一种基于功率因数校正技术的高效型反激式开关稳压电源系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息产业技术的飞速发展,开关电源电力电子装置得到了广泛的应用,同时这种传统开关电源也对电网造成了污染,由此具有功率因数校正(Power Factor Correction,PFC)功能的低电磁污染型“绿色电源”也就应运而生。随着人们对电源质量的更高要求,高效型、体积小和污染低的开关电源已成为研发的主流技术,因此尽可能地提高DC/DC变换效率,再利用同步整流技术可以使开关电源效率大大提高。本文将PFC技术、准谐振DC/DC变换与同步整流技术相结合,设计出一款低磁污染的开关电源,既保证了较高的功率因数,改善了对电网的影响,又能保证高效率,且控制简单,可靠实用,因而具有一定的应用价值。
     本文首先阐述了开关电源、功率因数校正技术和同步整流技术的发展及现状,对DC/DC变换的拓扑结构进行了选择,确定了带有隔离的准谐振(Quasi-Resonant)反激型电路,可以有效地降低损耗;接着本文对几种常见的PFC拓扑电路进行分析对比,从中选择了BOOST型电路,对工作在临界状况下的电路进行了分析,采用跟随输入电压的升压变换新技术,减小了电感体积,同时降低了开关管的电压应力,既简单又有效地实现了功率因数校正,并发现此技术值得推广;由于反激型变换器的效率一般都较低,所以本文在传统同步整流技术基础上对其加以改进,设计出一种新颖、高效的同步整流方案。对于宽电压范围启动过冲问题,本位设计出一种防止过冲的启动控制电路。最后为降低电磁干扰(Electromagnetic Interference,EMI),达到电磁兼容(Electromagnetic Compatibility,EMC),特设计出开关电源电路输入端的EMI滤波电路。
     本文对整个电路拓扑建立小信号模型,进行了系统稳态性能分析,证明了电路系统的稳定性。文中对部分电路用OrCAD Pspice A/D仿真软件进行了仿真,选取了元器件,制作样机进行了硬件调试,分析试验数据并与仿真波形对比,实验结果令人满意,实现了高功率因数,成功地做到PFC输出电压跟随输入电压升压控制,整机效率明显提高。文末提出了下一步工作的方向和目标。
     随着社会的发展及需求,新一代功率变换器必将向大功率、高功率因数、高效率、低损耗、低污染、小体积、高性能方向发展。通过本文的理论分析、电路
With the rapid development of electronic information industry, power electronics equipments such as switching power supply have been widely applied. At the same time, such conventional switching power supply contaminated electrical network, consequently a novel power supply with power factor correction (PFC), a type of low electromagnetic contamination, emerges as the times require, that is "green power supply". With people's more demand for quality of power, the power supply with high efficiency, little bulk and low contamination have became mainstream of research and development. So striving hard to improve transforming efficiency of DC/DC and utilizing Synchronous Rectifier can be able to improve transforming efficiency greatly. This paper attempts to associate PFC technology with Quasi-Resonant DC/DC Converter and Synchronous Rectifier technology, to work out a novel switching power supply with higher efficiency and low contamination, which both achieved high power factor, improved effecting on electrical network and ensured high efficiency, furthermore, it is easy to be realized and controlled in circuit. Therefore it has great value of application.
    Firstly, future development of switching power supply, power factor correcting and synchronous rectifier technology is described, and isolation of Quasi-Resonant Flyback Converter is selected from several topology of DC/DC, which may reduces power loss effectively. Next several common topology of PFC are contrasted with their performance, and BOOST circuit elected is analyzed with operating in critical mode, which adopts new technology of output voltage following along with changing of input, not only can bulk of inductance lessen, but also can voltage stress of switching tube decrease, and reaches power factor correcting easily and effectively, this technology should be extended. Because efficiency of Flyback Converter is lower commonly, so this paper improves on technology of common Synchronous Rectifier and schemes out a new high efficiency scheme of Synchronous Rectifier. About current surge when start in wide voltage, corresponding control circuit of start-up is designed in this paper. Finally, to depress Electromagnetic Interference (EMI) and achieve Electromagnetic Compatibility (EMC), EMI filter is designed at input of switching power supply
    specially.
