广西栗木矿区多金属尾矿中铷资源回收工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西栗木矿区钨锡钽铌多金属矿分选主金属后,品位较高的稀碱金属铷元素大量流失于尾矿中。为提高资源利用水平及减少尾矿中的金属污染,本文研究了广西栗木矿床中铷元素的分布状况和规律。单矿物化学分析表明,云母中铷含量可高达0.37%;确定云母为矿石中铷的富集矿物,是铷回收的目标矿物;对矿区回收了主金属的重选尾矿,分别进行了优先浮选云母、再“一粗三精三扫”浮选长石的开闭路无氟浮选工艺,并进行了浮选药剂用量的条件试验。在最佳的药剂制度下,云母能够有效地与长石、石英矿物分离,使铷能够更好的富集。
     分析了矿物浸出过程中的反应模型、矿物浸出过程中的反应历程以及反应的主要控制影响因素,得到了铷浸出的动力学方程;求得了萃取平衡反应式、K值、△G、△H、△S等热力学常数,进行了单矿物及添加焙烧助剂的DSC热分析,通过扫描电镜分析表观了矿物在焙烧及浸出前后的表面形貌变化。
     通过单因素实验分别考查了焙烧时间、焙烧温度等对铷浸出率的影响,获得了最佳的焙烧、浸出工艺条件。研究了萃取及反萃过程中的工艺影响因素,获得了铷萃取与反萃的最佳试验条件。课题的研究对于栗木矿区降低尾矿环境污染、提高资源综合利用水平及铷资源开发具有一定的指导意义。
     对铷回收工艺过程产生的环境问题进行了分析,对浮选废水、卤盐燃烧及含有机物的萃余液指出了具体的处理措施,对工艺的社会和经济效益进行了评价。该工艺对于铷资源回收及减少矿山的固废污染具有重要意义。
In this paper, the distribution and law of the element rubidium from Limu in Guangxi wereresearched, which pointed out that mine rubidium element is mainly distributed in the magmaticorigin of granite, pegmatite, aplite and quartz feldspar vein-type rock (ore). Single mineral chemicalanalysis showed that the rubidium content can be get as high as0.37%,which determines rubidium ismainly enriched in muscovite ore, and rubidium is the recycling target minerals; for the main metalrecovered from re-election tailings in mine, mica was floated firstly,"one rough three fine threesweep" open closed-circuit flotation feldspar fluorine-free flotation process was conducted, and thenthe flotation reagent usage conditions test was researched. Under optimal pharmaceutical system,mica can be effectively separated from quartz and feldspar minerals, rubidium can be better enriched.
     Mineral leaching process reaction, the course of the reaction in the mineral leaching process, aswell as the reaction of the main control influencing factors were analyzed, which came out therubidium leaching kinetics equation; which came out the extraction balanced equation, K,△G,△H,△S and other thermodynamic constants, DSC thermal analysis of single mineral and the muscovitewith additives, analysis of mineral surface morphology changement before and after roasting andleaching were conducted by scanning electron microscopy analysisapparent.
     The effect of calcination time, calcination temperature on the rubidium leaching rate wereexamined by single factor experiment, which came out the best roasting and leaching processconditions. The influencing factors in the extraction and reverse extraction process were examined,which obtained the optimum conditions in the rubidium extraction and reverse extraction. Thisresearch has a certain significance for the comprehensive utilization of metal mine tailings andrubidium resource development and utilization.
     The environmental problems of rubidium recycling process are analyzed, the existing problems ofthe specific measures are puts forward, an evaluation of social and economic benefits are made.
引文
[1]冯光熙,黄祥玉,刘翊纶.无机化学丛书(第一卷)[M].北京:科学出版社,1998.363[16]70~71
    [2]李静萍,许世红.长眼睛的金属.铯和铷[J].化学世界,2005,85(2):108~117
    [3]王濮,潘兆橹,翁玲宝,等编著.系统矿物学[M].北京:地质出版社,1987
    [4]岳德奎等.云母长石类矿物中铷的光谱分析[J].分析实验室1984.5:24~25
    [5]常丽华,陈曼云,等编著.透明矿物薄片鉴定手册[M].北京:地质出版社,2006.
    [6]中国科学院地球化学研究所编著.高等地球化学[M].北京:科学出版社,1998.
