伟晶岩钾钠长石矿选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国长石资源丰富,但大多数矿石品质较低不能直接使用。随着大量优质长石资源的开发与利用,优质长石资源日益减少,大量的低品质长石资源有待开发,而选矿提纯技术研究是提高长石资源利用率和产品质量的关键所在。山东某地长石矿床属于伟晶岩矿床,矿石储量大、容易开采,但杂质矿物较多,分选难度较大。矿石中含有一定量的方解石和云母,需将其浮选去除。根据该伟晶岩长石矿的特性,进行了磨矿、脱泥、磁选、反浮选方解石、反浮选云母等工艺的系统试验研究,结果表明:
     (1)该长石矿以钠长石、钾长石和条纹长石为主,主要脉石矿物是石英、云母、方解石,还有少量的赤褐铁矿、金红石和锆石等。其中钠长石49%、钾长石16%、条纹长石4.5%、石英17%、云母类矿物9.5%、方解石3%、赤褐铁矿0.5%,其他矿物<0.5%。有害元素铁主要赋存在黑云母和赤褐铁矿中,钙主要赋存在方解石中。
     (2)通过对比三种磨矿方式,确定了采用磨矿效率最高的钢球介质磨矿。并验证了通过“脱泥—磁选”流程可有效去除钢球介质磨矿过程中产生的铁杂质。
     (3)通过磨矿细度试验,确定了该矿石的适宜磨矿细度为-0.074mm63.68%;
     (4)通过考察铁、钙元素在矿石各粒级中分布情况,可知Fe203和CaO主要分布在-0.030mm的细粒级中,脱泥去除-0.030mm粒级矿物,可有效去除矿物中的微细粒铁、钛矿物和磨矿带来的铁杂质。进而确定了脱泥粒度为-0.030mm;
     (5)通过磁选试验,确定了磁选适宜条件为场强0.9T,矿浆流速0.8cm/s,磁选机脉动频率300次/分;
     (6)通过反浮选方解石试验,确定了浮选方解石的最佳药剂制度为:pH调整剂Na2C03用量为600g/t,捕收剂C用量为1500g/t;
     (7)通过反浮云母试验,确定了浮选云母的药剂制度为:pH调整剂捕收剂H2SO4用量为2000g/t,捕收剂(捕收剂A+烃油A)的用量为160g/t;
     (8)通过“磨矿—脱泥—磁选—浮选方解石—浮选云母”的工艺流程,对该矿石进行选矿提纯,得到的精矿指标为:TFe2O3=0.12%、CaO=0.26%、Na20+K20=11.05%。精矿达到了我国长石产品在釉料、陶瓷白胚和平板玻璃等方面应用的一级质量标准。
     (9)通过机理分析可知,在弱碱性(pH=8)条件下,捕收剂C在方解石表面的吸附有化学吸附的作用;在酸性(pH=3.5)条件下,捕收剂A在云母表面的吸附是通过静电力作用实现的,属于物理吸附。
The feldspar resource in our country is very rich, but most of which don't use directly due to its low quality. With exploiting and using of much high quality feldspar resource, the high resource is more and more poor, then lots of low quality is awaited to developed.The technical research on ore-flotation purification is the key to improve the use ratio of feldspar resource, and the quality of feldspar product.This ore deposit in Shandong belong to pegmatite deposit, which reserve is large, easy to exploit,but the impurity mineral is relatively much, so the difficuty to separation is rather hard.This ore contain a quatity of calcite and mica,which must be got rid by flotation.According to feature of this feldspar, it is researched syetemetically by a series of experiments:ore-griding, desliming, magenatic separation, calcite re-flotation and mica re-flotation.