    This paper constructs small-signal modeling according to entire circuit and analyzes systemic stabilization, which proves stability of it. Simulates parts of circuit using simulation software of OrCAD Pspice A/D, selects circuit components, designs
引文
[1] IEC Sub-committee 77A report: Disturbances caused by equipment connected to the public low-voltage supply system. Part2: Harmonics[M]. 1995
    [2] 张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1998
    [3] 曾小平.集成功率因数校正和不间断供电的开关电源(UPPS)的研究[D].广州:华南理工大学,2000
    [4] 董耀希.开关电源功率因数的校正[J].黑龙江通信.1997.9.3:38-44
    [5] 郑同江.电力电子装置的谐波危害及其抑制对策[J].天津理工学院学报.1999,15(1):26-29
    [6] 周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].人民邮电出版社,2004
    [7] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000:66-72
    [8] IEEE Std. 519-1992: IEEE recommended practices and requirements for harmonic control in electric power system[M]. 1993
    [9] 水利电力部.电力系统谐波管理暂行规定(SD126-84)[M].北京:水利电力出版社,1984
    [10] 中国国家标准GB/T14549-93:电能质量公用电网谐波[M].北京:中国标准出版社,1994
    [11] 严百平,刘建.不连续导电模式高功率因数开关电源[M].北京:科学出版社.2000
    [12] Chongming Qiao, Keyue Ma Smedley. A topology survey of single-stage power factor corrector with a boost type input-current-shaper. Power Electronics[J]. IEEE Transactions, May 2001, 16(3): 360-368
    [13] Keiju Matsui, Kazumasa Ohtsuka, Isamu Yamamoto, Yugo Yao. A power factor correction with LC resonance in commercial frequency. Power Conversion Conference[J]. 2002. PCC Osaka 2002: 1238-1244
    [14] G. Olivier, V. R. Stefanovic. Thyristor Current Source with on Improved Power Factor[J]. IEEE PESC Records, 1980: 346-356
    [15] S. B, Dewan, W. G. Dunford. Improved Power Factor operation of a single phase controlled Rectifier Bridge through modified gating. IEEE PESC Records[J]. 1980: 357-365
    [16] C. P. Henze, N. Mohan. A digitally controlled AC to DC power conditioner that draws sinusoidal input current[J]. IEEE PESC Records, 1986: 531-540
    [17] K. K. Sen, A. E. Emanuel. Unity power factor single phase power conditioning[J]. IEEE PESC Records, 1987: 516-524
    [18] Kwang-Hwa Liu, Yung-Lin Lin. Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters[J]. IEEE PESC Records, 1989, 2: 825-829
    [19] D. S. L. Simonetti, J. Sebastian, F. S. dos Reis, J. Uceda. Design criteria for sepic and cuk Converters as power factor preregulators in discontinuous conduction mode[J]. IECON. 1992, 1: 283-288
    [20] 毛鸿,吴兆麟.有源功率因数校正器的控制策略综述[J].电力电子技术.2000(1):58-61
    [21] J. Sebastian, M. Jaureguizar, J. Uceda. An overview of power factor correction in single-phase off-line power supply systems. Industrial Electronics Control and Instrumentation[J]. 1994, 3: 1688-1693
    [22] 王长勇.峰值电流控制 Boost 功率因数校正器中的斜坡补偿[J].盐城工学院学报.2001.12,14(4):5-8
    [23] K. W. Siu, Y. S. Lee. A novel high-efficiency flyback power-factor-correction circuit with regenerative clamping and soft switching[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(3): 350-356
