红柱石与石英正浮选分离机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁工业的发展,耐火材料的需求日益上升,红柱石作为一种优质的耐火材料原料也越来越受重视。由于我国红柱石原矿中含有铝硅酸盐矿物、石英等大量脉石,品位较低,需要经过选别方可利用。
     本论文针对红柱石和石英的浮选分离问题,进行了纯矿物和实际矿石的浮选试验,并借助动电位测试以及红外光谱分析等手段研究了药剂与矿物的作用机理。
     纯矿物试验结果表明:在pH=3.0~3.1时,CSB作捕收剂可以实现红柱石和石英的正浮选分离;当矿浆中存在Fe3+时,石英被明显活化,红柱石和石英的可浮性基本一致,此时需添加抑制剂才能实现它们的正浮选分离;CSY表现出较好的选择性抑制作用,对Fe3+活化的石英有较好的抑制效果而基本不抑制红柱石。因此,在pH=3.0~3.1的强酸性条件下,采用CSY为抑制剂,CSB为捕收剂可以实现红柱石和石英的正浮选分离。
     应用以上规律,实际矿石试验结果表明:采用“强磁选除铁一摇床脱泥脱钛一反浮选云母一正浮选分离红柱石与石英”的工艺流程,以H2SO4为pH调整剂,CSY为抑制剂,CSB为捕收剂,获得含A120353.46%的合格红柱石精矿以及含Si0292.74%的普通石英砂精矿
     动电位测试表明:试验用红柱石和石英的零电点分别为4.5和2.0左右,在pH=3.0~3.1时,红柱石的动电位为正值,而石英为负值,因此采用阴离子捕收剂CSB可能实现它们的正浮选分离。Fe3+使红柱石和石英的表面动电位向正值改变,而Al3+、Ca2+和Mg2+仅使它们的动电位略微降低,从而表明Fe3+对红柱石和石英均有活化作用;抑制剂CSY使Fe3+活化的石英表面动电位向负值方向变化,达到抑制的目的。
     解吸试验表明:红柱石与捕收剂CSB的吸附既有物理吸附又有化学吸附,而石英与CSB的吸附方式则为物理吸附。
     红外光谱分析表明:捕收剂CSB与红柱石的吸附方式有物理吸附和化学吸附,以化学吸附为主,在红柱石表而产生新的吸收峰,从而对红柱石有捕收作用;抑制剂CSY的作用机理主要是靠静电力与Fe3+及其水解产物作用,从而消除其对石英的活化,达到抑制的目的。
With the development of the iron and steel industry, the requirement of refractory materials is continually increasing. Andalusite, as a superior raw material of refractory materials, has been drawing more and more attention. Since there are a large number of gangues, such as aluminosilicate and quartz, in the raw ore of China's andalusite, the grade is low and it can be utilized only after beneficiation.
     In order to achieve the separation of andalusite and quartz, the flotation experiments of pure minerals and actual ore were carried out, and the reagents mechanism were studied by means of zeta potential measurement, infrared spectroscopy, and so on.
     The results of single mineral flotation tests showed that the flotation separation of andalusite and quartz was achieved by adopting CSB as collector. When there existed Fe3+ in the pulp, quartz was activated obviously, which caused the flotation behavior of the two minerals identical, and should add depressants to achieve the separation. CSY exhibited good selectivity, it depressed quartz activated by Fe3+ effectively, whereas hardly influenced the floatability of andalusite.
     The experimental results of actual ore tests proved that the andalusite concentrate with a grade of 53.46% A12O3 and the quartz concentrate with 92.74% SiO2 was obtained by adopting the flowsheet of "iron removal by high-intensity magnetic separation-slimes and titanium removal by shaking table-the beneficiation of mica by reverse flotation-the separation of andalusite by direct flotation", using sulfate as pH regulator, CSY as depressant, and CSB as collector.
     The results of zeta potential measurement indicated that the point of zero charge of andalusite and quartz was approximately 4.5 and 2.0 respectively. The zeta potential of andalusite at pH 3.0~3.1 was positive and quartz was negative, so they can be separated by direct flotation using CSB, an anionic collector. The zeta potential of both andalusite and quartz turned positive by Fe3+, while it had only a little decrease by Al3+, Ca2+ and Mg2+. The zeta potential of quartz activated by Fe3+ changed to negative direction through the addition of CSY.
     The desorption experiments indicated that the adsorption of the collector CSB on andalusite was not only physical adsorption, but also chemical adsorption. While it was presented only by physical adsorption on the surface of quartz.
