基于Behera胺含超支化长氟链催化剂的设计、合成及其在绿色催化反应中之应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代有机合成正在向高选择性、高产率、原子经济性、反应条件温和的方向发展,这就使得发展多功能高活性催化剂变得尤为重要。在该类催化体系中,多种不同的催化活性位点协同催化有机合成反应。
     近几年来,许多新型高效的催化剂被研究开发,并将其用于催化有机合成反应,显示出良好的催化活性,如树状大分子催化剂和稀土金属催化剂。然而,树状大分子合成难度大,稀土催化剂也存在易潮解之不足。为了改善上述催化剂的催化活性,结合了树状催化剂活性位点多的优点,依据表面活性剂辅助稀土催化剂促进反应的原理,同时考虑到季铵盐表面活性剂可作为胶束催化剂,本论文设计、合成了一种新型含全氟烷基季铵盐的多支状羧酸稀土配合物催化体系。在该催化体系中,稳定的、拒水的全氟烷基链能够稳定稀土正离子,使催化剂存放稳定;树枝形大分子中有多个羧基,和稀土离子络合作为催化中心镶嵌在大分子的外围,催化活性点多,催化活性强;全氟烷基季铵盐可作为表面活性剂分散增溶底物又可以在水相中形成微乳液。
     本论文以Behera胺作为多支状结构的合成单元,溴乙酰溴作为连接基,通过亲核取代反应引入长氟链,经过季铵化和甲酸水解反应合成了含有全氟烷基季铵盐的多羧酸的多功能催化配体。同时,利用溴乙酰溴作为连接基,将Behera胺与乙二胺等不同类型的端基二胺或长碳链脂肪伯胺如十六烷基胺等反应,合成出具有树状结构的十二羧酸催化剂及具有含碳长链的六羧酸钠Lewis碱催化剂。另外,Behera胺与溴乙酰溴的酰化产物与二乙醇胺发生取代、羟基胺化及水解反应合成了含三羧基的水溶性二乙烯三胺含氮配体。在合成一系列目标分子过程中,以溴乙酰溴作为高活性的连接基,大幅度提高了多支状化合物的合成效率。
     本论文测定了所合成的不同类型的具碳长链季铵盐的多羧酸催化剂在水中的临界胶束浓度(CMC),其中含全氟辛基双季铵基三羧酸催化剂的临界胶束浓度小于10-4mol/L,其水溶液表面张力可以降至30 dyn·cm-1。同时,通过比较含不同类型碳链的催化剂在空气中吸水量的不同,证明了含全氟辛基链的配体具有良好的拒水性能。
     将含全氟辛基季铵盐多羧酸催化剂用于水相协同稀土催化三组份合成2-氨基苯并吡喃衍生物的反应和Hantzsch反应,产率较高,且催化剂通过水相回收并可重复使用3次以上。同时,利用含三羧基的二乙烯三胺配体在碱性条件下与PdCl2络合后,可以实现水相催化Suzuki偶联反应,产率高达90%,且催化剂易回收可重复使用。另外,所合成的多支长碳链脂肪胺的六羧酸钠作为具表面活性的Lewis碱,可在水相催化Henry反应,产率高达96%,催化剂亦可回收重复使用3次以上。通过将多支状的十二酸催化剂辅助催化双氧水对苄醇衍生物的氧化反应,避免了使用传统的重金属离子催化剂,产物产率可达到80%。
     本论文同时还研究了其它类型的绿色催化方法学:合成了离子型固体双磺酸催化剂。该催化体系可以在异相条件下催化吲哚对硝基苯乙烯的加成反应,并可得到中等产率的加成产物。该固体催化剂只需过滤,烘干,即可实现催化剂回收和重复使用。研究了水相中无催化剂条件下的醛和1,3-二羰基化合物的Knoevenagel缩合和Michael加成串联反应以及在无溶剂条件下无水三氯化铁催化的苄醇衍生物的胺化反应均能得到良好产率的目标产物,反应条件绿色环保,符合绿色化学的要求。
High selectivity, high yield, atom economy, and the mild reaction conditions are new trends of the catalytic reaction, which make the development of multi-functional catalyst with high activity become very important. In the multi-functional catalytic system, multiple parts of a catalyst or multiple catalysts work together to promote a specific reaction.
     In recent years, many new and efficient catalysts have been developed and used to catalyze organic reactions, showing a good catalytic activity, which include the dendrimer catalysts and rare earth Lewis acid catalysts. However, dendrimer catalysts are not easily synthesized and rare earth Lewis acid catalysts are easily deliquescence. Based on the concept of surfactant-assisted rare earth catalytic system, combined with the merits of dendrimer catalyst and micelle catalyst of quaternary ammonium surfactant, a new quaternary ammonium salt containing perfluoroalkyl branch-like carboxylic acid and its rare-earth complex was designed and synthesized successflully. The stable and water repellent perfluoroalkyl chain stabilized the rare earth cation, prevent it from deliquescence; The complex of rare earth metals and carboxylic acid embedded in the periphery of the dendritic structure with high catalytic activity. As surfactant, perfluoroalkyl quaternary ammonium salt can form emulsion in the aqueous phase and make substrates disperse very well.
     Using Behera's amine as dendron, bromoacetyl bromide as a linker, perfluoroalkyl chain was introduced by nucleophilic substitution. Then, after quaternization and hydrolysis reaction, the multibranched carboxylic acid catalyst containing perfluoroalkyl quaternary ammonium salt was synthesized. By acylation with bromoacetyl bromide, Behera's amine was transferred to a useful intermediate, which has been used to react with various primary amines to afford dendritic catalyst containing 12 carboxyl groups or the surfactant Lewis base containing 6 carboxylate groups. This intermediate was also used to react with diethanolamine, then after amination reaction of the hydroxyl group, the product was hydrolyzed to afford the water soluble diethylenetriamine (DETA) ligand. In the process of preparation of the target molecule, it was found that bromoacetyl bromide was a highly activity and high efficient for the synthesis of dendritic molecules based on Behera's amine, which may become one of the efficient method to the synthesis of dendrimers.
     The CMC value was determined by testing surface tension of the surfactant catalyst with different carbon chains. Among all of them, the one containing single perfluorooctyl chain and two quaternary ammonium salt has the lowest CMC value of 10-4mol·L-1 with the surface tension of water reduced to 30 dyn.cm-1. At the same time, by comparing the results of water absorption properties of the catalyst in air, it was proved that the catalyst with perfluorooctyl chain has the best water resistant properties.
