复合地基优化的理论与措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前复合地基实践中出现了许多以优化为目的的新的生长点。对这些新的生长点进行总结、提高和理论化研究,促进复合地基新型设计理念的变革和设计理论的形成是一项具有重大现实与理论意义的工作。本论文以推动这些生长点的成熟与应用为主要目标,对复合地基优化的理论与技术措施进行了较为系统的研究。
     1、论文提出了复合地基优化的总体目标和应该遵循的基本原则,较为全面地分析归纳了复合地基优化的技术措施,使得目前零散、孤立的复合地基优化方法系统化、理论化,从而建立了复合地基优化理论的基本框架体系。该框架体系以复合地基整个系统(包括基础、桩体、土体、褥垫和承台)的共同工作理论和在各阶段的变化规律,以及地基处理的各种有效技术为基础,以实际工程对象对地基承载力和地基沉降量的要求彼此协调为目标,面向“全系统”、“主过程”和“多方法”整体配合互补寻优,抓住了复合地基优化的实质因素。
     2、论文采取结合适当原型观测的数值试验方法对复合地基优化问题进行研究,建立了基于Adina软件平台,以Biot固结理论为基础的复合地基弹塑性大位移分析模型,并用原型观测结果对建立的数值模型的正确性进行验证。模型中用剑桥模型反映地基土的本构,用接触力学模型反映桩土之间的接触,用“单元生死”技术准确模拟了复合地基的施工过程,用“重启动”功能和开挖“Elment death Decay”功能模拟桩体开挖成孔和填石过程,用“Rebar”单元模拟加筋网,从而可以灵活地模拟桩式、层式和桩层组合式复合地基在各种施工过程下的承载特性,在计算技术上具有先进性。
     3、论文分别以复合地基型式组合优化、施工过程优化以及工后加固优化等技术措施的典型条件为例,利用本文建立的数值分析模型,分析了各典型条件下复合地基的工作机理和特性。(1)对型式组合优化的条件,揭示了层桩组合式复合地基与层式、桩式复合地基的承载特性差别;完善了层桩组合式复合地基“工后沉降”的定义,以及其在数值分析中的确定方法;分析了桩体和网体刚度、桩体的渗透性、地基的渗透性以及运行荷载对复合地基“工后沉降”的影响,为复合地基型式组合优化方法的应用提供了理论支持;(2)对无砂混凝土小桩复合地基技术不同施工过程优化条件的研究得出:不同的施工过程所形成的复合地基具有不同的承载能力,良好的施工过程可以充分发挥上部建筑物荷载对地基的压密和加速固结作用,提高地基土本身的承载力,从而提高复合地基的承载力,并可以使沉降量绝大部分发生在施工期间,大大减少建筑物的工后沉降;(3)对工后加固的优化条件,根据复合地基中桩间土本身的承载能力决定于浅层部位桩间土的力学特性,而桩体的承载能力关键在于其深部的特点,提出复合地基浅层加固技术和利用浅层加固和深层后灌浆技术进行复合地基工后优化的方法。以浅层换填的工后加固技术为例,采用数值试验的方法,证实了工后浅层加固技术可以较大地提高复合地基承载力的事实,并分析了不同加固深度对复合地基变形、承载力和桩体、桩间土塑性区的开展等各个方面的影响。
     4、论文还探讨提出了复合地基数值计算中桩土应力比和极限承载力、承载力特征值的确定方法。前者鉴于桩顶应力状态复杂、群桩中桩之间相互影响使得与桩土应力比定义不符以及常规Goodman等界面单元计算的法向应力不准等因素,而使数值计算中不易准确确定桩土应力比的实际,提出将桩土接触面按接触力学问题处理,以桩体顶部中段平均法向接触应力为桩所受应力值,以等应变假定为基础,按照桩与土的力平衡条件计算桩间土应力,以两者之比得到桩土应力比的方法;后者鉴于数值计算中复合地基的极限承载力和承载力特征值不易确定的实际,提出用数值计算方法模拟载荷试验,按照非线性迭代不收敛时载荷板上作用的外荷载为复合地基极限承载力,而用计算出的p~s曲线,按照规范规定的方法确定复合地基承载力特征值的方法。这些方法的提出是复合地基数值计算技术的一个进步。
     5、论文鉴于浅层加固时主体桩已经施工完毕,可以进行载荷试验的有利条件,提出了以加固前复合地基的载荷试验结果为依据,从加固前后地基综合变形模量的变化出发,估算加固后复合地基承载力的非线性弹性方法,并编制了相应的计算程序。该方法避免了室内试验结果不符合实际的缺陷且计算简单,使用方便,便于推广应用。在这个基础上,进一步提出了复合地基“承载力可调节型设计”的思路和方法,通过用数值计算和实际工程原型观测结果的验证,证明了它的正确性。
     论文以上的系列研究将为复合地基由基础理论向优化理论的发展和深化起到重要的促进作用。
A series of new growth point appear recently in the engineering practice of composite foundation deign and construction from the angle of its optimization. To make them summarizing and improving in a higher level so that to form a new transformation and a new design theory of composite foundation is now an important work both in practical and in theoretical sense. This paper is just aimed at the direction pushing these growth points a further mature in application and establishing the theory and measure of composite foundation optimization.
