多普勒全光纤速度传感器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在爆轰冲击波测试、高速碰撞、火箭推进等工程应用领域中,光纤测速作为一种时间和空间分辨率较高的非接触测量手段被广泛应用。与传统激光测速相比,全光纤测速系统以其可靠性好、调试方便、利于多点测速等优点成为测速领域的研究重点。在干涉测量中,对系统进行模型分析以及如何提高系统输出信号质量和有效地细分条纹一直是研究重点,而且,系统的后端数据处理也非常关键。本文针对几个关键部分进行研究,主要内容如下:
     首先,阐述了国内外测速系统的发展,对发展过程中典型的测速系统进行了原理分析和描述,给出了传统测速与光纤测速的区别;基于光学多普勒效应和混频原理,对全光纤多普勒测速系统的原理进行了分析,推导了差拍多普勒系统的测速公式,分析了条纹采集数目对测速误差的影响。
     其次,对全光纤测速系统的光路系统进行光学建模,建立了系统各个光学器件的琼斯矩阵,为测速系统的光路研究提供了理论研究基础。基于理论化的光学模型,推导了正弦振动下的系统理论输出,并分析推导了光器件误差对系统的影响。
     再次,研究了测速系统中关键器件光源和耦合器对系统测速的影响。先对系统中光源参数对系统性能的影响进行了分析,推导了谱宽影响干涉输出的条纹对比度公式,给出了光源在不同测试条件下的实验测试曲线。而后分析了耦合器分光比对系统信号调制度的影响,推导了基于麦克斯韦方程的模耦合理论并测试了利用熔融拉锥制法制作的耦合器,给出了系统实验曲线。
     最后,针对差拍系统输出的信号特点,给出了信号的变化规律及系统条纹常数的修正及检测方法,利用皮秒激光器进行了实验。针对系统的高速测速时的条纹丢失现象,分析了几种系统条纹丢失的补偿方法。针对低速测量场合,提出了一种三角波调制的条纹细分的方法,对调制过程进行了详细分析,并给出了基于FPGA的细分电路的原理设计和FPGA片内时序控制模块部分的仿真曲线。
As a high time and space resolution and non-contact measurement method laser velocity measurement system is used widely in the project field of explosive detonation shockwave test, weaponry design, high velocity impact, rocket propulsion. Traditional laser velocity measurement system is difficult to progress further because of defect such as complex structure, debugging difficulty, and so on. Compared with traditional system, all fiber velocity measurement system becomes the trend owns to its advantage of compact structure, high stability, debugging difficulty. The performance of fiber source and coupler are very important to the system, also the data processing could not be neglect if want to improve the system. The content of this dissertation is as follows:
     Firstly, it describes the history of velocity measurement system home and abroad, the principle of system, and the difference between traditional system and all fiber system. All fiber system is detailed based on Doppler Effect and frequency mixing theory, the velocity expression is derived, and the effect of fringe number on velocity is also described.
     Secondly, the demand of use of fiber source in different application is analyzed based on the parameters of fiber source. The effect of parameters such as spectrum width, mean wavelength and the stability of output power of fiber source on system performance are also analyzed. The curves of output signal of the system and its fringe constant with the variation of spectrum width are given. And then the experimental testing curves are derived in different conditions.
     Additionally, it conducts the study of influence of coupler on velocity measurement, the mode coupling theory based on Maxwell equations is described, and the effect of coupling ratio on output interfere fringe contrast is analyzed. Coupler is affected by other external factors in the course of fabrication; it is adjusted to fabricated using fused biconical taper. The experimental testing curves of fabricated coupler are given.
     Finally, the correction factor of fringe constant and measurement method are conducted as to dispersion and impact characteristic of optical devices. It analyzes the phenomenon of fringe loss in detail and gives the ways to compensate it based on the characteristic of output signal of the system. The improved system is described as to the defects of single-ended detect and the corresponding data processing is given. In order to enhance the performance one method for fringe subdivision and the electrical circuit design are given.