     The multibranched carboxylic acid catalyst with perfluoroalkyl quaternary ammonium salt was used to coordinate with rare earth Lewis acid and catalyzed the three components reaction of aldehyde, malononitrile and naphthol to afford 2-amino benzopyran derivatives with good results. Meanwhile, it could also be very effective in the catalysis of Hantzsch reaction. The catalyst could be recycled and reused for more than 3 times. Additionally, the water soluble DETA ligand could coordinate with PdCl2 and has been applied in Suzuki reactions in water, with the yield up to 90%. The catalyst was recovered and reused for three cycles. The surfactant Lewis base containing 6 sodium carboxylate groups was used to catalyze Henry reaction in water with the yield up to 96%, and the catalyst could easily be recycled and reused for more than 3 times. By the assistant of dendritic catalyst containing 12 carboxyl groups, benzyl alcohol derivatives could be oxidized by H2O2 with the yield up to 80%, avoiding the use of traditional heavy metal catalysts.
     In addition, this dissertation also includes the study of other types of green catalysis methodology. Ionic solid sulfonic acid was synthesized and used as heterogeneous catalyst to catalyze the addition reaction of indole and nitrobenzene to afford the products with moderate yields. By filtration and drying, the catalyst could be recovery and reused again. Finally, the cascade Knoevenagel condensation and Michael addition reaction of aldehydes and 1, 3-diketones in water and under catalyst free condition were explored, and the product can be purified just by filtration, washing and drying. The solvent-free amination of secondary benzylic alcohols with N-nucleophiles catalyzed by FeCl3 was also studied affording the products in good yields.
引文
[1]P. T. Anastas and J. C. Warner, In Green Chemistry:Theory and Practice, Oxford University Press, New York,1998; I. Horvath and P. T. Anastas, Chem. Rev.,2007, 107,2167.
    [2]P. T. Anastas and T. C. Williamson, In Green Chemistry:Designing Chemistry for the Environment, American Chemical Series Books, Washington, DC,1996, pp.1-20.
    [3]C. Ornelas, M. Weck. Construction of well-defined multifunctional dendrimers using a trifunctional core[J]. Chem. Commun.,2009,38:5710-5712
    [4]E. Buhleier, W. Wehner, F. Vogtle, "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies [J]. Synthesis 1978:155-158.
    [5]D. A. Tomalia, A. M. Naylor, W. A. Goddard Ⅲ, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter[J]. Angew. Chem. Int. Ed. Engl.1990, 29,138-175.
    [6]a) G. R. Newkome, Z.-Q. Yao, G. R. Baker, V. K. Gupta, Micelles. Part 1. Cascade molecules:a new approach to micelles. A [27]-arborol[J].J. Org. Chem.1985,50, 2003-2004; b) G. R. Newkome, Z.-Q. Yao, G. R. Baker, V. K. Gupta, P. S. Russo, M. J. Saunders, Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol[J]. J. Am. Chem. Soc.1986,108,849 ± 850.
    [7]a) C. J. Hawker, J. M. J. Frechet, A New Convergent Approach to Monodisperse Dendritic Macromolecules[J]. J. Chem. Soc. Chem. Commun.1990(15),1010-1013; b) K. L. Wooley, C. J. Hawker, J. M. J. Frechet, Hyperbranched macromolecules via a novel double-stage convergent growth approach[J]. J. Am. Chem. Soc.1991,113, 4252-4261; c) J. M. J. Frechet, Functional polymers and dendrimers:reactivity, molecular architecture, and interfacial energy[J].Science 1994,263,1710-1715.
    [8]a) G. R. Newkome, C. N. Moorefield, F. Vogtle, Dendritic Molecules:Concepts, Synthesis, Perspectives[M], Wiley-VCH, Weinheim,1996; b) J.-P. Majoral, A.-M. Caminade, Dendrimers Containing Heteroatoms (Si, P, B, Ge, or Bi)[J],Chem. Rev. 1999,99,845-880.
    [9]E. Buhleier, W. Wehner, F. Vogtle, "Cascade"-and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies [J]. Synthesis.1978,155-158.
    [10]D. A. Tomalia, H. Baker, J. R. Dewald, Oxidative polymerization of diphenyl d isulfides with quinones:formation of ultrapure poly(p-phenylene sulfide)s[J], Macromolecules.1990,23(4),930-934.
    [11]G. R. Newkome, Z. Q. Yao, C. R. Baker, Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol [J].J. Am. Chem. Soc.1986,108,849-850.
    [12]J. M. J. Frechet, functional polymers and dendrimers:reactivity, molecular architecture, and interfacial energy [J]. Science.1994,263,1710-1715.
    [13]T. M. Miller, T. X. Neenan, Convergent Synthesis of Monodisperse Dendrimers Based upon 1,3,5-Trisubstituted Benzenes[J]. Chem. Mater.1990,2,346-349.
    [14]K.L. Wooly, C. J. Hawer, J. M. J. Frechet, Hyperbranched macromolecules via a novel double-stage convergent growth approach [J] J.Am.Chem.Soc.1991,113,4252.
    [15]D. A. Tomalia, P. R. Dvornic, What promise for dendrimers[J]. Nature 1994,372,617-618.
    [16]T. Jongsma, H. van Aert, M. Fossen, G. Challa, P. W. N. M. van Leeuwen, Stable silica-grafted polymer-bound bulky-phosphite modified rhodium hydroformylation catalysts [J]. J. Mol. Catal.1993,83,37-50.
    [17]M. Dasgupta, M. B. Peori, A. K. Kakkar, "Dendritic Supramolecular Structures Containing P& N Donor Ligands and Corresponding Transition Metal Complexes", Coord. Chem. Rev.2002,233-234,223-235.
    [18]P. A. Chase, G. R. Klein, G. van Koten, Where organometallics and dendrimers merge: the incorporation of organometallic species into dendritic molecules [J]. J Organomet Chem.2004,689:4016-4054.
    [19]J. W. J. Knapen, A. W. van der Made, J. C. de Wilde, P. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove, G. van Koten, Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes[J]. Nature,1994,372:659-663
    [20]A. W. Kleij, R. A. Gossage, J. T. B. H. Jastrzebski, J. Boersma, G. van Koten, The Dendritic Effect in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(II) Catalysts:Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition [J]. Angew. Chem. Int. Ed.2000,39,176-178.
    [21]a) S. C. Bourque, F. Maltais, W.-J. Xiao, O. Tardif, H. Alper, P. Arya, L..E. Manzer, Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica[J]. J. Am. Chem. Soc.1999,121:3035-3038; b) S. C. Bourque, H. Alper, L. E. Manzer, P. Arya, Hydroformylation Reactions Using Recyclable Rhodium-Complexed Dendrimers on Silica[J]. J. Am. Chem. Soc.2000,122:956-957
    [22]a) D. K. Smith, F. Diederich, Functional Dendrimers:Unique Biological Mimics [J]. Chem. Eur. J.1998,4:1353-1361; b) M. Enomoto, T. Aida, Self-Assembly of a Copper-Ligating Dendrimer that Provides a New Non-Heme Metalloprotein Mimic:"Dendrimer Effects" on Stability of the Bis(μ-oxo)dicopper(Ⅲ) Core [J]. J. Am. Chem. Soc.1999,121:874-875; c) P. Wallimann, P. Seiler, F. Diederich, Dendrophanes:Novel Steroid-Recognizing Dendritic Receptors. Preliminary Communication[J]. Helv. Chim. Acta 1996,79:779-781; d) D. K. Smith, F. Diederich, Dendritic hydrogen bonding receptors:enantiomerically pure dendroclefts for the selective recognition of monosaccharides[J]. Chem. Commun.1998,2501-2502; e) T. Habicher, F. Diederich, V. Gramlich, Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-cyclophanes[J]. Helv. Chim. Acta 1999,82:1066-1095; f) P. Weyermann, J. P. Gisselbrecht, C. Boudon, F. Diederich, M. Gross, Dendritic Iron Porphyrins with Tethered Axial Ligands:New Model Compounds for Cytochromes [J]. Angew. Chem. Int. Ed.1999,38:3215-3219.