     1. The general target, the fundamental principal and the technical measures of composite foundation optimization are given and summarized, which makes the scattered and isolated methods for optimizing the composite foundation systematical and theoretical and then establishes the fundamental frame system of composite foundation optimization. This frame system is based on the interaction theory of the whole system of composite foundation, including the foundation, pile, soil basement, cushion and also pile platform, on their regulations of variation in different stages of composite foundation construction and execution, and also on the series of effective techniques in soil base treatment, hitting the target at harmonizing the requirements both in basement bearing capacity and basement settlement of practical engineering object. It is faced to“the whole system of composite foundation”, to“the principal sequences of composite foundation”and to“the manifold measures of soil base treatment”for finding the optimized scheme in view as a whole, which grasps the essential factors reflecting the composite foundation optimization.
     2. The method coupling the appropriate results of prototype measurement with that of numerical calculation is adopted as an effective method in researching the problems of composite foundation optimization. An elastic-plastic analyzing model in large displacements is developed based on the Biot’s consolidation theory, taking the ADINA software as its calculating platform. This model is characterized by applying the Cambridge model to describe the base soil, the contact mechanics model to describe the contact property between soil and piles, the“cell life death decay”technique and the“Reset and dig element death decay”to simulate the excavation of pile holes and stone filling in them, the“Rebar element”to simulate the vain net strengthening the soil base. These give a possibility to model flexibly the bearing characteristics of composite foundation in types of pile, of stratum and of pile-stratum during different period and order of their construction. This appears an obvious advance in calculating technique of composite foundation.
     3. The action mechanism and characteristics of composite foundation under some typical conditions selected as examples of optimizing in types of base soil improvement, in construction order as well as in post-stabilization of base soil are analyzed by using the developed software and calculating model. The result of analysis under the condition optimized in type of basement improvement has revealed the differences of bearing characteristics between the composite foundations in type of pile and in type of stratum, has improved both the definition of“post-construction settlement”of composite foundation and the method of its determination, and has analyzed also the effect of stiffness of pile and net, the effect of permeability of pile and base soils, and the effect of loading action on the magnitude of“post-construction settlement”during the execution of composite foundation. The result of analysis under the condition optimized in construction order of a composite foundation built with small piles of concrete without sand shows that the composite foundation of different construction order has different bearing capacity, the better planed in construction order composite foundation can bring the supper-construction weight into play and speed up the process of soil compression and soil consolidation, that leads to improving the bearing capacity of soil base or composite foundation. Meanwhile, a large part of settlement occurs during the period of construction, which largely decreases the“post-construction settlement”of building. As for the composite foundation treated by the method of post-construction stabilization, such as strengthened by different method in shallow part of soil base (for example, the soil replacement) and strengthened by grouting the deeper part of soil around piles, the result of their analysis has proved the fact that even the shallow improvement technique can obviously increase the bearing capacity of composite foundation. The influence of strengthened depth on basement deformation, on bearing capacity and on plastic domain in soil between piles are also analyzed.
     4. The methods of determining the“pile-soil stress ratio”and determining the“ultimate bearing capacity”of composite foundation under the condition of numerical calculation are proposed, which makes their values calculated close to that in practical condition. It makes also a progress in the field of numerical calculation of composite foundation.