    [7]中国地质科学院矿产所编著.金属矿物显微镜鉴定[M].北京:地质出版社,1978.
    [8]张霜华.拓宽我国铷铯应用领域[J]新疆有色金属1998(2):44~46
    [9]董普,肖荣阁.铯盐应用及铯(碱金属)矿产资源评价[J].中国矿业,2005,14(2):30~35
    [10]曾嫒,赵峰,吴汉华,等.气泡型铆原子频标光谱灯优化设计[J].波谱学杂志,2004,21(3):345~349
    [11]陈辰,赵伟,白丽娜,等.国外典型星载铷原子频标看其技术发展[J].宇航计测技术,2001,21(3):60~65
    [12] Carrico L C,Hedrick,Rubidium J B. in Mineral facts andproblems.U.S Bureau of Mines,1985:673~675
    [13]林哗.浅谈西藏盐湖等资源中锂铷铯的开发利用研究.新疆有色金属2005(2):68~72
    [14]董普,肖荣阁.铯盐应用及铯(碱金属)矿产资源评价[J].中国矿业,2005,(02):34~36
    [15] Wagner F S. Rubidium and Rubidium Compounds[M] J.Kirk-Othmer encyclopedia of chemicaltechnology(4th ed.),NewYork:Wiley&Sons。1997.21,593
    [16] Butterman W C,Reese R G Jr.Mineral commodity profilesrubidium.U.S.geological survey,2003,at URL http://pubs.usgs.gov/of/2003/of03—045/ot"03—045.Pdf
    [17]陈家镛.湿法冶金手册.冶金工业出版社.1531~1545
    [18]乔玲.锂云母中锂的提取及氯化锂制备的工艺研究[D].南京工业大学,2004
    [19]汪剑岭,王继民,朱建春,周金云,顾玉行.硫酸盐法从锂云母制取碳酸锂的研究[J].新疆有色金属,1996,(01):55~58
    [20]李承元,李勤,朱景和.国内外锂资源概况及其选冶加工工艺综述[J].世界有色金属,2001,30(2):25~29
    [21]蒋育澄,岳涛,高世扬,等.重稀碱金属铷和铯的分离分析方法进展[J].稀有金属,2002,26(4):299~302
    [22].闫明,钟辉,张艳.卤水中分离提取铷、铯的研究进展[J].盐湖研究,2006,(03):79~81
    [23]臧春梅.水合二氧化钛-磷钼酸铵微球复合无机离子交换剂的合成[J]离子交换与吸附2000.5:67~71
    [24]秦玉楠.新型AMoP/SiO2离子交换剂的制备及应用——从制盐母液中直接提取铯和铷的新方法[J]中国钼业2001.5:67~69
    [25] QunxuanYan,XinhaiLi.Extraction of valuable metal sfrom lepidolite. Hydrometallurgy2012(6):116-118
    [26] P.R. Danesi, Extraction selectivity of organic solutions of a cyclic polyether with respect to the alkalications Journal of Inorganic and Nuclear ChemistryVolume37, Issue6, June1975, Pages1479~1483
    [27]Z. H. Liu,K. Ooi. Preparation and Alkali-Metal Ion Extraction/Insertion Reactions with NanofibrousManganese Oxide having2×4Tunnel Structure[J].Chemistry of Materials,2003,15(19):3696-3703.
    [28]Wagner F S. Rubidium and Rubidium Compounds[M].Kirkoth-mer encyclopedia of chemical technology.(4th ed.). New York: Wiley&Sons,1997(3):215~221.
    [29Jankowski C K,Dozol J F,Allain F,et al. Use of cesium salts fordetection of crown ether macrocycles withthe electrospray ionizationmass spectrometry technique[J].Polish J Chem,276(5):701~711.
    [30] Gruner B,Plesek J,Baca J,et al. Crown ether substituted cobaltobis (dicarbollide)ion as selectiveextraction agents for removal of Cs+and Sr2+from nuclear waste[J].New J Chem,226(7):867~875.