    [23]I. Gitsov, P. T. Ivanova, J. M. J. Frechet, Dendrimers as macroinitiators for anionic ring-opening polynerization of epsilon-caprolactone[J]. Macromol. Rapid Commun. 1994,15(5):387-393.
    [24]a) H. F. Chow, C. C. Mak, Dendritic Bis(oxazoline)copper(Ⅱ) Catalysts.2.1 Synthesis, Reactivity, and Substrate Selectivity [J]. J. Org. Chem.1997,62,5116-5127; b) C. C. Mak, H.-F. Chow, Dendritic Catalysts:Reactivity and Mechanism of the Dendritic Bis(oxazoline)metal Complex Catalyzed Diels-Alder Reaction [J]. Macromolecules 1997,30:1228-1230.
    [25]T. Marquardt, U. Luning, Towards golf ball shaped reagents:dendrimer fixed concave pyridines [J]. Chem. Commun.1997,1681-1682.
    [26]U. Luning, T. Marquardt, Concave Reagents,29:Dendrimer Fixed Concave Pyridines [J]. J. Prakt. Chem.1999,341:222-227.
    [27]H. Alper, P.Arya, C. S. Bourque, G. R. Jefferson, L. E. Manzer, Heck reaction using palladium complexed to dendrimers on silica [J]. Can. J. Chem.2000,78:920-924.
    [28]G. R. Newkome, C. N. Moorefield, F. Vogtle, Dendritic Molecules:Concepts, Syntheses and Perspectives [M]. VCH:New York,1996.
    [29]Y. Pan, W. T. Ford, Amphiphilic Dendrimers with Both Octyl and Triethylenoxy Methyl Ether Chain Ends[J]. Macromolecules 2000,33:3731-3738.
    [30]J. J. Lee, W. T. Ford, Reactivity of organic anions promoted by a quaternary ammonium ion dendrimer [J]. Macromolecules,1994,27:4632-4634.
    [31]D. A. Tomalia, A. N. Taylor, W. A. Goddard, Starburst Dendrimers:Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter[J]. Angew. Chem., Int.Ed. Engl.1990,29:138-175.
    [32]D. K. Smith, F. Diederich, Functional Dendrimers:Unique Biological Mimics [J]. Chem. Eur. J.1998,4:1353-1361.
    [33]T. Habicher, F. Diederich, V. Gramlich, Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-cyclophanes[J]. Helv. Chim. Acta,1999,82:1066-1095.
    [34]P. Witte, F. Beuerle, U. Hartnagel, R. Lebovitz, A. Savouchkina, S. Sali, D. Guldi, N. Chronakis, A. Hirsch. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70 [J]. Org. Biomol. Chem.,2007, 5:3599-3613.
    [35]Y. Wang, C. M. Cardona, A. E. Kaifer, Molecular Orientation Effects on the Rates of Heterogeneous Electron Transfer of Unsymmetric Dendrimers[J]. J. Am. Chem. Soc., 1999,121(41):9756-9757.
    [36]C. D. Schmidt, C. Bottcher, A. Hirsch, Synthesis and Aggregation Properties of Water-Soluble Newkome-Dendronized Perylenetetracarboxdiimides[J]. Eur. J. Org. Chem.,2007,5497-5505.
    [37]C. Akpo, E. Weber, J. Reiche. Synthesis, Langmuir and Langmuir-Blodgett film behaviour of new dendritic amphiphiles[J]. New J. Chem.,2006,30:1820-1833.
    [38]A. A. Williams, B. Scott Day, B. L. Kite, M. K. McPherson, C. Slebodnick, J. R. Morris, R. D. Gandour. Homologous, long-chain alkyl dendrons form homologous thin films on silver oxide surfaces[J]. Chem. Commun.,2005,5053-5055.
    [39]T. Zhou, H. Neubert, D. Y. Liu, Z. D. Liu, Y. M. Ma, X. L. Kong, W. Luo, S. Mark, R. C. Hider. Iron Binding Dendrimers:A Novel Approach for the Treatment of Haemochromatosis[J]. J. Med. Chem.2006,49:4171-4182.
    [40]王利民,田禾.精细有机合成新方法[M].化学工业出版社.北京,2004:86-89.
    [41]a) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, E. Marcantoni, P. Meichiorre, L Sambria, tert-Butyl Ethers:Renaissance of an Alcohol Protecting Group. Facile Cleavage with Cerium(Ⅲ) Chloride/Sodium Iodide [J]. Adv. Synth. Catal.2006, 348,905. b) Q. Bartoli, R. Giovannini, A. Giuliani, E. Marcantoni, Solvent-free Carbon-Oxygen bond formation catalysed by CeCl3·7H2O/NaI: Tetrahydropyranylation of hydroxy groups [J]. Eur. J. Org. Chem.2006,1476. c)M. C. Yeh, W. J. Yeh, L. H. Tu, J. R. Wu, CeCl3-7H2O-NaI catalyzed intramolecular addition reactions of 7-hydroxy-1,3-dienes:a facile approach to hexahydrobenzofurans and tetrahydrofurans [J]. Tetrahedron 2006,62:7466-7470. d) G. Bartoli. M. Bosco, M. C. Bellucci, E. Marcantoni, Cerium (Ⅲ) Chloride Catalyzed Michael Reaction of 1,3-Dicarbonyl Compounds and Enones in the Presence of Sodium Iodide Under Solvent Free Conditions [J]. Eur. J. Org. Chem.,1999,3: 617-620. e) G. Bartoli, M. Bosco, A. Giuliani, Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3-7H2O-NaI System as a Lewis Acid[J]. J. Org. Chem.,2004,69(4):1290-1297. f) G. Bartoli, A. Giuliani, E. Marcantoni, M. Massaccesi, P. Melchiorre, S. Lanari, L. Sambria, Allylation of Aldehydes Promoted by the Cerium(Ⅲ) Chloride Heptahydrate/Sodium Iodide System:the Dependence of Regio-and Stereocontrol on the Reaction Conditions [J]. Adv. Synth, Catal.2005, 347(10):1673-1680. g) G. Bartoli, R. Beleggia, S. Giuli, A. Giuliani, The CeCl3 ·7H2O-NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation[J]. Tetrahedron Lett,2006,47:6501-6504. h) G. Bartoli, M. Bosco, G. Foglia, A. Giuliani, E. Marcantoni, L. Sambria, Solvent-Free Indoles Addition to Carbonyl Compounds Promoted by CeCl3·7H2O-NaI-SiO2:An Efficient Method for the Synthesis of Streptindole [J]. Synthesis,2004,6:895-900.