     (1) As to this feldspar ore, the major mineral are albite, potash feldspar and perthite. The major gangue mineral contains quartz, mica, calcite and a lillte hematite, limonite, rutile and zircon.This ore contains albite49%, potash feldsparl6%, perthite4.5%, quartz17%, mica9.5%, calcite3%, hematite and limonitel%,other ore <0.5%.The element of iron basically is contained in biotite, hematite and limonite,titanium is contained in rutile and autunite basically is contained in calcite.
     (2) Compared with three means of grinding, the paper comfirmed that grinding ore by steel ball media is highest in efficiency, and the iron from steel ball grinding process can effectively get rid of by process "desliming-magenatic separation"
     (3) According to the experiment of grinding fineness, this paper comfirmed the available grinding fineness is-0.074mm63.68%.
     (4) By investigating the distribution of iron and autunite, the paper learned that Fe2O3 and CaO are distributed in small fraction of -0.030mm, and then demonstrated that desliming to the fineness of -0.030mm can effectively get rid of iron-mineral, titanium- mineral and iron from grinding process.and finally comfirmed the desliming fineness is -0.030mm.
     (5) According to 3 groups experiments, this paper comfirmed the best available conditions for magenatic separation are that magnetic field intensity is 0.9T, the flow rate of ore slurry is 0.8cm/s.the impulse of magnetic separator is 300 every minute.
     (6) According to 4 groups experiments of calcite re-flotation,this paper comfirmed the best medicament conditions for calcite re-flotation are that the dosage of pH modifier Na2CO3 is 600g/t,the dosage of collector C is 1500g/t.
     (7) According to 3 groups experiments of mica re-flotation, this paper comfirmed the best medicament conditions for mica re-flotation are that the dosage of pH modifier H2SO4 is 2000g/t, the dosage of collector (collector A+ hydrocarbon oil A) is 160g/t.
     (8) By a series of experiments, this paper comfirmed the best technological process to purify this feldspar, the process is "grinding-desliming-magenatic separation-calcite re-flotation-mica re-flotation",by which the final concentrate can be obtained which the content of total iron is 0.12%,calcium oxide was 0.26% and the sum Na2O and K2O is 11.05%.This final concentrate reached the first quality standard of feldspar for glaze, white blank of porcelain and plate glass.
     (9) By analyzing the mechanism between minerals and collectors, the paper verified that the absorption between collector C and calcite may be chemisoption in the alkalescent condition (pH=8), and in the acid condition (pH=3.5), the collector A absorbed on the surface of mica is depend on electronstatic force,which is physisoption.
引文
[1]董伟霞,顾兴勇,包启富.长石矿物及应用[M].北京:化学工业出版社,2010,1-22
    [2]李小静,张福存,方大文.长石精加工现状及发展趋势[J].金属矿山,2003,(02):46-48
    [3]Smith, J. V. Feldspar Minerals, Vol. Ⅰ, Ⅱ,Ⅲ[M]. Berlin:Springer Verlag,1988
    [4]任觉世.工业矿产资源开发利用手册[M].武汉:武汉工业大学出版社,1993.943-957
    [5]马鸿文.工业矿物与岩石(第二版)[M].北京:化学工业出版社,2005.44-52
    [6]李玉书,吴落义,李瑛.电瓷工艺与技术[M].北京:化学工业出版社,2007.95-99
    [7]《非金属矿工业手册》编委会.非金属矿工业手册(下)[M].北京:冶金工业出版社,1991.867-876
    [8]小营,古林.漫谈长石的性质、用途和综合利用[J].广东建材,1994,(04):33-36
    [9]成都地质学院《矿床学》编写组.矿床学(上)[M].地质出版社,1978,274-275
    [10]M·阿格斯等.用于陶瓷工业的低品位长石矿石的选矿[J].国外非金属矿选矿,2001,(12):34-37.
    [11]高惠民,袁继组,张凌燕,王国志等.长石除铁试验研究[J].中国陶瓷,2006,42(4):46-48.
    [12]任子杰,罗立群,张凌燕等.长石除杂的研究现状与利用前景[J].中国非金属矿工业导刊,2009,(1):19-22.