    [31] A. M. Puziy. Cesium and strontium exchange by the framework potassium titanium silicateK3HTi4O4(SiO4)3·4H2O[J]. Journal of o K analytical and Nuclear Chemistry,1998,237(1-2):356~361
    [32] R. D. Ambashta,D. S. Deshingkar,P.. Wattal,D. Bahadur. Application of magnetite hexacyanoferratecomposites in magnetically assisted chemical separation of cesium[J]. Journal of Radioanalytical and NuclearChemistry,2006,270(3):123~127
    [33]康定学,陈宪满,刘子琴,王凤鸣,邢育访,肖福全,李品翠.用斜发沸石岩分离提取卤水中钾、铷、铯[J].化工学报,1983,(02):98~101
    [34]叶维玲,王建晨,何千舸.二环己基18冠醚-6/异丙氧基杯[4]冠-6-正辛醇共萃取Sr和Cs[J].核化学与放射化学,2009,(03):35~39
    [35]邓飞跃,尹桃秀,甘文文,河晓燕.锂云母提锂母液中钾铷铯的综合利用[J].矿冶工程,1999,(01):87~91
    [36]闫树旺,唐明林,邓天龙,黄志华.卤水中铷铯的分离与提取[J].矿物岩石,1993,(02):76~79
    [37]朱晓文,高建勋,王建晨,于波,宋崇立.从高放废液中萃取铯的杯冠化合物的研究进展[J].原子能科学技术,2002,(03):13~16
    [38]王武尚,侯瑞琴等. t.BAMBP萃取色谱法分离铷、铯[J].核化学与放射化学,1999,21(2):110~113
    [39]李杨从含铷的长石中提取RbCl的工艺研究[J]河北冶金1998.140~45
    [40]杨锦瑜等.t-BAMBP分离铷钾萃取机理及热力学函数研究[J]核化学与放射化学2007.756~59
    [41]陈正炎,赵炜,王秀香. t.BAMBP联合萃取铷、铯[J].稀有金属,1992,16(2):81~85
    [42]卢智.t—BAMBP萃取法分离提取高钾卤水中铷[J]广东微量元素科学2010,17(1)62~66
    [43]卢智,安莲英,宋晋. t-BAMBP萃取法分离铷钾[J].稀有金属,2010,(01):78~81
    [44]叶维玲,王建晨,何千舸.二环己基18冠醚-6/异丙氧基杯[4]冠-6-正辛醇共萃取Sr和Cs[J].核化学与放射化学,2009,(03):89~93
    [45]杨茜,胡满成,蒋育澄,等.高纯氯化铷的制备及其杂质含量的测定[J].化学研究与应用,2004,16(1):127~130
    [46]朱晓文,高建勋,王建晨,于波,宋崇立.从高放废液中萃取铯的杯冠化合物的研究进展[J].原子能科学技术,2002,(03):54-57
    [47]杜瑛,魏星耀,李建章,陈文浚,秦圣英.4(5),4′(5′)二烷酰基二苯并-21-冠-7萃取铯的研究[J].化学研究与应用,2004,(03):66~69
    [48] Maged A. Osman,Christoph Moor. Alkali Metals Ion Exchange on Muscovite Mica Journal of Colloidand Interface Science. Volume209, Issue1,1January1999:232~239
    [49]Reiner Goguel. Hydrothermal extraction of potassium, sodium, rubidium and cesium from rocks bylithium hydroxide and determination at very low natural levels. Analytica Chimica Acta. Volume169,1985:179~193
    [50]杨志红,杨磊等.沉淀法分离Cs和Rb的研究[J]核化学与放射化学2005.4,26(2):95~98
    [51]安莲英,宋晋,卢智,李陇岗. t-BAMBP萃取分离高钾卤水中的铷[J].化工矿物与加工,2010,(10):89~92.
    [52]张惠源,王榕树,林灿生,张先业.新型环境材料提铯离子筛的铯离子交换性能初探[J].环境科学学报,2001,(04):103~106
    [53]杜瑛,魏星耀,李建章,陈文浚,秦圣英.4(5),4′(5′)二烷酰基二苯并-21-冠-7萃取铯的研究[J].化学研究与应用,2004,(03):110~113
    [54] Rais J et al. Extraction and separation of (137)cs and (86)rb by means of4-t-butyl-2(alpa-methylbenzyl)phenol. TaIanta.1971.18(2):213~219
    [55] Rozen A met al.Mathematical simulation of the extractive reprocessing of nuclear fuel.3. redox onusing iron salts.Radiokh miya、l975.I(4):522~529
    [56]程兆年等.熔融Rb_2ZnCl_4的分子动力学模拟研究[J].物理学报1998.2:65~69
    [57]胡莉茵.陈正炎.叔一BAMBP萃取分离铷、艳工艺研究[J].稀有金属,1995,19(4):245~248.