    [42]A. Krasovskiy, F. Kopp, P. Knochel, Soluble Lanthanide Salts (LnCl3 2LiCl) for the Improved Addition of Organomagnesium Reagents to Carbonyl Compounds [J]. Angew. Chem. Int. Ed.,2006,45:497-500.
    [43]B. Espanet, E. Duiiach, J. Perichon, SmCl3-catalyzed electrochemical cleavage of allyl ethers [J]. Tetrahedron Letts,1992,33(18):2485-2488.
    [44]a) S. Kobayashi, T. Hamada, S. Nagayama, K. Manabe. Lanthanide Trifluoromethanesulfonate-Catalyzed Asymmetric Aldol Reactions in Aqueous Media [J]. Org. lett.,2001,3(2):165-167; b) T. Hamada, K. Manabe, S. Ishikawa, S. Nagayama, M. Shiro, S. Kobayashi. Catalytic Asymmetric Aldol Reactions in Aqueous Media Using Chiral Bispyridino-18-crown-6-Rare Earth Metal Triflate Complexes[J].J. Am. Chem. Soc.2003,125(10):2989-2996; c) S. Kobayashi, I. Hachiya. Lanthanide Triflates as Water-Tolerant Lewis Acids. Activation of Commercial Formaldehyde Solution and Use in the Aldol Reaction of Silyl Enol Ethers with Aldehydes in Aqueous Media[J]. J. Org. Chem.1994,59(13):3590-3596.
    [45]a) S. Kobayashi, M. Araki, H. Ishitani, S. Nagayama, I. Hachiya. Activation of Imines by Rare Earth Metal Triflates. Ln(OTf)3 or Sc(OTf)3 Catalyzed Reactions of Imines with Silyl Enolates and Diels-Alder Reactions of Imines[J]. Synlett.1995, (3): 233-234; b) S. Kobayashi, T. Busujima, S. Nagayama. Ln(OTf)3 or Cu(OTf)2 Catalyzed Mannich-Type Reactions of Aldhehydes, Amines and Silyl Enolates in Micellar Systems. Facile Synthesis of β-Amino Ketones and Esters in Water [J]. Synlett.1999, (5):545-547.
    [46]L. M. Wang, J. Sheng, L. Zhang, J. W. Han, Z. Y. Fan, H. Tian, C. T. Qian, Facile Yb(OTf)3 promoted one-pot synthesis ofpolyhydroquinoline derivatives through Hantzsch reaction[J]. Tetrahedron.2005,61:1539-1543.
    [47]Y. Ma, C. T. Qian, L. M. Wang, M. Yang. Lanthanide Triflate Catalyzed Biginelli Reaction. One-Pot Synthesis of Dihydropyrimidines under the Solvent-Free Condition [J]. J. Org. Chem.2000,65:3864-3868.
    [48]a) S. Kobayashi, M. Sugiura, H. Kitagawa W. W.-L. Lam. Rare-Earth Metal Triflates in Organic Synthesis [J]. Chem. Rev.,2002,102(6):2227-2302. b)L.M. Wang, J.J. Liu, H. Tian, C.T. Qian, J. Sun. One-pot Synthesis of cis-Isoquinolonic acids derivatives via three-component Reaction of Homophthalic Anhydride with Aldehydes and Amines Using Ytterbium(Ⅲ) Triflate as a Catalyst[J]. Adv. Synth. Catal.2005,347: 689-694.
    [49]S. Morteza, A. Z. Mohammad, Surfactant-type catalysts in organic reactions[J]. Tetrahedron.,2009.65:587-598.
    [50]S. Kobayashi, K. Manabe, Green Lewis acid catalysis in organic synthesis [J]. Pure Appl. Chem.2000,72:1373-1380.
    [51]S. Kobayashi, T. Wakabayashi, Scandium trisdodecylsulfate (STDS). A new type of lewis acid that forms stable dispersion systems with organic substrates in water and accelerates aldol reactions much faster in water than in organic solvents [J]. Tetrahedron Lett.1998,39:5389-5392.
    [52]K. Manabe, Y. Mori, T. Wakabayashi, S. Nagayama, K. Odashima, S. Kobayashi, Organic Synthesis Inside Particles in Water:Lewis Acid-Surfactant-Combined Catalysts for Organic Reactions in Water Using Colloidal Dispersions as Reaction Media [J]. J Am. Chem. Soc.2000,122:7202-7207.
    [53]K. Deleersnyder, D. Shi, K. Binnemans, T. N. J. Parac-Vogt, Lanthanide-surfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions [J]. Alloys Compd.2008,451:418-421.
    [54]S. Azoulay, K. Manabe, S. Kobayashi, Catalytic Asymmetric Ring Opening of meso-Epoxides with Aromatic Amines in Water [J]. Org. Lett.2005,7:4593-4595.
    [55]Y. Mori, K. Kakumoto, K. Manabe, S. Kobayashi, Michael reactions in water using Lewis acid-surfactant-combined catalysts[J]. Tetrahedron Lett.2000,41:3107-3111.
    [56]李好祥.含氟表面活性剂[J].表面活性剂工业,1997(3):37-38.
    [57]朱顺根.含氟表面活性剂[J].化工生产与技术,1997(3):1-9,26.
    [58]K. Stahler, J. Selb, P. Barthelemy, B. Pucci, F. andan, Novel Hydrocarbon and Fluorocarbon Polymerizable Surfactants:Synthesis, Characterization and Mixing Behavior[J]. Langmuir,1998,14,4765.
    [59]E. Kissa, Fluorinated Surfactants:Synthesis, Properties, Application[M]. New York: Marcel Dekker, Inc.1994.
    [60]a) S. Shirakawa, Y. Tanaka, K. Maruoka. Development of a Recyclable Fluorous Chiral Phase-Transfer Catalyst:Application to the Catalytic Asymmetric Synthesis of r-Amino Acids[J].2004 6 (9):1429-1431. b) W. Shen, L. M. Wang, H. Tian, Quaternary ammonium salt gemini surfactants containing perfluoroalkyl tails catalyzed one-pot Mannich reactions in aqueous media [J]. Journal of Fluorine Chemistry,2008,129 (4):267-273.
    [61]L. M. Wang, J. W. Han, H. Tian, J. Sheng, Z. Y. Fan, X. P. Tang, Rare earth perfluorooctanoates[RE(PFO)3]- catalyzed condensations of indole with carbonyl compounds[J]. Synlett,2005,2:0337-0339.