引文
[1]耿春余.电爆炸箔加速塑料飞片速度分析.含能材料.1995,3(2):37-42页
    [2] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface. Appl. Phys. 1972, 43(11): 4669-4675P
    [3] Hanns J. Buschel berger etc. Closed Loop Fiber optic Gyro Triad. SPIE (1585): 89-97P
    [4] Yeh Y, Cummins H z. Localized Fluid Flow Measurements with an He-Ne Laser Spectrometer. Applied Physics Letters. 1964, 4(10): 176-178P
    [5] Barker L M, Hollenbach R E. Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials. Rev. Sci. Instrum. 1965, 36(11): 617-1620P
    [6] Barker L M. In. Behavior of Dense Media under High Dynamic Pressure. Golden and Breach. 1968,483-505P
    [7] Simpson D, Smy P R. Optical Mixing of Laser Radiation Reflected from a Shock Wave. J. Appl. Phys. 1969, 40(12): 4928-4932P
    [8] Barker L M, Hollenbach R E. Laser Interferometer for Measuring High Velocities of any Reflecting Surface. J. Appl. Phys. 1972, 43(11): 4669-4675P
    [9] Johnson P M, Burgess T J. Free Surface Velocity Measurement of an Impacted Projectile by Optical Doppler Shift. Rev. Sci. Instrum. 1968, 39(8): 1100-1103P
    [10] Larrague, P, Durand M. System for Velocity Measurement of a Projectile Using a Laser and a Fabry-Perot Interferometer. Proc. Of the 9th International Congress on High-Speed Photography, Denver, Colorado, 105-111P
    [11] Levin L, Tzach P, Shamir J. Fiber optical velocity interferometer with very short coherence length light source. Rev. Sci. Instrum. 1996, 67(4): 1434-1437P
    [12] Tien C C, Cheng C Y, Yuan T Y, Has Y H. The Application of Interferometric Laser Technique in Detonics. Proc. Of the 13th International Congress on High Speed Photography and Photonics, Tokyo, 1978, 717-720P
    [13]胡绍楼,王文林,倪永良.改进型位移干涉仪.全国第三届高速摄影与光子学学术交流会论文集(第三册),1982
    [14]胡绍楼,王文林,马如超.JSG-1型激光速度干涉仪.爆炸与冲击.1987,7(3)L:257-260页
    [15]胡力,贾波,叶昆诊等.全光纤白光任意反射面速度干涉系统.光学学报.2000, (06):814-820页
    [16]翁继东,谭华,贾波等.全光纤速度干涉仪数据处理方法.光电工程.2005,(01):851-855页
    [17]张森,王臻等.光纤传感技术的发展及应用.光纤电缆及其应用技术.2007,3:1-3页
    [18]胡绍楼.激光干涉测速技术.北京:国防工业出版社.2001,3:3-18页
    [19] Barker L M. Schuler K W. Correction to the Velocity Per Fringe Relationship for the VISAR Interferometer.
    [20]马云,张林等.VISAR条纹常数的检测方法.高压物理学报.2008,22(4):384-388
    [21]王凤山译.振动手册.强度与环境编辑部.1982:26-27页
    [22] Larry Fabiny. Aland. Kersey. Interferometric Fiber optic Doppler Velocimeter with high Dynamic Range. IEEE. hotonology. Lett. 1997,9(l): 79-81P
    [23] Wyscocki P F, Digonnet M J F, Kim B Y. Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pump near 980nm. Opt Lett. 1991, 16(20): 961-963P
    [24]胡绍楼.激光干涉测速技术.北京:国防工业出版社.2001,3:23-36
    [25]姚启钧.光学教程.北京:高等教育出版社.2008,6:18-30页
    [26]谢建平,明海等.近代光学基础.北京:高等教育出版社.2006,5:5-20页
    [27]梁铨廷.偏振器件的琼斯矩阵.光学仪器.1988,10 (4):1-9页
