B-C-N化合物新相的冲击波合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论预言B-C-N化合物可能存在多种结构并且其某些亚稳相可能具备优良的热学、光学、电学、力学特性及潜在应用价值,也将是金刚石和c-BN的优良替代品,因此该类材料的合成研究引起了各国学者的关注。冲击波加载技术具有ns级快速升温升压的特点,也是合成新材料的重要实验手段之一。本文对B-C-N的研究现状作了简要论述,并运用二级轻气炮冲击加载与样品回收技术,在40GPa附近探索了B-C-N化合物新相合成条件。
     本实验将不同比例的H3BO3和C3H6N6在水溶液中充分溶解然后进行干燥,经干燥处理后的样品在流动氮气的保护下按照特定的加热程序在经过改装的马沸炉中进行热处理,使其在950。C条件下发生高温热解反应制得前驱物。运用二级轻气炮对前驱物进行冲击加载与样品回收实验。X射线衍射(XRD)、高分辨透射电镜(HRTEM)、电子衍射图谱(ED)、X射线光电子能谱(XPS)等检测技术分析结果表明,三种不同B-C-N原子比例的前驱物在40GPa强冲击合成条件下都能生成一种新的B-C-N致密新相单晶体,尺寸约为60nm。具有这种结构的B-C-N化合物在文献中未见报道过,因此本文结果对进一步探索B-C-N新相的结构形态及其高温高压合成条件具有参考意义,也为理论工作者提供了一种新的B-C-N结构模型。
Theory predicts that B-C-N compounds may exist in many structural forms and have excellent physical properties. Synthesis of such materials is attracting the attentions of scientists. In this thesis, a two-stage light-gas gun and the corresponding shock-recovery technology were applied to explore the synthesis conditions of B-C-N compounds of new phase structures under40GPa. XRD、 HRTEM、 ED and XPS analysis showed that all the three precursors of different B-C-N atomic ratio can generate a new dense phase of B-C-N compounds in the processes of strong shock-loading conditions of40GPa. Single crystals of60nm size are directly observed in the recovery sample. The new B-C-N compound of such structure has not been reported in the literature before, therefore, this discovery is of significance for exploring the new structures of B-C-N compounds and the synthesis condition in future, meanwhile, a new structures of B-C-N compounds is waiting to be studied by the theoretical researchers.
引文
1. 张文凤.金刚石合成研究进展.科技资讯,2010(024):p.115-115.
    2. E.Gregoryanz, V.L.S., Materials Today, 2005:p.44-51.
    3. 曾媛.超硬材料研究进展.材料导报,2000.11.
    4. 赵文杰.第一性原理研究几种过渡金属硼化物、氮化物及BC5的结构、弹性及其电子性质.河南大学.博士学位论文.2010.
    5. 林琳.超硬材料Si<,3-x>C<,x>N<,4>的第一性原理研究.西南大学.硕士学位论文.2007.
    6. 王艺.Be基超硬材料的第一性原理研究.天津大学.硕士学位论文.2009.
    7. Solozhenko, V.L., et al., Synthesis of superhard cubic BCN. Applied Physics Letters, 2001. 78: p.1385.
    8. Sun, H., et al., Structural forms of cubic BC2N. Physical Review B,2001.64(9):p. 094108.
    9. Z.Pan, H.S., C.Chen, Phys.Rev.B,2006.73:p. 214111-4.
    10. M.Mattesini, S.F.M., International J.Inorg. Mater, 2001.3: p.943-957.
    11. Knittle, E., et al., High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B,1995.51(18):p.12149.
    12. Nakano, S., et al., Characterizations of several cubic phases directly transformed from the graphitic BC2N. Materials Science and Engineering: A, 1996.209(1):p. 26-29.
    13. Komatsu, T., et al., Creation of superhard BCN heterodiamond using an advanced shock wave compression technology. Journal of Materials Processing Technology, 1999.85(1-3):p. 69-73.
    14. 孙弘,张翼,陈长风超硬立方BC2N材料与金刚石的比较.物理,2005.34(6):p.414-417.
    15. Tkachev, S., et al., Elastic moduli of the superhard cubic BC2N phase by Brillouin scattering. Physical Review B,2003.68(5):p.052104.
    16. Chen, S., X. Gong, and S.H. Wei, Superhard Pseudocubic BC2N Superlattices. Physical review letters,2007.98(1):p. 15502.
    17. Pan, Z., H. Sun, and C. Chen, Colossal Shear-Strength Enhancement of Low-Density Cubic BC2N by Nanoindentation. Physical review letters,2007.98(13):p.135505.
    18. Kim, E., et al., Cubic phases of BC2 N:A first-principles study. Physical Review B, 2007.75(18):p. 184115.
    19. Chen, S., X. Gong, and S.H. Wei, Crystal structures and mechanical properties of superhard BC2N and BC4N alloys:First-principles calculations. Physical Review B, 2008.77(1):p.014113.
    20. Gao, F., et al., Hardness of covalent crystals. Physical review letters,2003.91(1):p. 15502.
    21. Zhang, Y., H. Sun, and C. Chen, Superhard Cubic BC2N Compared to Diamond. Physical review letters,2004.93(19):p.195504.
    22. Tateyama, Y., et al., Proposed synthesis path for heterodiamond BC2N. Physical Review B, 1997.55(16):p.10161-10164.
    23. Cheng, Y., et al., Ab initio determination of lattice dynamics and thermodynamics of β-BC2N. Solid State Communications, 2008.146(1-2):p.69-72.