     5. The shallow strengthening technique is extended to form a new thinking about“adjustable-bearing capacity design”of composite foundation, which can be used not only to avoid the shortcomings of the test result in laboratory, but also to apply simply, conveniently and easily. This possibility comes from that the piles as a main part of composite foundation are usually established at first, which gives a convenient condition to conduct the field loading test and to obtain a loading-settlement curve of soil base. Based on the change of general modulus of deformation before and after soil improvement this curve can be used to put forward a non-elastic method for estimating the bearing capacity of composite foundation. Such a method has been recommended and compiled it into a calculating program in this paper. The validity of the thinking and method of“adjustable-bearing capacity design”of composite foundation has been proved by comparing the results from numerical calculation and prototype measurement.
     The abovementioned series of research work may be taken as an important step leading the theory of composite foundation from its fundamental to its optimized and promoting the later theory into practical application.
引文
[1] 张爱军、谢定义,复合地基三维数值分析[M],北京,科学出版社,2004.2
    [2] 龚晓南,复合地基[M],杭州,浙江大学出版社,1992
    [3] 龚晓南,复合地基理论及工程应用[M],北京,中国建筑工业出版社,2002
    [4] 王吉望,复合地基的现状与发展,冶建总院院刊,1990.No.2
    [5] 龚晓南等,地基处理综合报告,第六届全国土力学及地基基础学术讨论会论文集,1991,上海
    [6] 龚晓南,复合地基引论(一)(二),地基处理,Vol.1,No.1,No.2,1990
    [7] 郑俊杰等,多元复合地基的承载力计算及检测方法[J],岩石力学与工程学报,2001.05, Vol 23,No.3
    [8] 郑俊杰等,多元复合地基的理论与实践[J],岩土工程学报, 2002. 03,24(2)
    [9] 饶为国、赵成刚,桩-网复合地基应力比分析与计算[J],土木工程学报,2002.04,Vol 35,No.2
    [10] 李斌宇、陈友明、郭印,低强度混凝土桩与散体桩组合型复合地基的应用,山西建筑,2003.12,29(18)
    [11] 康景文、赵国永,实散体组合桩复合地基承载原理及应用,四川建筑,2003.8,23
    [12] 王启铜,柔性桩的沉降特性和荷载传递规律[D],杭州,浙江大学博士学位论文,1991
    [13] 段继伟、龚晓南、曾国熙,水泥搅拌桩的荷载传递规律[J],岩土工程学报,1994.16(4):1-8
    [14] 杨涛,柔性荷载下复合地基沉降分析[J],岩土工程学报,2000.11,22(6)
    [15] 冯瑞玲、谢永利,路堤荷载作用下复合地基的计算机辅助试验仿真分析[J],土木工程学报,2004.01,Vol.37,No.1
    [16] 吴慧明、龚晓南,刚性基础和柔性基础下复合地基模型试验对比研究[J],土木工程学报,2001.10,Vol.34,No.5
    [17] 饶为国、赵成刚,复合地基工后沉降的薄板变形模拟[J], 应用力学学报,2002.06,Vol.19,No.2
    [18] 郭院成、周同和、刘海涛,路基工后沉降控制新技术与桥头跳车处理[C],中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京,清华大学出版社,2003.10
    [19] 李永刚、李宁,中心布桩复合地基优化设计的数值分析[C],中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京,清华大学出版社,2003.10