    [28]杨葭荪.光学原理.北京:电子工业出版社.2006:514-523页
    [29]延凤平,简水生.光纤陀螺温度补偿的实验研究.光电子激光.1999,3(1):14-17页
    [30] Hsieh C H, Wu T L, Cheng W H. An optimum approach for fabrication of low loss fused fiber couplers. Materials Chemistry and Physics, 2001, 69 (7): 199-203P
    [31] HARDY A, STREIFER W. Coupled mode theory of parallel waveguides [J] . Journal of Lightwave Technology, 1985, 3(5): 1137-1138P
    [32] HARDY A, SHA KIR S, STREIFER W. Coupled-mode equations for two weakly guiding single-mode fibers. Opt Let t. 1986, 11(5): 324-326P
    [33]郭慧梅,孔林涛,朱瑞松.椭圆偏振光的实验验证方法.实验室科学.2007,5:74-75页
    [34]廖延彪.偏振光学.北京:科学出版社.2003:156-160页
    [35] David S, Macro A F, Jessica A. A simple technique to obtain fused fiber optics couplers. Instrumentation and Development, 2001, 5(3): 170-174P
    [36] Wright J V. Variational analysis of fused tapered couplers. Electronics Letters, 1985, 21(23): 1064-1065P
    [37]曾光宇,张志伟,张存林.光电检测技术.北京:清华大学出版社,2005,9:49-54页
    [38]林学煌.光无源器件.北京:人民邮电出版社.2000:20-35页
    [39] Hardy A, Streifei W. Coupled-mode equations for weakly guiding single mode fibers. Optic Letters, 1986, 11(5): 324-326P
    [40] Rod J M, Maclean T S M, Gazey B K, et al. Completely fused tapered couplers: comparison of theoretical and experimental results. Electronics Letters. 1986, 22(8): 402-404P
    [41]酆达,李铮等.2×2熔锥型单模光纤耦合器的模型.光子学报.2003,32(11):1316-1320页
    [42]魏秀珍等.保偏光纤耦合器波长耦合比研究.光纤与电缆及其应用技术.2008,1:41-42页
    [43]帅词俊,段吉安等.熔融光纤器件熔锥区的形貌和微观结构研究.光学学报.2006,26(1):121-125页
    [44]刘景琳,段吉安等.熔融拉锥形光纤耦合器实验研究.中南大学学报(自然科学版).2006,37(1):1033-107页
    [45]帅词俊,段吉安等.熔锥形光纤耦合器的光学性能.半导体光电.2005,26(4):287-290页
    [46]柳春郁,余有龙等.熔锥形光纤耦合器的制作.黑龙江大学自然科学学报.2004,24(1):79-81页
    [47]吕迅,官洪运等.熔融拉锥系统的改进.江南大学学报(自然科学版).2003,2(6)
    [48]王冬云,刘承,舒晓武等.保偏光纤精确定位方法的研究.光子学报.2002,31(2):345-348
    [49]黄榜才等.光纤陀螺用小尺寸高温度稳定性保偏光纤耦合器的研制.光子学报.2008,37(2):242-245页
    [50]孔婧等.一种实现光纤耦合器分光比微调的新方法.光学技术.2008,34(4):583-585页
    [51]苗健宇,段吉安等.新型2*2单模光纤耦合器研究.甘肃科技.2005,21(8):74-76页
    [52]彭其先,马如超,李泽仁等.高灵敏度VISAR研究与设计.爆炸与冲击.2002,4(22):343-346页
    [53]李泽仁姚建铨.VISAR测速中的信号丢失及丢失条纹数的确定.爆炸与冲击.1999,19(2):182-186页
    [54] Hemsing W H. Velocity Sensing Interferometer (VISAR) Modification. Rev. Sci. Instrum. 1979, 50(1): 73-78P
    [55]陈光华.对激光干涉测速中信号丢失现象的分析.爆炸与冲击.2004, 9, 24(5):460-464页
    [56]何碧,蒋小华等,用双灵敏度VISAR测试爆炸箔起爆器的飞片速度.爆炸与冲击.2005,1,25(1):31-34页
    [57]陈光华,李泽仁,刘元坤.用双灵敏度VISAR测量铜飞片自由面速度.高压物理学报.2001,Vol.15, NO.1:70-74页
    [58]曹家年,李绪友等.提高数字式干涉型光纤传感器条纹细分的研究.光子学报.2000,29(12):1103-1106页
    [59]曹家年,李绪友等.数字式干涉型光纤传感器进行条纹细分的研究[J].哈尔滨工程大学学报.1999,20(5):83-89页
    [60]张爱珍,曹家年,海涛.基于CPLD的数字式干涉型光纤传感器条纹细分研究方案.应用科技.2005,32(11):10-13页
    [61]胡力,贾波,谭华等.全光纤白光任意反射面速度干涉系统.光学学报.2000,20(6):814-820页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700