    24. Luo, X., et al., Body-centered superhard BC2N phases from first principles. Physical Review B,2007.76(9):p.094103.
    25. Caretti, I., I. Jimenez, and J. Albella, BCN films with controlled composition obtained by the interaction between molecular beams of B and C with nitrogen ion beams. Diamond and related materials,2003.12(3-7):p.1079-1083.
    26. Mannan, M., Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radio frequency plasma enhanced chemical vapor deposition. Thin Solid Films,2010.518(15):p.4163-4169.
    27. 吕世杰.滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现.西南交通大学.博士学位论文.2010:p.22.
    28. Kawai, N. and S. Endo, The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments, 1970.41(8):p.1178-1181.
    29. 孙樯.郑海飞.金刚石压腔(DAC)实验技术.地学前缘.2005.12(1).
    30. Nakano, S., et al., Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa. Chemistry of materials, 1994.6(12): p. 2246-2251.
    31. J.P.Nicholich, F.H., G.Brey and R.Riedel, J.Amer.Cer.Soc.2001.84(2):p.279-82.
    32. Matizamhuka, W.R., A Study on the Synthesis of ultrahard cubic BC2N heterodiamond. 2010, Faculty of Engineering and the Built Environment, University of the Witwatersrand.
    33. 马海云.在强冲击条件下g-C3N4向p-C3N4相变研究.西南交通大学.硕士学位论文.2011.
    34. 陈万金.杨兆海.孙颖.非晶形成机理的实验研究.松辽学报,2000(002):p. 12-14.
    35. 杨建.邱泰.沈春英.先驱体制备富氮BCN化合物的热解过程.过程工程学报.2006.6(3).
    36. 黄小建.2011自组装中孔BCN化合物的合成与表征.南京工业大学学报.2011,33(2):p.33-37.
    37. 李娜.B-C-N三元化合物的合成及表征.河北科技大学.硕士学位论文.2011.
    38. 白锁柱.新型BCN化合物的结构表征和相转变.物理学报.2006,55(11).
    39. 白锁住.姚斌.黄保坤.BCN化合物的合成与表征.高等学校化学学报.2005,26(005):p.811-815.
    40. Y.Kakudate, M.Y., S.Usuba, H.Yokoi, S.Fujiwara, and K.S.a.T.S. M.Kawaguchi, Trans.Mater.Res.Soc.Jpn, 1994.14B:p.1447.
    41. Komatsu, T., Bulk synthesis and characterization of graphite-like B-C-N and B-C-N heterodiamond compounds. J. Mater. Chem.,2004.14:p.221-227.
    42. L.Solozhenko, A.V.K.a.V., Shock Synthesis of Ternary Diamond-Like Phases in the B-C -N System. Chemistry and Materials Science 2000.39(9-10): p.467-473.
    43. Bando, Y., S. Nakano, and K. Kurashima, A New Cubic BCN Compound Revealed by High-Resolution Analytical Electron Microscopy. Journal of electron microscopy, 1996.45(2):p. 135.
    44. Chien, S., et al., Mechanical properties of amorphous boron carbon nitride films produced by dual gun sputtering. Diamond and related materials,2003.12(9):p. 1463-1471.
    45. Dong, H., et al., Elastic moduli and strength of nanocrystalline cubic BC2N from x-ray diffraction under nonhydrostatic compression. Physical Review B,2009.79(1): p. 014105.
    46. 孟范成.傅正义.苏艳丽.碳氮化合物制备研究进展.硅酸盐通报.2007,26(002):p.324-327.
    47. 经福谦.陈俊祥.动高压原理与技术.国防工业出版社,2006.
    48. 经福谦.实验物态方程引导.科学出版社,1996.
    49. 郝高宇.无氧铜/蓝宝石界面冲击辐射特性及温度测量研究.西南交通大学.硕士学位论文.2007.
    50. 谭华.实验冲击波物理导引.国防工业出版社,2007.
    51. 唐志平.冲击相变.科学出版社,2008.
    52. 张万甲.冲击引起石墨→金刚石相转变机理的探讨.高压物理学报.2004,18(003):p.209-219.
    53. 陈硼万.恽寿榕等.金刚石的石墨化及其对炸药爆轰合成超微金刚石产出率的影响.高压物理学报.2001,15(001):p.32-38.
    54. 李永宏.冲击加载过程中石英诱导水的晶化效应研究.西南交通大学,博士学位论文.2011.
    55. 杨建.先驱体热解制备富硼、氮BCN化合物及其发光性能研究.无机材料学报.2009,24(1).
    56. 何巨龙.1王永军.高压合成B-C-N化合物的结构表征.硅酸盐学报.2002,30(001):p.51-56.
    57. 李雪飞.张建.六角相硼碳氮化合物的合成研究.高压物理学报.2007,21(003):p.237-241.
    58. Onodera, A., et al., Synthesis of dense forms of BCN system using chemical-vapor-deposition/high-pressure process. Journal of materials science,2001. 36(3): p. 679-684.
    59. 白锁柱.BCN化合物的合成、表征和性能.吉林大学.博士学位论文.2005.
    60. Watanabe, M., et al., Bonding characterization of BCN thin films. Applied Physics Letters,1996.68:p.2962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700