    [62]L. M. Wang, J. W. Han, J. Sheng, H. Tian, Z. Y. Fan, Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot Mannich reaction:three component synthesis of β-Amino carbonyl compounds[J]. Catalysis communications,2005,6(3):201-204.
    [63]L. M. Wang, L. Hu, H. J. Chen, Y. Y. Sui, W. Shen. One-pot synthesis of quinoline-4-carboxylic acid derivatives in water:Ytterbium perfluorooctanoate catalyzed Doebner reaction [J]. J. Fluo. Chem.,2009,130:406-409.
    [64]J. A. Gladysz, Introduction:Recoverable Catalysts and Reagents-Perspective and Prospective [J]. Chem. Rev.2002,102:3215-3216.
    [65]I. T. Horv_th, Fluorous Biphase Chemistry [J]. Acc. Chem. Res.1998,31:641-650.
    [66]J. A. Gladysz, D. P.. Curran, I. T. Horvat, Handbook of Fluorous Chemistry [J]. Wiley-VCH, Weinheim,2004.101-127.
    [67]a) M. Wende, R. Meier, J. A. Gladysz, Fluorous Catalysis without Fluorous Solvents: A Friendlier Catalyst Recovery/Recycling Protocol Based upon Thermomorphic Properties and Liquid/Solid Phase Separation[J]. J. Am. Chem. Soc.2001,123: 11490-11491; b) M. Wende, J. A. Gladysz, Fluorous Catalysis under Homogeneous Conditions without Fluorous Solvents:A "Greener" Catalyst Recycling Protocol Based upon Temperature-Dependent Solubilities and Liquid/Solid Phase Separation[J]. J. Am. Chem. Soc.2003,125:5861-5872.
    [68]L. V. Dinh, J. A. Gladysz, "Catalyst-on-a-Tape" -Teflon:A New Delivery and Recovery Method for Homogeneous Fluorous Catalysts[J]. Angew. Chem. Int. Ed. 2005,44,4095-4097
    [69]a) C. C. Tzschucke, C. Markert, H. Glatz,W. Bannwarth, Fluorous Biphasic Catalysis without Perfluorinated Solvents:Application to Pd-Mediated Suzuki and Sonogashira Couplings uplings[J]. Angew. Chem. Int. Ed.2002,41,4500-4503; b) A. Biffis, M. Braga, M. Basato, Solventless Silane Alcoholysis Catalyzed by Recoverable Dirhodium(II) Perfluorocarboxylates[J]. Adv. Synth. Catal.2004,346:451-458.
    [70]W. Miao, T. H. Chan. Ionic-liquid-supported organocatalyst:Efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction [J]. Adv. Synth. Catal., 2006,348:1711-1718.
    [71]S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J. P. Cheng. Functionalized ionic liquids catalyzed direct aldol reactions [J]. Tetrahedron,2007,63:1923-1930.
    [72]F. Calderon, R. Fernandez, F. Sanchez, Fernandez-Mayoralas, Asymmetric Aldol Reaction Using Immobilized Proline on Mesoporous Support A [J]. Adv. Synth. Catal. 2005,347,1395-1403.
    [73]M. Benaglia, A. Puglisi, F. Cozzi, Polymer-Supported Organic Catalysts [J]. Chemical Reviews,2003,103(9):3401-3429.
    [74]T. Akiyama. Stronger Br(?)nsted acids [J]. Chem. Rev.2007,107:5744-5758.
    [75]T. Okuhara. Water-tolerant solid acid catalysts [J]. Chem. Rev.2002,102:3641-3665.
    [76]S. Iimura, K. Manabe, S. Kobayashi. Hydrophobic Polymer-Supported Catalyst for Organic Reactions in Water:Acid-Catalyzed Hydrolysis of Thioesters and Transprotection of Thiols[J]. Org. Lett.2003,5:101-103.
    [77]G. R. Newkome. Cascade Polymers:Syntheses and Characterization of One-Directional Arborols Based on Adamantane [J]. J. Org. Chem.,1991,56: 7162-7167.
    [78]V. Alma, F. Roberto, Pradilla, Synthesis of enantiopure vicinal diaminoesters and ketopiperazines from N-sulfinylimidazolidines [J]. Tetrahedron.2007,63: 8017-8026.
    [79]A. Goti, Hydrogen peroxide in green oxidation reaction [M]. Green Chemical Reactions.,2008,191-212.
    [80]a). T. Punniyamurthy, Cobalt(Ⅱ)-catalyzed oxidation of alcohols into carboxylic acids and ketones with hydrogen peroxide[J]. Tetrahedron Letters 2003,44:6033-6035; b). T. Punniyamurthy, Copper(II)-Catalyzed Oxidation of Alcohols to Carbonyl Compounds with Hydrogen Peroxide[J]. Eur. J. Org. Chem.2003,3913-3915
    [81]L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J.Q. Liu, F. L. Guo, Y. Liu, Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 2010,66 (1):339-343.
    [82]B. K. Philip, G. V. John, P(RNCH2CH2)3N:An Efficient Promoter for the Nitroaldol (Henry) Reaction[J]. J. Org. Chem.1999,64(12):4298-4303.
    [83]H. H. Baer, L. Urbas, In the Chemistry of the Nitro and Nitroso Groups; H. Feuer (M). Wiley Interscience:New York,1970; Vol.2.75.
    [84]J. R. Hwu, B. A. Gilbert, Silicon-promoted Nef reaction by a gamma effect[J]. J. Am. Chem. Soc.1991,113:5917-5918.
    [85]G. Rosini, R. Ballini, M. Petrini, P. A. Sorrenti, convenient synthesis of 1-(2-furyl)-2-nitroalk-1-enes on alumina surface without solvent[J]. Synthesis 1985,5:
    [86]R. Ballini, A. Palmieri, Synthetic applications of nitroalkanes promoted by solid catalysis:Recent results[J]. Curr. Org. Chem.2006,10:2145-2169.
    [87](a) J. A. Weeden, J. D. Chisholm, Phosphine-catalyzed nitroaldol reactions[J]. Tetrahedron Lett.2006,47:9313-9316; (b) F. A. Khan, C. Sudheer, N. Sahu, 1-Butyl-3-methyl-imidazollium tetrafluoroborate as a recyclable reaction medium for Henry reaction[J]. Synth. Commun.2005,35:201-207. (c). P. B. Kisanga, J. G. Verkade, P(RNCH2CH2)3N:An Efficient Promoter for the Nitroaldol (Henry) Reaction[J].J. Org. Chem.1999,64(12):4298-4303.
    [88]R. Ballini, G. Bosica, Nitroaldol reaction in aqueous media:An important improvement of the Henry reaction [J]. J. Org. Chem.1997,62:425-427.
    [89]R. Ballini, D. Fiorini, M. V. Gil, A. Palmieri, Cetyltrimethylammonium hydroxide (CTAOH) as a general, ecofriendly catalyst for the formation of carbon-carbon bond through nitroalkanes[J]. Tetrahedron 2004,60,2799-2804.