    [24] Jingquan Chen, Chin Chang. Analysis and design of SEPIC converter in boundary conduction mode for universal-line power factor correction applications[J]. Power Electronics Specialists Conference, 2001, 2: 742-747
    [25] 周宇飞,丘水生.Boost 变换器滑模控制方法以及实验研究[J].电力电子技 术.2000,35(2):42-44
    [26] 曹广华,胡宗波,张波.单周期控制 Boost PFC 变换器[J].电力电子技术.2005.6,39(3):6-8
    [27] K. M. Smedley, S. Cuk. One-cycle control of switching converters[J]. IEEE PESC Rec., Massachusetts, USA, 1991: 888-896
    [28] Yong Wang, Songhua Shen. Research on One-Cycle Control for Switching Converters[J]. Proceedings of the 5th Word Congress on intelligent Control and Automation, June 15-19, 2004, Hangzhou, P. R. China: 74-77
    [29] Yimin Jing, Fred C. Lee, Guichao Hua, Wei Tang. A novel single-phase power factor correction scheme[J]. APEC'93, Applied Power Electronics Conference and Exposition, 1993, Conference Proceedings 1993: 287-292
    [30] Y. S. Lee, K. W. Siu. Single-switch fast-response switching regulators with unity power factor[J]. APEC'96, 1996: 791-796
    [31] R. RedI, L. Balogh, N. O. Sokal. A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage[J]. IEEE'94 Records, 1994: 1137-1144
    [32] 董晓伟,裴云庆,曹建安,王兆安.一种新型单级PFC变换器的研究[J].电力电子技术.2004.8,38(4):17-19
    [33] Jinrong Qian, Qun Zhao, Fred C. Lee. Single-Stage Single-Switch Power-Factor-Correction AC/DC Converters with DC-Bus Voltage Feedback for Universal Line Applications[J]. IEEE Transactions on Power Electronics, November 1998, 13(6): 1079-1088
    [34] Huai Wei, Issa Batarseh, Peter Kornetzky. Novel single-switch converter with power factor correction[J]. IEEE Transactions on Aerospace and Electronics systems, October 1999, 35(4): 1344-1352
    [35] 邓卫华,张波.一种全新的临界工作模式下的单级功率因数校正电路工作特性研究[J].中国电机工程学报.2003.7,23(7):36-40
    [36] 安森美半导体.功率因数校正(PFC)手册.第二版.安森美半导体资料分 发中心.2004.8
    [37] Fengfeng Tao, Fred C. Lee. A Critical-Conduction-Mode Single-Stage Power-Factor-Correction Electronic Ballast[J]. APEC'2000, Applied Power Electronics Conference and Exposition, 2000: 603-609
    [38] 任光,方清城,高潮.同步整流管栅源寄生电容在同步整流技术中的应用分析和比较[J].佛山科学技术学院学报(自然科学版).2004.3,22(1):24-27
    [39] 曹箫洪,石文,许建平.同步整流技术的新开展[J].电力电子技术.1999,2:79-81
    [40] Y. Nakayashiki, H. Shimamori, T. Satoh, etc. High-efficiency switching power supply unit with synchronous rectifier[J]. Telecommunications Energy Conference, 1998: 398—403
    [41] 胡宗波,张波.同步整流器中MOSFET的双向导电特性和整流损耗研究[J].中国电机工程学报.2002.3,22(3):88-93
    [42] Hirotaka Koizumi, Hiroo Sekiya, Mitsuhiro Matsuo, Shinsaku Mori, Iwao Sasase. Resonant dc/dc Converter with Class DE Inverter and Class E Rectifier Using Thinned-Out Method[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, January 2001, 48(1): 123-126
    [43] Wojciech A. Tabisz, Fred C. Lee, Dan Y. Chen. A MOSFET Resonant Synchronous Rectifier for High-frequency DC-DC Converters[J]. IEEE PESC'90 Records, 1990: 769-778