     The results of infrared spectroscopy showed that CSB adsorbed on andalusite by physical and chemical adsorption, and chemical adsorption was dominant, which generated new characteristic peak on the surface of andalusite. The adsorption manner of CSY on the surface of quartz activated by Fe3+ was physical adsorption, it could act with Fe3- and its hydrolysate by electrostatic force, thus eliminating the activation and achieving the depression.
引文
[1]文洪杰,苗圃,李文超.红柱石的莫来石化动力学[J].耐火材料,1995,29(3):140~141.148.
    [2]Iidefonse J.P.,Gabis V., Cesbron F.Mullitization of andalusite in refractory bricks[J].Key Engineering Materials,1997,132~136:1798~1801.
    [3]贾江议,李谦,曹贞源.红柱石的莫来石化作用及机理[J].河南科技大学学报(自然科学版),2004.,25(3):100-104.
    [4]李柳生,平增幅.红柱石的莫来石化[J].硅酸盐通报,2006.(1):34-36.
    [5]杨直夫.红柱石—生产优质耐火材料用最有前途的材料[J].国外耐火材料,2000,(3):32~37.
    [6]Dong Hongqin, Shen Jianping, Wang Li.Jiang. Mingxue. Characteristics and Application of Andalusite Material and Andalusite-Based Refractory[J].China's Refractories,2005,(2):3~15.
    [7]Dyubreuil P.,Filari E.,Sobolev V.M. Application of andalusite refractories in iron and steel industry[J].Ogneupory i Tekhnicheskaya Keramika,1999,(6):27~34.
    [8]刘伟,蔡国庆,王希波等.红柱石耐火材料的研究开发与应用[J].山东冶金,2007,29增刊:10-14.
    [9]Dubreuil P., Sobolev V.M. Andalusite is perspective material for producing the high quality refractories[J].Ogneupory i Tekhnicheskaya Keramika,1999,4:24~30.
    [10]廖桂华,徐国辉,李柳生等.锆英石细粉对红柱石基耐火材料性能的影响[J].非金属矿,2004,27(4):6-8.
    [11]Li Bowen, Hwang, Jiann-Yang, et al.Phase transformation of andalusite and its impacts on refractory brick reinforcement[CA]. TMS Annual Meeting, 2006:295~302.
    [12]北京炎黄投资管理有限公司,北京科技大学.一种用红柱石为原料生产铝硅合金的组合还原剂[P].中国专利:200410009843.2005-04-13.
    [13]朱黎明,丁基俭.红柱石一莫来石陶瓷窑具的研制与生产[J].中国陶瓷,1993,(6):1~5.
    [14]曾令可,任雪潭,贺海洋.掺杂红柱石对堇青石质窑具抗热震性的影响[J].华南理工大学学报(自然科学版),2001,29(6):60-63.
    [15]田秀洲.红柱石电炉顶砖的研制与生产[J].耐火材料,1995,(4):244.
    [16]李娅莉,杨晶.红柱石的宝石学特征研究[J].超硬材料工程,2006,18(6):55-58.
    [17]张德琦.红柱石矿物的世界产销[J].建材工业信息,1997,(2):12.
    [18]林彬荫.蓝晶石红柱石硅线石[M].北京:冶金工业出版社,1998.
    [19]章少华.系列报道之二—南非非金属矿产资源一瞥[J].中国非金属矿工业导刊,2004,(1):55~57.
    [20]Overbeek P.W.Andalusite in South Africa[J].Joural of the South African Institute of Mining and Metallurgy,1989,89(6):157~171.
    [21]李大辉摘译.国外红柱石生产及市场现状[J].英国《采矿杂志》,1998,(5):19.
    [22]魏红.世界矽线石类矿物主要生产国现状[J].矿产保护与利用,1990,(1):25~29.
    [23]Overbeek P.W.(汪镜亮,译).南非的红柱石[J].矿产保护与利用,1990,(3):28~34.
    [24]李大辉摘译.法国的红柱石生产[J].英国《工业矿物》,1998.,(6):17.
    [25]靳亲国,李静,刘炎军.我国红柱石的资源状况、生产和应用[J].耐火材料,2002,36(5):284~286,289.
    [26]申晓萍,汪立今.新疆红柱石矿物的开发前景初探[J].矿业研究与开发,2006,,(4):5~6,92.
    [27]Potudin D.V. Deposits of sillimanite, kyanite, and andalusite in China[JA]. Ogneupory i Tekhnicheskaya Keramika,2004,(2):34~38.
    [28]周中定.红柱石矿石选矿工艺[J].中南冶金地质,1998,(1):97-1()().
    [29]丁玉芬,杨子亭.红柱石的选矿及其应用[J].中国钼业,1995:31-34.