    [90]J. Fan, G. Sun, C. Wan, Z. Wang and Y. Li. Investigation of DNA as a catalyst for Henry reaction in water [J]. Chem. Commun.,2008,3792-3794.
    [91]M. Phukan, K. J. Borah, R. Borah. Imidazole-Catalyzed Henry Reactions in Aqueous Medium[J]. Synthetic Communications,2008,38(18):3068-3073.
    [92]J. Rabai, C. Szijjarto, P. Ivanko, D. Szabo,3-(Perfluoroalkyl)propanols:Valuable Building Blocks for Fluorous Chemistry[J]. Synthesis.2007,16:2581-2584.
    [93]G. R. Newkome, R. K. Behera, C. N. Moorefield, G. R. Baker, Cascade polymers: syntheses and characterization of one-directional arborols based on adamantine[J]. J. Org. Chem.,1991,56(25):7162-7167.
    [94]A. Dupraz, P. Guy, C. Dupuy, Polyalkylation of Primary Polyols by 1,4-Addition to tert-Butyl Acrylate and Acrylonitrile[J]. Tetrahedron Lett.,1996,37(8):1237-1240.
    [95]G. P. Ellis, The Chemistry of Heterocyclic Compounds. In Chromenes, Chromanes, and Chromones [M]. Weissberger, A., Taylor, E. C., Eds.; John Wiley:New York, NY,1977; Chapter Ⅱ, p 13.
    [96]E. A. Hafez, M. H. Elnagdi, Elagamey, A. A.; El-Taweel, F. A. M. Nitriles in heterocyclic synthesis novel synthesis of benzo[c]coumarin and benzo[c]pyrano[3, 2-c]quinoline derivatives [J].Heterocycles 1987,26:903-907;
    [97]R. S. Varma, R. Dahiya, An Expeditious and Solvent-Free Synthesis of 2-Amino-Substituted Isoflav-3-enes Using Microwave Irradiation [J]. J. Org. Chem. 1998,63:8038-8041.
    [98](a)J. Bloxham, C. P. Dell, C. W. Smith, Preparation of some new benzylidenemalononitriles by an SN Ar reaction:Application to naphtho[1,2-b]pyran synthesis[J]. Heterocycles 1994,38(2):399-408; (b) A. G. A. Elagamey, F. M. A. A. El-Taweel, Nitriles in heterocyclic synthesis:Synthesis of condensed pyrans[J]. Indian J. Chem.1990,29B:885-886; (c) A. G. A. Elagamey, F. M. A. A. El-Taweel, M. N. M. Khodeir, M. H. Elnagdi, Nitriles in Heterocyclic Synthesis. The Reaction of Polyhydric Naphthalenes,4-Methylcoumarin-3-carbonitrile, and Alkylidenemalononitrile with Methylenemalononitrile [J]. Bull. Chem. Soc. Jpn.1993, 669(2):464-468.
    [99]R. Ballini, G. Bosica, M. L. Conforti, R. Maggi, A. Mazzacani, P. Righi, G. Sartori, Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media [J]. Tetrahedron 2001,57:1395-1398.
    [100](a) R. S. Varma, D. Kumar, Microwave-accelerated three-component condensation reaction on clay:solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines[J].Tetrahedron Lett.1999,40:7665-7669; (b) C. O. Kappe, D. Kumar, R. S.Varma, Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol [J].Synthesis 1999,1799-1803.
    [101]F. Bossert, H. Meyer, E. Wehinger,4-Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists[J]. Angew. Chem., Int. Ed. Engl.1981,20:762-769.
    [102]F. R. Buhler, W. Kiowski, Calcium antagonists in hypertension[J]. J. Hypertens. 1987,5, S3-10.
    [103](a) P. P. Mager, R. A. Coburan, A. J. Solo, D. J. Trigle, H. Rothe, Diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium channel antagonists:a difficult road ahead[J]. Drug Des. Discovery 1992,8:273-289. (b) R. Boer, V. Gekeler, Chemosensitizers in tumor therapy:new compounds promise better efficacy[J]. Drugs Future 1995,20,499-509.
    [104](a) R. Ruppert, C. Jeandon, A. Sgambati, H. J. Callot, Reduction of N-arylporphyrins to N-arylphlorins:opposite stereochemical courses as a function of the reducing agent[J]. Chem. Commun.1999,2123-2124. (b) D. Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter, S. Rudolph, Hydrogen Bond Catalyzed Direct Reductive Amination of Ketones[J]. Org. Lett.2006,5:741-744. (c) S. J. Garden, C. R. W. Guimaraes, M. B. Correa, C. A. F. D. Oleveira, A. D. C. Pinto, R. B. D. Alencastro, Synthetic and Theoretical Studies on the Reduction of Electron Withdrawing Group Conjugated Olefins Using the Hantzsch 1,4-Dihydropyridine Ester[J]. J. Org. Chem. 2003,68:8815-8822. (d) S. G. Quellet, J. B. Tuttle, D. W. C. MacMillan, Enantioselective Organocatalytic Hydride Reduction[J]. J. Am. Chem. Soc.2005,127: 32-33. (e) N. J. A. Martin, B. List, Highly Enantioselective Transfer Hydrogenation of α, β-Unsaturated Ketones[J].J. Am. Chem. Soc.2006,128:13368-13369.
    [105]B. Love, K. M. Sander, The Hantzsch Reaction. I. Oxidative Dealkylation of Certain Dihydropyridines [J].J. Org. Chem.1965, 30:1914-1916.
    [106]F. Chen, X. Feng, B. Qin, G. Zhang, Y. Jiang, Enantioselective Cyanosilylation of Ketones by a Catalytic Double-Activation Method Employing Chiral Lewis Acid and Achiral N-Oxide Catalysts[J]. Org. Lett.2003,5:949-952.
    [107]N. Yoshikawa, N. Kumagai, S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki and M. Shibasaki, Direct Catalytic Asymmetric Aldol Reaction:Synthesis of Either syn-or anti-α,β-Dihydroxy Ketones[J]. J. Am. Chem. Soc.,2001,123:2466-2467.
    [108]S. Handa, Gnanadesikan, V. Matsunaga, S. Shibasaki,syn-Selective Catalytic Asymmetric Nitro-Mannich Reactions Using a Heterobimetallic Cu-Sm-Schiff Base Complex [J]. J. Am. Chem. Soc.,2007,129(16):4900-4901.
