氮掺杂微纳米碳材料的制备表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米碳材料如碳纳米管、碳微米管等由于其自身独特的结构而具有不同于块体材料优异的电学和化学等性能,从而在能量存储、场发射等方面具有潜在的应用前景。理论和实验研究均表明氮掺杂可改变碳材料的晶体结构和电子结构从而提高其电化学性能和催化性能。目前,如何低成本、大规模制备氮掺杂的微纳米碳材料并对其结构和性能实现精确调控仍然面临着巨大的挑战。
     本论文以三聚氰胺为氮源和碳源,无水三氯化铁为催化剂前驱体,浮游催化气相沉积法制备了形貌新颖的氮掺杂碳微米管及氮掺杂铁填充双功能化的碳纳米管,并采用高温热解法成功制备得到了石墨相氮化碳(C3N4)材料以及氮化碳/石墨烯(C3N4/Graphene)复合材料。同时,本论文对上述制备的氮掺杂微纳米碳材料进行了详细的分析表征,并进行了磁性能、场发射性能、电磁波吸收和电化学性能方面的应用研究,主要研究内容及结果如下:
     1.氮掺杂碳微米管的合成。采用浮游催化法,以三聚氰胺为碳源和氮源,无水三氯化铁为催化剂前驱体,在氢气条件下制备了形貌新颖、管壁为网状结构的氮掺杂碳微米管,氮掺杂碳微米管的外径为0.5-1μm。考察了实验操作参数对产物形貌和氮掺杂量的影响。电化学性能研究发现,氮掺杂碳微米管是超级电容器理想的电极材料。
     2.氮掺杂铁填充碳纳米管的原位合成。采用浮游催化法,以三聚氰胺为碳源和氮源,无水三氯化铁为催化剂前驱体,在惰性气氛下制备了氮掺杂、铁填充双功能化的碳纳米管。考察了反应温度对产物形貌和氮掺杂量、铁填充率的影响。TEM表征显示所得碳纳米管的外径在250nm左右,氮的引入使纳米管的管壁具有较多褶皱。性能测试研究表明产物具有优异的磁性能、场发射和电磁波吸收性能。此外,产物经过惰性气氛下的高温退火处理可使Fe3C转化为a-Fe,空气氧化处理可实现Fe填充物向管壁的迁移扩散。
     3.石墨相氮化碳/石墨烯复合材料的制备。采用高温热解法,在高压釜中以三聚氰胺为原料制备了石墨相氮化碳材料。将三聚氰胺和氧化石墨不同比例混合后采用高温热解法制备了氮化碳/石墨烯的复合材料。电化学测试研究表明所得复合材料在超级电容器方面有潜在应用。
Carbon based micro/nano-sized materials, including carbon nanotubes (CNTs), carbon microtubes (CMTs), have potential applications in various fields, such as energy storage and field emission display due to their unique chemical and electrical properties. Theoretical and experimental results demonstrate that doping carbon with nitrogen can tailor the crystal and electronic structure of carbon materials. However, the synthesis of nitrogen doped micro/nano carbon materials in large-scale is still a challenge.
     In the present work, we prepared nitrogen doped carbon nanotubes (N-CNTs) filled with iron, nitrogen doped carbon microtubes (N-CMTs) and carbon nitrides via floating catalyst chemical vapor deposition (CVD) and pyrolysis method. Finally, the applications of these as-prepared nitrogen doped micro/nano carbon materials have been investigated. The major results are briefly summarized as follows.
     N-CMTs with net-like structures have been synthesized using anhydrous ferric chloride as a catalyst precursor and melamine as both carbon and nitrogen sources by means of a floating catalyst CVD method. The N-CMTs from our floating catalyst method have a diameter of0.5-1urn, and the products exhibit stable performance as supercapacitor materials.
     N-CNTs filled with iron have been synthesized using anhydrous ferric chloride as a catalyst precursor and melamine as both carbon and nitrogen sources by means of a floating catalyst CVD method. It is noteworthy that the N-CNTs with an outer diameter of250nm exhibit an irregular and corrugated morphology due to the nitrogen incorporation. The products exhibit potential applications in magnetic data storage devices, field emission display and electromagnetic wave adsorption. Finally, annealing treatment and air oxidation were applied on the products respectively in order to investigate the conversion of iron in the N-CNTs.