    [44] 瞿成明,王慧贞.有源箝位ZVS-PWM控制串联谐振变换器中提高同步整流效率的研究[J].四川电力技术.2002(5):12-42
    [45] Michael T. Zhang, Fred C. Lee. Commutation analysis of self-driven synchronous rectifiers in an active-clamp forward converter[J]. PESC'96 Records, Power Electronics Specialists Conference, 1996: 868-873
    [46] 宋伟,宫元九,吕瑶.同步整流驱动方式对开关电源效率的影响[J].哈尔滨理工大学学报.1997(2):44-49
    [47] 胡宗波,张波.同步整流器两种驱动方式的分析和比较[J].电力电子技术. 2001, 35(6): 56-60
    [48] Joe C. P. Liu, XueFei Xie, Franki N. K. Poon, Bryan M. H. Poon. Practical solutions to the design of current-driven synchronous rectifier with energy recovery from current sensing[J]. APEC'02, 2002: 878-884
    [49] MLT098A 规格书.深圳市麦格米特电气技术有限公司.2005.9
    [50] 杨旭,裴云庆,王兆安.开关电源技术[M].北京:机械工业出版社,2004:72-78
    [51] 宋自恒,林庆仁.功率因数修正电路之原理与常用元件规格[J].新电子科技杂志.2004(217)
    [52] 周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].北京:人民邮电出版社,2004
    [53] Power Factor Controller IC for High Power Factor and Low THD: TDA4863[M]. Infineon Technologies AG2005
    [54] 刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社,2001
    [55] 张青松等.电子控制设备抗干扰技术及其应用[M].北京:机械工业出版社,1995
    [56] 陈兆仁等.电子技术基础实验研究与设计[M].北京:电子工业出版社,2000
    [57] 吕东波.开关电源有源功率因数校正装置的研究[D].华南理工大学硕士学位论文.2001.3:30-32
    [58] 程为彬.电子镇流器中的有源功率因数校正电路[J].现代电子技术,2000.7(7)
    [59] H. P. Yee, Ph. D. An EMI Suppression on MOSFET Driver. Applied Power Electronics Conference and Exposition[J]. 1997. APEC'97, Conference Proceedings 1997: 242-248
    [60] PWM Current-Mode Controller for Free Running Quasi-Resonant Operation: NCP1207. Literature Distribution Center for ON Semiconductor
    [61] R. A. Fisher, C. S. Korman, G. A. Franz, G. W. Ludwig, J. P. Walden, S. A. El-Hamamsy, K. Shenai, M. Kuo. Performance of low loss synchronous rectifiers in a series-parallel resonant DC-DC converter[J]. APEC'89, Applied Power Electronics Conference and Exposition, 1989: 240-246
    [62] D. K. W. Cheng, X. C. Liu, Y. S. Lee. Parallel Operation of DC-DC Converters with Synchronous Rectifiers[J]. IEEE PESC Records, 1998, 2: 1225-1229
    [63] Xunwei Zhou, Mauro Donati, Luca Amoroso, Fred C. Lee. Improved Light-Load Efficiency for Synchronous Rectifier Voltage Regulator Module[J]. APEC'99, Applied Power Electronics Conference and Exposition, 1999, 15(5): 826-834
    [64] 陈世杰,顾亦磊,吕征宇,钱照明.同步整流Flyback电路的一种软开关实现方法[J].电力电子技术.2004,38(5):19-21
    [65] Dan Jitaru. High Efficiency Flyback Converter using Synchronous Rectification[J]. APEC'02, Applied Power Electronics Conference and Exposition, 2002: 867-871
    [66] 王家庆.智能型高频开关电源系统的原理使用与维护[M].北京:人民邮电出版社,2000:48-51
    [67] 吴雪予.抗EMI滤波器设计与应用原理[J].磁性材料及器件.1999,30(5):23-28
    [68] M. H. Pong, C. M. Lee, X. Wu. EMI Due to Electric Field Coupling on PCB[J]. PESC'98 Records, Power Electronics Specialists Conference, 1998: 1125-1130
    [69] 赵宏锋.高精度稳定稳流开关电源设计[D].西北工业大学硕士学位论文.2000.3:33-34
    [70] 王划一.自动控制原理[M].北京:国防工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700