Kissinger. Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis. Journal of Research of the National Bureau of Standards,1959,57 (4):217-221.
    [229]H.E. Kissinger. Reaction kinetics in differential thermal analysis. Analytical chemistry,1957, 29(11):1702-1706.
    [230]Ralph T. Yang, Meyer Steinberg. Reaction kinetics and differential thermal analysis. The Journal of Physical Chemistry,1976,80 (9):965-968.
    [231]S.Montserrat, J.Malek, P.Colomer. Thermal degradation kinetics of epoxy-anhydride resins: Ⅰ. Influence of a silica filler. Thermochimica Acta,1998,313(1):83-95.
    [232]L.Burnham, D.Dollimore, K.S.Alexander. Kinetic study of the drug acetazolamide using thermogravimetry. Thermochimica Acta,2002,392-393:127-133.
    [233]Dalai Jin, Xiaojing Yu, Linhai Yue. Decomposition kinetics study of A1OOH coated calcium carbonate. Materials Chemistry and Physics,2009,115(1):418-422.
    [234]Y.Sawada, M.Murakami, T.Nishide. Thermal analysis of basic zinc carbonate. Part 1. Carbonation process of zinc oxide powders at 8 and 13℃. Thermochimica Acta,1996, 273:95-102.
    [235]M.C.S.Nobrega, W.A.Mannheimer. Varistor Performance of ZnO-Based Ceramics Related to Their Densification and Structural Development. Journal of the American Ceramic Society, 1996,79(6):1504-1508.
    [236]Beshir M. Mohamed, John H. Sharp. Kinetics and mechanism of formation of monocalcium aluminate, CaA12O4. Journal of Materials Chemistry,1997,7(8):1595-1599.
    [237]J.H.Sharp, J.D.Hancock. Method of Comparing Solid-State Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3. Journal of the American Ceramic Society, 1972,55(2):74-77.
    [238]A.W Coats, J.P Redfern. Kinetic Parameters from Thermogravimetric Data. Nature,1964, 201:68-69.
    [239]J.M.Criado, F.Rouquerol, J.Rouquerol. Thermal decomposition reactions in solids: comparison of the constant decomposition rate thermal analysis with the conventional TG method. Thermochimica Acta,1980,38 (1):109-115.
    [240]J.M.Criado, F.Rouquerol, J.Rouquerol. Study of the thermal decomposition reaction mechanism of alkaline-earth carbonates under high vacuum by both thermogravimetric analysis and constant decomposition rate thermal analysis techniques. Thermochimica Acta,1980,38(1): 117-123.
    [241]J.M.Criado, J. Morales, V. Rives. Computer kinetic analysis of simultaneously obtained TG and DTG curves. Journal of Thermal Analysis and Calorimetry,1978,14(3):221-228.
    [242]刘曙光,刘保安.非金属矿物表面改性与应用.山东建材学院学报.1995,9(1):90-97.
    [243]林海,松全元.矿物表面改性研究的现状与发展.矿产综合利用.1997,(5):29-32.
    [244]郑水林.粉体表面改性.北京:材料工业出版社.1995.
    [245]Masahiro Hasegawa, Yasushi Akiho, Yoshiteru Kanda. Mechanochemical polymerization of methyl methacrylate initiated by the grinding of inorganic compounds. Journal of Applied Polymer Science,2003,55(2):297-304.
    [246]谈定生,严年喜,薛青,等.聚甲基丙烯酸甲酯表面改性TiO2的研究.上海大学学报.1996,2(4):425-430.
    [247]K. Iketani, R.D. Sun, M. Toki, et al. Sol-gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. Journal of Physics and Chemistry of Solids,2003, 64(3):507-513.
    [248]Y.Zhang, M.Q.Wang. Mechanical characterization and optical properties analysis of organically modified silicates. Journal of Non-Crystalline Solids,2000,271(1-2):88-93.
    [249]Bourgeat-Lami E, Lang J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media:1. Silica Nanoparticles Encapsulated by Polystyrene. Journal of Colloid and Interface Science,1998,197(2):293-308.
    [250]Elodie Bourgeat-Lami, Jacques Lang. Silica-polystyrene composite particles. Macromolecular Symposia,2000 151(1):377-385.
    [251]Zhang K, Chen H T, Chen X, et al. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromolecular Materials and Engineering, 2003,288(4):380-385.
    [252]Luna-Xavier J L, Bourgeat-Lami E, Guyot A. The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization. Colloid & Polymer Science,2001,279(10):947-958.