     Graphitic carbon nitrides/graphene composites have been successfully synthesized via a high pressure and high temperature pyrolysis route using melamine and graphite oxide as starting materials. The composites exhibit potential application in supercapacitors.
引文
[1]KROTO H W, HEATH J R, OBRIE S C, et al. C50:Buckminsterfullerene [J]. Nature,1985, 318(6042):162-163.
    [2]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [3]NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [4]NETO A C, GUINEA F, PERES N M. Drawing conclusions from graphene [J]. Phys World, 2006,19(11):33-37.
    [5]AJAYAN P M, NUGENT J M, SIEGEL R W, et al. Growth of carbon micro-trees [J]. Nature, 2000,404(6775):243-243.
    [6]QIU J S, LI Y F, WANG Y P, et al. A novel form of carbon micro-balls from coal [J]. Carbon,2003,41 (4):767-772.
    [7]YU H M, HUANG X X, WEN G W, et al. A pressure enhanced CVD method for large scale synthesis of carbon microtubes and their mechanical properties [J]. Mater Lett, 2011,65(12):2004-2006.
    [8]WILDOER J W G, VENEMA L C, RINZLER A G, et al. Electronic structure of atomically resolved carbon nanotubes [J]. Nature,1998,391(6662):59-62.
    [9]TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381(6584):678-680.
    [10]NEUPANE S, LASTRES M, CHIARELLA M, et al. Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper [J]. Carbon,2012, 50(7):2641-2650.
    [11]QIU J S, LI Y F, WANG Y P, et al. High-purity single-wall carbon nanotubes synthesized from coal by arc discharge [J]. Carbon,2003,41(11).-2170-2173.
    [12]THESS A, LEE R, NIKOLAEV P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996,273(5274):483-487.
    [13]CHENG H M, LI F, SU G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons [J]. Appl Phys Lett, 1998,72(25):3282-3284.
    [14]GENG F X, CONG H T. Fe-filled carbon nanotube array with high coercivity [J]. Physica B:Condensed Matter,2006,382(1-2):300-304.
    [15]CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J]. Adv Mater,2004,16(5):401-405.
    [16]LV R T, KANG F Y, ZHU D, et al. Enhanced field emission of open-ended, thin-walled carbon nanotubes filled with ferromagnetic nanowires [J]. Carbon,2009, 47(11):2709-2715.
    [17]WINKLER A, MUH1 T, MENZEL S, et al. Magnetic force microscopy sensors using iron-filled carbon nanotubes [J]. J Appl Phys,2006,99(10):104905.
    [18]HSU W K, LI J, TERRONES H, et al. Electrochemical production of low-melting metal nanowires [J]. Chem Phys Lett,1999,301(1-2):159-166.
    [19]BERA D, KUIRY S C, MCCUTCHEN M, et al. In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution [J]. Chem Phys Lett,2004,386(4-6):364-368.
    [20]RAO C N R, SEN R. Large aligned-nanotube bundles from ferrocene pyrolysis [J]. Chem Commun,1998, (15):1525-1526.
    [21]LV R T, TSUGE S, GUI X C, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper [J]. Carbon,2009,47(4):1141-1145.
    [22]LV R T, KANG F Y, WANG W X, et al. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes [J]. Carbon,2007, 45(7):1433-1438.
    [23]MEDURI P, KIM J H, RUSSELL H B, et al. Thin-walled carbon microtubes as high-capacity and high-rate anodes in lithium-ion batteries [J]. J Phys Chem C, 2010,114(23):10621-10627.
    [24]LIBERA J, GOGOTSI Y. Hydrothermal synthesis of graphite tubes using Ni catalyst [J]. Carbon,2001,39(9):1307-1318.
    [25]SHEN G Z, BANDO Y, ZHI C Y, et al. Tubular carbon nano-microstructures synthesized from graphite powders by an in situ template process [J]. J Phys Chem B,2006, 110(22):10714-10719.
    [26]WANG X R, ZHAO X, YANG J, et al. The production of carbon-microtube rings by a template mechanism [J]. Carbon,2009,47(7):1877-1880.
    [27]YU H M, HUANG X X, WEN G W, et al. In situ synthesis of high-purity carbon microtube membrane [J]. Mater Lett,2011,65(15-16)-.2374-2376.