    [30]汪镜亮.红柱石的加工及应用[J].矿产保护与利用,1991,(3):38-45.
    [31]夏绍柱,冯起贵,候若洲等.红柱石、硅线石、蓝晶石矿物资源及其选矿[J].金属矿山,1994,(2):37-44.
    [32]杨大兵,张一敏,杨仕勇等.粗颗粒红柱石的重介质分选研究[J].矿冶工程,2003.,23(2):33~35.
    [33]罗清平.红柱石矿及其选矿特点[J].湖南有色金属,1990,6(6):15-16.
    [34]孔建河.我国“三石”矿的开发和选矿[J].国外金属矿选矿,1996,(4):39-41.
    [35]夏绍柱.红柱石、硅线石、蓝晶石矿物资源及其选矿[J].金属矿山,1994,(2):33-44.
    [36]毛钜凡,张志京.蓝晶石类矿物浮选的表面化学研究[J].国外金属矿选矿,1993.f6):28~33.
    [37]姜有才,李兆惠,常晓荣等.红柱石矿可浮性的研究[J].国外金属矿选矿,1983,(3):21.
    [38]青海地质局中心实验研究报告,1982.
    [39]Cariou Florence,Predali Jean-Jacques,Raveneau Philippe.Andalusite beneficiation process[P].EP Patents:323323,1989-07-05.
    [40]冶金部马鞍山矿山研究院研究报告,1993.
    [41]吴力忠,张一敏,翁达.红柱石分选流程及主要药剂机理研究[J].金属矿山,1998,(1):21~24.
    [42]胡志刚,代淑娟.辽宁某红柱石矿工艺矿物学特征及选矿流程选择[J].有色金属(选矿部分),2004,(6):29-31.
    [43]聂洪彪.内蒙古某红柱石选矿试验研究[J].科技与经济,2006,(9):94~95.
    [44]康永,胡志刚.某含铁红柱石选矿试验研究[J].矿产综合利用,1997,(5):9-12.
    [45]李建勤.某红柱石矿的选矿工艺研究[J].非金属矿,1997,(5):48-50,75.
    [46]翁达,周灵初.红柱石浮选药剂的选择及其作用[J].武汉冶金科技大学学报,1998,21(1):1-4.
    [47]纪振明,印万忠,冀秀荣等.我国红柱石矿选矿现状及展望[J].中国非金属矿工业导刊,2010,(3):46-49.
    [48]姚燕燕,谢建宏,张治元.陕西眉县红柱石选矿试验研究[J1.金属矿山,2003.(11):30-31,48.
    [49]樊绍良,黎燕华.甘肃漳县红柱石矿浮选工艺的研究[J].金属矿山,1999,(12):37~39.53.
    [50]胡志刚,代淑娟.辽宁某红柱石矿工艺矿物学特征及选矿流程选择[J].有色金属(选矿部分),2004.(6):29-31.
    [51]周中定.角岩型红柱石矿选矿工艺试验研究[J].非金属矿,2002,25(5):43-44,19.
    [52]张一敏,肖志东,杨大兵.新疆某红柱石矿石选矿试验研究[J].矿产保护与利用,1996,(2):26~29.
    [53]牛福生,徐晓军,高建国等.石英砂选矿提纯工艺研究[J].云南冶金,2001,30(1):18~21.
    [54]牛福生,倪文.高纯石英砂选矿提纯试验研究[J].中国矿业,2004,13(6):57-59.
    [55]赵洪力.用超声波进行的石英砂除铁试验研究[J].玻璃与搪瓷,2004,23(2):44-49.
    [56]刘理根,高惠民,张凌燕.高纯石英砂选矿工艺研究[J].非金属矿,1996,(4):39-41.
    [57]郭金福.安阳石英砂岩矿矿石精选净化新工艺研究[J].非金属矿,2000,23(5):41-42.
    [58]Burat, F.,Kokkilic O.,Kangal, O.et al. Quartz-feldspar separation for the glass and ceramics industries[J].Minerals and Metallurgical Processing,2007,24(2):75~80.
    [59]刘国库,张文军,马正先等.硅石选矿提纯工艺研究现状[J].有色矿冶,2007,23(6):26-30.
    [60]Shehu N.,Spaziani E. Separation of feldspar from quartz using EDTA as modifier[J].Minerals Engineering,1999,12(11):1393~1397.
    [61]刘渝燕,张会堂,洪飞.冈比亚石英砂矿无氟浮选提纯新工艺试验[J].山东地质,2002,18(2):42~45.
    [62]戴强,唐甲莹,程正柄.石英-长石浮选分离的进展[J].非金属矿,1996,(2):16-21.