    [13]陈国安.长石选矿工艺流程除铁试验研究[J].矿产保护与利用,2000,(6):21-23
    [14]黄强,邸素梅.长石与市场[J].中国非金属矿工业导刊,2000,(02):42-44
    [16]方邺森.中国陶瓷矿物原料[M].南京:南京大学出版社,1990.152-163
    [17]曹明礼,高惠民,于阳辉等.陶瓷原料长石精选除铁试验研究[J].矿产保护与利用,1999,(03):16-18
    [18]Murray Lines.亚洲长石生产及消费[J].非金属矿,2005,(03):5-7
    [19]高惠民,袁继祖,张凌燕等.长石选矿工艺研究[J].中国非金属矿工业导刊,1999,(04):24-25
    [20]陈国安.长石选矿工艺流程除铁试验研究[J].矿产保护与利用,2000,(6):21-23
    [21]王会云,李小静.超纯长石粉磁选工艺及设备研究[J].矿产保护与利用,2004,(3):37-38
    [22]王兆元.Slon立环脉动高梯度磁选机在长石及霞石非金属矿除铁提纯的工业试验及应用[J].江西有色金属,1998,12(2):24-27
    [23]李小静CRIMM稀土永磁辊式强磁选机在化念铁矿的应用研究[J].金属矿山,2001,(8):26-27
    [24]吕一波.钾长石深加工及综合利用[J].中国非金属矿工业导刊,2001,(4):23-25
    [25]庞玉荣,孟建卫等.某高铁钾长石矿的除铁试验研究[J].现代矿业,2009,(12)24-26
    [26]O.巴耶特.在浮选土耳其长石矿石时不同捕收剂混合使用的效果[J].国外金属矿选矿2006,(3):14-15
    [27]M.S.Celik, I.Can, R.H.Eren. Removal of titanium impurities from feldspar ores by new flotation collectors. Minerals Engineering.1998(12):1201~1208
    [28]戴强,唐甲莹,程正柄.石英-长石浮选分离的进展[J].非金属矿,1996,(2):16-18
    [29]刘凤春,刘家弟.用阴阳离子混合捕收剂浮选分离石英-长石[J].中国矿业,2000,9(3):59-60
    [30]胡铁流,徐洪英.长石矿物及采选工艺[J].中国非金属矿工业导刊,2000,(2):12-16
    [31]Vidyadhar, A; Hanumantha Rao, K. Separation of feldspar from quartz:Mechanism of mixed
    [32]戴强,唐甲莹,程正柄.石英—长石浮选分离的进展[J].非金属矿,1996,(2):16-18
    [33]于福顺,王毓华,黄传兵.石英—长石无氟浮选分离工艺研究现状[J].中国非金属矿工业导刊,2005,(2):41-43
    [34]Demir, C. Differential separation of albite from microcline by monovalent salts in HF medium[J]. Minerals and Metallurgical Processing,2003, (3):120-124
    [35]Demir, C. Flotation separation of Na-feldspar from K-feldspar by monovalent salts[J]. Minerals Engineering,2001, (7):733-740
    [36]Karaguzel, C. Concentration of K-feldspar from a pegmatitic feldspar ore by flotation[J]. International Journal of Mineral Processing,2006, (2):122-132
    [37]杨南如.无机非金属材料测试技术(修订版)[M].武汉:武汉理工大学出版社,1993.2-11
    [38]周乐光.工艺矿物学(第三版)[M].北京:冶金工业出版社,2007.19-20
    [39]万朴,周玉林,彭同江.非金属矿产物相及性能测试与研究[M].武汉:武汉工业大学出版社,1992.26-52
    [40]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.404-411
    [41]朱建光.浮选药剂[M].北京:冶金工业出版社,1993.81-83
    [42]刘旭.微细粒白钨矿浮选行为研究[J].中南大学硕士学位论文,2010.50-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700