    [28]GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science,2009, 323(5915):760-764.
    [29]SHAO Y Y, ZHANG S, ENGELHARD M H, et al. Nitrogen-doped graphene and its electrochemical applications [J]. J Mater Chem,2010,20(35):7491-7496.
    [30]GORGULHO H F, GONCALVES F, PEREIRA M F R, et al. Synthesis and characterization of nitrogen-doped carbon xerogels [J]. Carbon,2009,47(8):2032-2039.
    [31]DROPPA R, HAMMER P, CARVALHO A C M, et al. Incorporation of nitrogen in carbon nanotubes [J]. J Non-Cryst Solids,2002,299:874-879.
    [32]JANG J W, LEE C E, LYU S C, et al. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes [J]. Appl Phys Lett,2004, 84(15):2877-2879.
    [33]LEE Y T, KIM N S, BAE S Y, et al. Growth of vertically aligned nitrogen-doped carbon nanotube control of the nitrogen content over the temperature range 900-1100℃ [J]. J Phys Chem B,2003,107(47):12958-12963.
    [34]LEE D H, LEE W J, KIM S 0. Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays [J]. Nano Lett,2009,9(4):1427-1432.
    [35]LV R T, CUI T X, JUN M S, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support [J]. Adv Funct Mater,2011, 21(5):999-1006.
    [36]GLERUP M, CASTIGNOLLES M, HOLZINGER M, et al. Synthesis of highly nitrogen-doped multi-walled carbon nanotubes [J]. Chem Commun,2003, (20):2542.
    [37]GHOSH K, KUMAR M, MARUYAMA T, et al. Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources [J]. Carbon,2009,47(6):1565-1575.
    [38]TERRONES M, TERRONES H, GROBERT N, et al. Efficient route to large arrays of CN* nanofibers by pyrolysis of ferrocene melamine mixtures [J]. Appl Phys Lett,1999, 75(25):3932-3934.
    [39]LIU H, ZHANG Y, LI R Y, et al. Structural and morphological control of aligned nitrogen-doped carbon nanotubes [J]. Carbon,2010,48(5):1498-1507.
    [40]WANG Z J, JIA R R, ZHENG J F, et al. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells [J]. ACS Nano,2011,5(3):1677-1684.
    [41]MA Y W, ZHAO J, ZHANG L R, et al. The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction [J]. Carbon, 2011,49(15):5292-5297.
    [42]LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989,245(4920):841-842.
    [43]TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science,1996, 271(5245):53-55.
    [44]WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat Mater,2009,8(1):76-80.
    [45]SHI G Q, SUN Y Q, LI C, et al. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst [J]. Chem Commun, 2010,46(26):4740-4742.
    [46]ZHU J J, WEI Y C, CHEN W K, et al. Graphitic carbon nitride as a metal-free catalyst for NO decomposition [J]. Chem Commun,2010,46(37):6965-6967.
    [47]MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Solvothermal synthesis of the graphitic form of C3N4 as macroscopic sample [J]. Diam Relat Mater,1999,8(8-9):1707-1710.
    [48]BAI Y J, LU B, LIU Z G, et al. Solvothermal preparation of graphite-like C3N4 nanocrystals [J]. J Cryst Growth,2003,247(3-4):505-508.
    [49]CHEN X F, JUN Y S, TAKANABE K, et al. Ordered mesoporous SBA-15 type graphitic carbon nitride:a semiconductor host structure for photocatalytic hydrogen evolution with visible light [J]. Chem Mater,2009,21(68):4093-4095.
    [50]LI Z S, YAN S C, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009,25(17):10397-10401.
    [51]KUNDU S, NAGAIAH T C, XIA W, et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction [J]. J Phys Chem C,2009,113(32):14302-14310.
    [52]BULUSHEVA L G, OKOTRUB A V, KURENYA A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J]. Carbon,2011, 49(12):4013-4023.
    [53]QIU Y C, ZHANG X F, YANG S H. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets [J]. Phys Chem Chem Phys,2011, 13(27):12554-12558.
    [54]ZHANG Y, LIU C G, WEN B, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes [J]. Mater Lett,2011,65(1):49-52.
    [55]WEN G W, YU H M, HUANG X X. Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method [J]. Carbon,2011,49(12):4067-4069.