    [253]Luna-Xavier J L, Guyot A, Bourgeat-Lami E. Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator. Journal of Colloid and Interface Science,2002,250(1):82-92.
    [254]Luna-Xavier J L, Guyot A, Bourgeat-Lami E. Preparation of nano-sized silica/poly(methyl methacrylate) composite latexes by heterocoagulation:comparison of three synthetic routes. Polymer International,2004,53(5):609-617.
    [255]陈卫平,冯新,孙盛华PMMA/K2O·6TiO2复合粒子的制备及表征.过程工程学报,2005,5(1):70-73.
    [256]储鸿,崔正刚.粉体接触角的测定方法.化工时刊,2004,18(10):44-47.
    [257]D. Dunstan, L.R. White. A capillary pressure method for measurement of contact angles in powders and porous media. Journal of Colloid and Interface Science,1986,111 (1):60-64.
    [258]D. Diggins, L.G.J. Fokkink. The wetting of angular quartz particles:Capillary pressure and contact angles. Colloids and Surfaces,1990,44:299-313.
    [259]C.A. Prestidge, J. Ralston. Contact Angle Studies of Galena Particles. Journal of Colloid and Interface Science,1995,172 (2):302-310.
    [260]N.W.F. Kossen, P.M. Heertjes. The determination of the contact angle for systems with a powder. Chemical Engineering Science,1965,20 (6):593-599.
    [261]姚荣兴,王瑛,王迎,等.测量粉体湿润接触角的实验装置的设计及应用.玻璃与搪瓷,2005,33(2):39-42.
    [262]康诗钊,鞠岩,田根林WASHBURN法测定颗粒润湿性及无机物对颗粒润湿性影响的研究.油田化学,1995,12(2):95-98.
    [263]Tim H. Muster, Clive A. Prestidge. Application of time-dependent sessile drop contact angles on compacts to characterise the surface energetics of sulfathiazole crystals. Internationa] Journal of Pharmaceutics,2002,234 (1-2) 43-54.
    [264]S. Ahadian, M. Mohseni, S. Moradian. Ranking proposed models for attaining surface free energy of powders using contact angle measurements. International Journal of Adhesion and Adhesives,2009,29 (4):458-469.
    [265]黄小凤,龚福忠Washburn动态渗透压力法测量粉体接触角.试验室研究与探索,2003,22(5):48-50.
    [266]Jeffrey W. Gilman, Catheryn L. Jackson, Alexander B. Morgan Gilman J W, et al. Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Chemistry of Materials, 2000,12(7):1866-1873.
    [267]苏好,黄锐,蔡碧华.纳米级无机填料在炭黑填充硬质聚氯乙烯中的作用.中国塑料,1998,12(4):22-26.
    [268]熊传溪,闻荻江.超微细A1203增韧增强聚苯乙烯的研究.高分子材料科学与工程,1994,10(4):69-73.
    [269]黄锐,徐伟平,郑学晶,等.纳米级无机粒子对聚乙烯的增强与增韧.塑料工业,1997,25(3):106-108.
    [270]Hasegawa N, M Kawasumi, M Kato, et al. Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. Journal of Applied Polymer Science,1998,67(1):87-92.
    [271]Tidjani A. Polypropylene-graft-maleic anhydride-nanocomposites:Ⅱ—fire behavior of nanocomposites produced under nitrogen and in air. Polymer Degradation and Stability,2005, 87(1):43-49.
    [272]Chiming Chan, Jingshen Wum Jianxiong Li, et al. Polypropylene/calcium carbonate nanocomposites. Polymer,2002,43(10):2981-2992.
    [273]杨军,刘万军.超细碳酸钙填充聚丙烯的拉伸和结晶行为的研究.高分子材料科学与工程,2002,18(2):115-119.
    [274]张玲.弹性体及无机刚性粒子增韧增强聚丙烯复合材料的研究[博士学位论文].成都:四川大学,2002.
    [275]舒万良,熊联明,刘汉年.微胶囊红磷阻燃剂的研究进展.中国塑料,2002,16(1):12-14.
    [276]李爱霞.无卤有机阻燃剂的研究进展.广东化工,2005,32(11):15-17,74.
    [277]ShuiYu Lu, Ian Hamerton. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science,2002,27 (8):1661-1712.
    [278]时虎,刘凯,鲁红典,等.晶须材料在阻燃防火上的应用.消防技术与产品信息,2006,(6):18-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700