    [63]于福顺.石英长石无氟浮选分离工艺研究现状[J].矿产保护与利用,2005,,(3):52~54.
    [64]Wakamatsu T, Ei Salmawy M.S. Selective flotation of quartz and feldspar using non-ionic surfactant[J]. Australasian Institute of Mining and Metallurgy Publication Series,2005:803~805.
    [65]Ei-Salmawy M.S.,Nakahiro Y.,Wakamatsu T. Role of alkaline earth cations in flotation separation of quartz from feldspar[J].Minerals Engineering, 1993,6(12):1231~1243.
    [66]周永恒.高纯度石英的酸浸实验研究[J].矿物岩石,2005,25(3):23-26.
    [67]包申旭.超细高纯石英制备试验研究[D].武汉理工大学硕士学位论文,2004,11.
    [68]张士轩.去除硅石中气液包裹体的研究[J].锦州师范学院学报(自然科学版),2002,23(3):13~15.
    [69]董宏军,陈荩,毛钜凡.红柱石及伴生矿物的可浮性与浮选分离[J].矿产综合利用,1995.(5):15~18.
    [70]李筱晶,袁楚雄,袁继祖.红柱石浮选特性及捕收剂作用机理研究[J].武汉工业大学学报,1993.15(2):63~67.
    [71]翁达,周灵初.烷基磺酸盐捕收红柱石作用机理初探[J].武汉冶金科技大学学报,1998,21(2):134~137.
    [72]周灵初,张一敏.十二烷基磺酸钠捕收红柱石作用机理研究[J].金属矿山,2010,(6):85~89.104
    [73]罗清平.红柱石与石英浮选分离的研究[J].有色金属(选矿部分),1990.(6):19~21.
    [74]王淀佐,胡岳华.氢氧化物表面沉淀在石英浮选中的应用[J].中南矿冶学院学报,1990,21(6):249~253.
    [75]董宏军,陈荩,毛钜凡.金属离子对红柱石的吸附与活化[J].有色金属,1996,48(2):35~39.
    [76]晋勇,孙小松,薛屺.X射线衍射分析技术[M].北京:国防工业出版社,2008.
    [77]刘邦瑞.浮选理论基础(二)矿物表面电性及其对浮选的影响[J].云南冶金,]980.(5):54~60.
    [78]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005.
    [79]闻辂.矿物红外光谱学[M].重庆:重庆大学出版社,1989.
    [80]林永.实用付里叶变换红外光谱学[M].北京:中国环境科学出版社,1991.
    [81]Manser R M硅酸盐矿物的浮选[J].国外金属矿选矿,1979,(7):20-37.
    [82]孙传尧.硅酸盐矿物浮选原理[M].北京:科学出版社,2001.
    [83]Sikora F.J., Stevenson F.J. Silver complecation by humic substances:conditional stability constants and nature of reactive site[J].Geoderma,1988,(42):353~363.
    [84]王英梅.腐殖酸钠在铜硫矿石浮选中的作用机理[J].武汉科技大学学报(自然科学版),2002,25(4):342-344.
    [85]庞煜霞,邱学青,杨东杰等.木质素磺酸钙的络合性能研究[J].林产化学与工业,2004,24(4):28-32.
    [86]朱建光.浮选药剂[M].北京:冶金工业出版社,1993.
    [87]Manser R.M.Handbook of Silicate Flotation[M].England:Warren Spring Laboratory,1975.
    [88]韦书立,魏克武.烷基磺酸盐浮选蓝晶石的研究[J].矿产综合利用,1991.(1):49-52.
    [89]刘亚川,龚焕高,张克仁.石英长石矿物结晶化学特性与药剂作用机理[J].中国有色金属学报,1992,2(4):21-25.
    [90]毛钷凡,程卫泉.硅灰石与方解石的浮选分离研究[J].矿冶工程,1991,11(2):43-47.
    [91]Gaudin A M, Fuerstenau D W. Quartz Flotation With Cationic Collectors[J]. Transactions AIME,1955,202:958~962.
    [92]崔亨变,吴在贤.蓝晶石与红柱石的界面现象与浮游特性[J].日本矿业会志,1965,81:614~620.
    [93]Smolik J.J,Harman,Fuerstenau D.W.Surface characteristics and floation of aluminosilicate[J]. Tranactions SME/AIME,1966,235:367~375.
    [94]董宏军,陈荩,毛钜凡.蓝晶石类矿物的选矿工艺与理论述评[J].国外金属矿选矿,1993,(12):8~11,7.
    [95]爱格列斯MA主编,罗荣昌,郭庆华译.硅酸盐和氧化物的浮选[M].北京:中国工业出版社,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700