    [58]陈正炎,陈富珍. t.BAMBP萃取铷、铯的相关因素研究[J].稀有金属,1992,18(5):331~334
    [59]陈正炎.萃取剂浓度和稀释剂对萃取铷、艳的影响[J].稀有金属,1992,16(6):405~408
    [60]陈正炎.t一BAMBP萃取铷、艳反应机理及热力学函数研究[J].稀有金属,1995,19(4):245~249;;
    [61]李林尉.应用离子选择性电极进行溶液热力学研究──ⅠⅩ.RbCl在水及混合溶剂中相对偏摩尔自由能、焓和熵的测定[J]华中师范大学学报(自然科学版).1998.278~82
    [62] Makato Takagi,以氧化还原反应为推动势实现离子组分的液膜分离.国际溶剂萃取会议译文集1986P:232~238
    [63] H.S.Park, J.H.Yoo.液膜传质的分析和实验研究.国际溶剂萃取会议译文集1986P:256~259
    [64] M.Verhaege, F.Leysen.在萃取柱中用三异辛胺-三氯乙烯混合溶剂从氯化物溶液中萃取分离钴锰.国际溶剂萃取会议译文集1986P:389~393:
    [65]贾莉英,陈晓青,危俊婷,刘英.新型离子交换树脂的合成及其对Rb+的交换性能[J].中南工业大学学报(自然科学版),2001,(01):76~80
    [66]储昭升.球形复合无机离子交换剂的制备及其对Sr2+和Cs+的去除[J]环境化学2003.1:45~48
    [67]李玉红.水合五氧化二锑-磷钼酸铵复合交换剂的合成及性能研究[J]核化学与放射化学1999.2:54~58
    [68]岳涛,高世扬,等.重稀碱金属铷和铯的分离分析方法进展[J].稀有金属,2002,26(4):299~302.
    [69]锁箭,陈颖奇,李茹华,等.卤水中铷的富集提取[P].中国:CN93104780.3,1994.
    [70]陈正炎,陈富珍. t.BAMBP萃取铷、铯的相关因素研究[J].稀有金属,1995,19(4):301~304
    [71]戴强等.石英一长石浮选分离的进展[J].非金属矿,1996(2):16~19
    [72]印万忠.氢氟酸在硅酸盐矿物浮选中的作用机理[J].黄金学报,1999.12,1(4):270~273
    [73]刘凤春等.硅砂有氟浮选与无氟浮选分离r艺研究[J].中国金属矿工业导刊,2003(.6):3~6
    [74]陈雯等.无氟少酸浮选分离石英与长斫的试验研究[J].矿冶工程,2003,6,23(3):87~90
    [75]闫勇等.石英长石浮选分离的新药剂制度[J].国外金属矿选矿,1997(9):23~27
    [76]A·维蒂亚德哈尔等.在长石与石英分离中阳离子捕收剂与阴离子捕收剂混合物在矿物表面上的吸附和浮选的选择性[J]国外金属矿选矿,2003(5):12~16
    [77] Fuerstenau,D.W.Pure and applied CheInistry,fuerstenau Editor,1990:329~332
    [78]Harris.G.H.,Xanthates,Encyclopedia of Chemical Technology,Wiley,1995:36~39
    [79] Donald E Zipperian and U Svensson. Plant practice of flotaire column flotation machine for Metalic andcoal flotation. Coal flotation.1998. chapter743~45.
    [80]马荣骏.湿法冶金原理2007,Page325~331
    [81]唐小红,刘福.氯碱厂多余次氯酸钠回收利用研究.[J]化工学报.2008,5(4):57~60
    [82]张志岭等.氯碱工业的腐蚀与防护[J]氯碱工业.2007,7(7):42~45
    [83]氯碱工业的腐蚀与防护[J]。氯碱工业.2007,6(7):42~`45
    [84]戴征路.浅谈氯碱生产中废氯气的处理[J].黑龙江科技信息.2009,3.(4):47~51
    [85]王继斌,罗传义.工业废气中氯化氢的综合利用[J].吉林化工学院学报。2001.6,18(2):28~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700