    [109](a) Rebecca B. DeVasher, Lucas R. Moore, and Kevin H. Shaughnessy. Aqueous-Phase, Palladium-Catalyzed Cross-Coupling of Aryl Bromides under Mild Conditions, Using Water-Soluble, Sterically Demanding Alkylphosphines[J]. J. Org. Chem.2004,69:7919-7927; (b) L. Botella, C. Najera. A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water[J]. Angew. Chem., Int. Ed.2002,41:179-181; (c) C. Njaera, J.Gil-Molto, S. Karlstrom, Suzuki-Miyaura and Related Cross-Couplings in Aqueous Solvents Catalyzed by Di(2-pyridyl)methylamine-Palladium Dichloride Complexes[J], Adv. Synth. Catal. 2004,346:1798-1811; (d) W. Y. Wu, S. N. Chen, F. Y. Tsai. Recyclable and highly active cationic 2,2'-bipyridyl palladium(II) catalyst for Suzuki cross-coupling reaction in water[J]. Tetrahedron Lett.2006,47:9267-9270.
    [110](a) B. M. Choudary, S. Madhi, N. S. Chowdary, M. L. Kantam, B. Sreedhar, Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes[J]. J. Am. Chem. Soc.2002,124:14127-14136; (b) S. Klingelhoefer, W. Heitz, A. Greiner, S. Oestreich, S. Foerster, M. Antonietti, Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction[J]. J. Am. Chem. Soc. 1997,119:10116-10120; (c) M. Ooe, M. Murata, T. Mizugaki, K. Ebitani, K. Kaneda, Supramolecular Catalysts by Encapsulating Palladium Complexes within Dendrimers[J]. J. Am. Chem. Soc.2004,126:1604-1605; (d) J. Lemo, K. Heuze, D. Astruc, Efficient Dendritic Diphosphino Pd(II) Catalysts for the Suzuki Reaction of Chloroarenes[J]. Org. Lett.2005,7:2253-2256.
    [111]K. M. Khan, G. M. Maharvi, M. T. H. Khan, A. J. Shaikh, S. Perveen, S. Begun and M. I. Choudhary, Tetraketones:A new class of tyrosinase inhibitors [J]. Bioorg. Med. Chem.,2006,14,344-351.
    [112]B. A. Marco, T. A. Manuel, P. M. Itzia, M. M. Francisco, E.Georgina, M. Elies andE.Enrique,9-(2-Methylphenyl)-3,4,5,6,9,10-hexa-hydroxanthene-1,8(2H,7H)-dion e[J]. J. Chem. Crystallogr.,1999,29:759-763.
    [113]a) P. Shanmugasundaram, K. J. Prabahar and V. T. Ramakrishnan, J. Heterocyclic. Chem.,1993,30,1003; b) N. Srividya, P. Ramamurthy, P. Shanmugasundaram, and V. T. Ramakrishnan, Synthesis, Characterization, and Electrochemistry of Some Acridine-1,8-dione Dyes[J]. J. Org. Chem.,1996,61,5083-5089.
    [114](a) H. J. Timpe, S. Ulrich and S. Ali, Spin-trapping as a tool for quantum yield determinations in radical forming processes [J]. J. Photochem. Photobiol. A:Chem., 1991,61:77-89; (b) H. J. Timpe, S. Ulrich and J. P. Fouassier, Photochemistry and use of decahydroacridine-1,8-diones as photosensitizers for onium salt decomposition[J]. J. Photochem. Photobiol. A:Chem.1993,73:139-150; (c) S. Ulrich, H. J. Timpe, J. P. Fouassier and F. M. Savary, Photoreduction of decahydroacridine-1,8-diones by amines[J] J. Photochem. Photobiol. A:Chem.1993, 74:165-170.
    [115]H. J. Timpe, S. Ulrich, C. Decker and J. P. Fouassier, Photoinitiated polymerization of acrylates and methacrylates with decahydroacridine-1,8-dione/onium salt initiator systems [J]. Macromolecules.1993,26:4560-4566.
    [116]F. T. McNamara, J. W. Nieft, J. F. Ambrose and E. S. Huyser, Structure and rearrangement of the reduction dimers of N-alkyl pyridinium cations[J]. J. Org. Chem. 1977,42:988-993.
    [117]G. P..Ellis, Ed. Chromenes, Chromanones and Chromones [M]. Wiley:New York, 1977.
    [118](a) I. Yavari, M. A. Abbasinejad, A. Alizadeh and Z.Hossaini, Tetrahedron 2003,59, 1289; (b) I. Yavari, H. Djahaniani and F. Nasiri, Reaction between alkyl isocyanides and dimethyl acetylenedicarboxylate in the presence of polyhydroxybenzenes. Synthesis of 4H-chromene derivatives [J]. Tetrahedron 2003,59:9409-9412; (c)H. Miao and Z. Yang, Regiospecific Carbonylative Annulation of Iodophenol Acetates and Acetylenes To Construct the Flavones by a New Catalyst of Palladium-Thiourea-dppp Complex [J]. Org. Lett.2000,2:1765-1768; (d) P. Kumar and M. S. Bodas, A Novel Synthesis of 4H-Chromen-4-ones via Intramolecular Wittig Reaction [J]. Org. Lett.2000,2:3821-3823.
    [119]F. E. King and D. G. I. Felton, cycloHexa-1,3-dione:A Reagent for the Characterisation of Aldehydes [J]. J. Chem. Soc.,1948,13:1371-1372.
    [120]H. Stetter, Neuere Methoden der praparativen organischen Chemie Ⅱ. Darstellung langkettiger Carbonsauren ausgehend von Cyclohexandionen-(1,3) [J]. Angew. Chem.,1955,67(24):769-784
    [121]E. C. Horning and M. G. Horning, Methong derivatives of aldehydes [J]. J. Org. Chem.,1946,11:95-99;
    [122]Z. J. Ren, W. G. Cao, W. Q. Tong and X. P. Jing, Knoevenagel condensation of aldehydes with cyclic active methylene compounds in water [J]. Synth. Commun., 2002,32:1947-1953;
    [123]G. Cravotto, A. Demetri, G. M. Nano, G. Palmmisano, A. Penoni and S. Tagliapietra, The Aldol Reaction under High-Intensity Ultrasound:A Novel Approach to an Old Reaction[J]. Eur. J. Org. Chem.,2003,4438-4444.
    [124]D. B. Ramachary and M. Kishor., Organocatalytic Sequential One-Pot Double Cascade Asymmetric Synthesis of Wieland-Miescher Ketone Analogues from a Knoevenagel/Hydrogenation/Robinson Annulation Sequence:Scope and Applications of Organocatalytic Biomimetic Reductions[J].J. Org. Chem.,2007,72: 5056-5068
    [125](a) D. B. Ranachary and M. Kishor, Organocatalytic Sequential One-Pot Double Cascade Asymmetric Synthesis of Wieland-Miescher Ketone Analogues from a Knoevenagel/Hydrogenation/Robinson Annulation Sequence:Scope and Applications of Organocatalytic Biomimetic Reductions [J]. J. Org. Chem.,2007,72: 5056-5068. (b) L. D. S. Yadav, S. Singh and V. K. Rai, Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O:synthesis of 3-mercaptocoumarins [J]. Green Chem.,2009,11:878-882. (c) W. Leitner, Green Solvents-Progress in science and application [J]. Green Chem.,2009,11:603-603.