    [56]LEONHARDT A, RITSCHEL M, ELEFANT D, et al. Enhanced magnetism in Fe-f illed carbon nanotubes produced by pyrolysis of ferrocene [J]. JApplPhys,2005,98(7):074315.
    [57]VANDOMMELES, ROMERO-1ZQUIRDO A, BRYDSON R, et al. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes [J]. Carbon,2008, 46(1):138-148.
    [58]WANG Z Y, ZHAO Z B, QIU J S. Carbon nanotube templated synthesis of CeF3 nanowires [J]. Chem Mater,2007,19(14):3364-3366.
    [59]PECHD, BRUNETM, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J]. Nat Nanotechnol,2010,5(9):651-654.
    [60]ZHOU Q, ZHAO Z B, CHEN Y S, et al. Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes [J]. J Mater Chem,2012, 22(13):6061-6066.
    [61]CHE R C, LIANG C Y, SHI H L, et al. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes [J]. Nanotechnology.2007,18(35):355705.
    [62]RAO C N R, GOVINDARAJ A. Carbon nanotubes from organometallic precursors [J]. Accounts Chem Res,2002,35(12):998-1007.
    [63]LIU S W, TANG X H, MASTAI Y, et al. Preparation and characterization of iron-encapsulatingcarbon nanotubes and nanoparticles [J]. J Mater Chem,2000, 10(11):2502-2506.
    [64]HOU H Q, SCHAPER A K, JUN Z, et al. Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor [J]. Chem Mater,2003,15(2):580-585.
    [65]KHAVARIAN M, CHAI S P, HUAT T S, et al. Effects of temperature on the synthesis of carbon nanotubes by FeCl3 as a floating catalyst precursor [J]. Fullerenes, Nanotubes and Carbon Nanostructures,2011,19(6):575-583.
    [66]LV R T, KANG F Y, GU J L, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires:Lightweight and wide-band microwave absorber [J]. Appl Phys Lett,2008, 93(22):223105.
    [67]CHENG J, ZOU X P, ZHU G, et al. Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties [J]. Solid State Commun, 2009,149 (39-40):1619-1622.
    [68]MULLER C, HAMPEL S, ELEFANT D, et al. Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties [J]. Carbon,2006, 44(9):1746-1753.
    [69]SU Q M, LI J, ZHONG G, et al. In situ synthesis of iron/nickel sulfide nanostructures-filled carbon nanotubes and their electromagnetic and microwave-absorbing properties [J]. J Phys Chem C,2011,115(5):1838-1842.
    [70]DUJARDIN E, EBBESEN T W, HIURA H, et al. Capillarity and wetting of carbon nanotubes [J]. Science,1994,265(5180):1850-1852.
    [71]ZHOU J S, SONG H H, CHEN X H, et al. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation [J]. J Am Chem Soc,2010, 132(33):11402-11405.
    [72]WANG X C, MAEDA K, CHEN X F, et al. Polymer semiconductors for artificial photosynthesis hydrogen evolution by mesoporous graphitic carbon nitride with visible light [J]. J Am Chem Soc,2009,131(5):1680-1681.
    [73]VINU A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content [J]. Adv Funct Mater, 2008,18(5):816-827.
    [74]DATTA K K R, REDDY B V S, ARIGA K, et al. Gold nanoparticles embedded in mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction [J]. Angew Chem Int Ed,2010,49(34):5961-5965.
    [75]LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. J Am Chen Soc,2010, 132(33):11648-11642.
    [76]ZHANG Y J, MORI T, YE J H, et al. Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation [J]. J Am Chem Soc,2010, 132(18):6294-6295.
    [77]CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427(6974):523-527.
    [78]BALANDIN A A, GHOSHS, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett,2008,8(3):902-907.
    [79]LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [80]DU A J, SANVITO S, LI Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite:gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response [J]. J Am Chem Soc,2012,134(9):4393-4397.
    [81]LI X H, CHEN J S, WANG X C, et al. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites:functional dyads for selective oxidation of saturated hydrocarbons [J]. J Am Chem Soc,2011,133(21):8074-8077.
    [82]ZHAO Y C, LIU Z, CHU W G, et al. Large-scale synthesis of nitrogen-rich carbon nitride microf ibers by using graphitic carbon nitride as precursor [J]. Adv Mater, 2008,20(9):1777-1781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700