    [126]Y. Bolshan, R. A. Batey, A room-temperature protocol for the Rhodium (I)-catalyzed addition of arylboron compounds to sulfinimines [J]. Org. Lett.2005,7(8): 1481-1484.
    [127]J. L. Anderson, R. W. McNutt, H. Xu, L. E. Smith, E. J. Bilsky, P. K. Davis, C. Rice, Probes for narcotic receptor mediated phenomena.19.synthesis of (+)-4-[(alpha.R)-.alpha.-((2S,5R) -4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl] -N, N diethylbenzamide (SNC 80):A highly selective, nonpeptide.delta. opioid receptor agonist[J]. J. Med. Chem.1994,37(14):2125-2128.
    [128]G. Kaur, M. Kaushik, S. Trehan, Bis(fluorosulfuryl)imide:a Bronsted acid catalyst for the coupling of allylic and benzylic alcohols with allyltrimethylsilane[J]. Tetrahedron Lett.1997,38(14):2521-2524.
    [129](a) S. Shirakawa, S. Kobayashi, Surfactant-type bronsted acid catalyzed dehydrative nucleophilic substitutions of alcohols in water [J]. Org. Lett.2007,9,311-314; (b) Z. P. Zhan, J. L. Yu, H. J. Liu, Y. Y. Cui, R. F. Yang, W. Z. Yang, J. P. Li, A general and efficient FeCl3-catalyzed nucleophilic substitution of propargylic alcohols [J]. J. Org. Chem.2006,71(21):8298-8301; (c) Z. P. Zhan, W. Z. Yang, R. F. Yang, J. L. Yu, J. P. Li, H. J. Liu, BiCl3-Catalyzed propargylic substitution reaction of propargylic alcohols with C-, O-, S- and N-centered nucleophiles [J]. Chem. Commun.2006,31: 3352-3354; (d) S. K. J. De, R. A. Gibbs, Bismuth (Ⅲ) chloride-catalyzed direct deoxygenative allylation of substituted benzylic alcohols with allyltrimethylsilane [J]. Tetrahedron Lett.2005,46(48):8345-8350; (e) M. Rubin, V. Gevorgyan, B (C6F5)3-Catalyzed allylation of secondary benzyl acetates with allylsilanes [J]. Org. Lett.2001,3(17):2705-2707; (f) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. Hidai, S. Uemura, Ruthenium-catalyzed propargylation of aromatic compounds with propargylic alcohols [J]. J. Am. Chem. Soc.2002,124:11846-11847; (g) Y. Inada, Y. Nishibayashi, M. Hidai, S. Uemura, Ruthenium-catalyzed propargylic substitution reaction of propargylic alcohols with thiols:A general synthetic route to propargylic sulfides [J]. J. Am. Chem. Soc.2002,124:15172-15173; (h) V. Terrasson, S. Marque, M. Georgy, J. M. Campagne, D. Prim, Lewis acid-catalyzed direct amination of benzhydryl alcohols. Adv. Synth. Catal.2006,348:2063-2067.
    [130]K. Motokura, N. Nakagiri, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Efficient C-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneous Bronsted acid [J]. Org. Lett.2006,8:4617-4620.
    [131]C. R. Reddy, P. P. Madhabi, A. S. Reddy, Molybdenum(V) chloride-catalyzed amidation of secondary benzyl alcohols with sulfonamides and carbamates [J]. Tetrahedron Lett.2007,48(40):7169-7172
    [132]J. S. Yadav, D. C. Bhunia, K. V. Krishna, P. Srihari, Niobium(V) pentachloride:an efficient catalyst for C-, N-, O-, and S-nucleophilic substitution reactions of benzylic alcohols [J]. Tetrahedron Lett.2007,4847(47):8306-8310.
    [133]U. Jana, S. Maiti, S. Biswas, An efficient FeCl3-catalyzed amidation reaction of secondary benzylic and allylic alcohols with carboxamides or p-toluenesulfonamide [J]. Tetrahedron Lett.2008,49(5):858-862.
    [134]H. Qin, N. Yamagiwa, S. Matsunaga, M. Shibasaki, Bismuth-catalyzed direct substitution of the hydroxy group in alcohols with sulfonamides, carbamates, and carboxamides [J]. Angew. Chem., Int. Ed.2007,46(3):409-413.
    [135](a) A. Garcia, L. Castedo, D. Dominguez, A new method for the n-benzylation of N-tosyl aminoacetaldehyde dimethyl acetal[J]. Synlett,1993,271-272; (b) A. Tillack, D. Hollmann, D. Michalik, M. Beller, A novel ruthenium-catalyzed amination of primary and secondary alcohols [J]. Tetrahedron Lett.2006,47:8881-8885; (c) S. Shirakawa, S. Kobayashi, Surfactant-type br(?)nsted acid catalyzed dehydrative nucleophilic substitutions of alcohols in water [J]. Org. Lett.2007,9(2):311-314.
    [136](a)K. Tanaka, F. Toda, Solvent-free organic synthesis. Chem. Rev.2000,100(3): 1025-1074; (b) K. Tanaka, Solvent-Free Organic Synthesis [M]. Wiley-VCH: Cambridge,2003; (c) G. Rothenberg, A. P. Downie, C. L. Raston, J. L. Scott, Understanding solid/solid Organic Reactions[J]. J. Am. Chem. Soc.2001,123(36), 8701-8708.
    [137]H. H. Li, D. J. Dong, S. K. Tian, Three-Component Synthesis of Amine Derivatives Using Benzylic and Allylic Alcohols as N-Alkylating Agents in the Absence of External Catalysts and Additives [J]. Eur. J. Org. Chem. Ref. No.:0200800465
    [138]D. P. Albone, S. Challenger, A. M. Derrick, S. M. Fillery, J. L. Irwin, C. M. Parsons, H. Takada, P. C. Taylor, D. J. Wilson, Amination of ethers using chloramine-T hydrate and a copper(I) catalyst[J] Org.Biomol.Chem.,2005,3:107-111.
    [139]K. Yamada, Y. Yamamoto, M. Maekawa, T. Akindele, H. Umeki, K. Tomioka, Tin-Free Intermolecular Addition of Primary Alkyls to Imines via the Dimethylzinc-Air Radical Process[J]. Org. Lett,2006,8 (1):87-89
    [140]H. H. Li, D. J. Dong, S. K. Tian, Three-Component Synthesis of Amine Derivatives Using Benzylic and Allylic Alcohols as N-Alkylating Agents in the Absence of External Catalysts and Additives[J], Eur. J. Org. Chem. Ref. No.:0200800465
    [141]M. Hatano, S. Suzuki, K. Ishihara, Highly Efficient Alkylation to Ketones and Aldimines with Grignard Reagents Catalyzed by Zinc(Ⅱ) Chloride[J], J. Am. Chem. Soc.,2006,128 (31):9998-9999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700