    [20] 蒋军、朱向荣、曾国熙, 循环荷载作用下粘土及含砂芯复合土样特性分析,土木工程学报, 2003 年 08 期
    [21] 王立忠、柯瀚,地震荷载作用下水泥搅拌桩的动力响应[J],振动工程学报,1998.12,Vol.11,No.4
    [22] 于清、曹源文,不平整路面上汽车动荷载,重庆交通学院院报,2003.12,12(4)
    [23] 关山海、谢康和等,低频循环荷载下地基一维固结性状分析[J],岩土力学,2003。5, Vol(23),No(5)
    [24] 蔡袁强、徐长节,循环荷载下成层饱水地基的一维固结[J],振动工程学报,1998.6,11(2)
    [25] 黄雨等,循环荷载下柔性路面路基变形的动力耦合分析[J],岩土工程学报,2001.11,22(6)
    [26] 王林玉、谢新宇,循环荷载作用下道面和软土地基共同作用数值分析[J],中国公路学报,2000.7,13(3)
    [27] 侯永峰等,循环荷载作用下水泥复合土变形性状试验研究[J],岩土工程学报,2001.5,23(3)
    [28] 郑俊杰,复合地基承载特性分析及设计方法研究[D],博士论文,浙江大学,杭州,2001年
    [29] 谢定义,21世纪土力学的思考[J],岩土工程学报,1997.4,119(4)
    [30] 谢定义、张爱军,复合地基承载特性的计算机分析[C],中国土木学会第七届土力学及地基基础学术讨论会论文集,中国建筑工业出版社,1994
    [31] 李宁、赵彦辉,预应力锚固机理数值仿真分析研究报告,“八.五”国家科技攻关项目报告. 西安理工大学,1995年
    [32] 孔详安、江晓禹、金学松,固体接触力学[M],中国铁道出版社,北京,1999年
    [33] Eterovic, A. and Bathe, K.J., "On the Treatment of Inequality Constraints Arising From Contact Conditions in Finite Element Analysis," J. Computers & Structur40, No. 2, pp. 203-209, July 1991
    [34] 郑培成、王盛源,云南白药厂碎石桩地基试验[J],水利水运科学,1986,No.1。
    [35] 李永刚,复合地基优化设计理论数值试验研究[D],西安理工大学硕士学位论文,西安,1999年[36] 李广信,高等土力学[M],清华大学出版社,北京:2004年
    [37] 阳吉宝、任臻、周小刚,带群桩的高层建筑基础的优化设计[J],土木工程学报,1998(5)
    [38] 阳吉宝,高层建筑桩筏基础和桩箱基础的优化设计[J],工程勘察,1996(1)
    [39] 金亚兵,弹性理论在群桩优化设计中的应用研究[J],工程勘察,1993(2)
    [40] 饶为国,桩-网复合地基原理与实践[M],中国水利电力出版社,北京,2004.8
    [41] 康光明,无砂砼小桩在高速公路高台背地基处理中的应用[J],湖南交通科技,2006.9,32(3)
    [42] 费鸿庆,西安地区钻孔灌注桩后压浆的工程特性[C],西部开发中的岩土工程问题——岩土工程系列学术研讨会之九论文集,同济大学出版社,上海,2005.5
    [43] 邢义川、张爱军,秦岭电厂二灰场应急子坝工程土工试验与原型观测[N],水利部西北水力科学研究所研究报告,陕西杨陵,1994.4
    [44] 杨光华,地基非线性沉降计算的原状土切线模量法[J],岩土工程学报,2006.11, 28(11):1925-1931
    [45] JGJ6-99高层建筑箱形与筏形基础技术规范[S],北京,中国建筑工业出版社, 1999
    [46] DBJ15-31-2003建筑地基基础设计规范[S],北京,中国建筑工业出版社, 2003
    [47] JGJ79-2002,J220-2002建筑地基处理技术规范[S],北京,中国建筑工业出版社, 2002
    [48] 杨光华,基础非线性沉降的双曲线模型法[J],地基处理,1997(1):50-53
    [49] 张在明,等效变形模量的非线性特征分析[J],岩土工程学报,1997.9, 19(5) :56-59
    [50] 宰金珉,塑性支承桩——卸荷减沉桩的概念及其工程应用[J],岩土工程学报,2001.5,23(3):273-278
    [51] 钱家欢、殷宗泽,土工原理与计算(第二版)[M],北京,中国水利电力出版社,2000
    [52] 武汉水利电力学院,土力学及岩石力学[M],北京水利出版社,1982
    [53] 盛崇文,振动水冲法[M],北京,水利电力出版社,1983
    [54] 水利部西北水利科学试验中心,宁夏石嘴山电厂灰坝土工试验与稳定性专题研究报告,陕西杨凌,2006.11
    [55] 黄生根、曹辉,逆做法刚性桩复合地基的作用原理与应用研究[J],岩土力学,2005.8
    [56] Aberdroth, Pile Behave Established from Model Tests, Journal of Geotechnice Engeering, 1990, 116(4)
    [57] Duncan J.M and Chaung C.Y, Nonlineer Analysis of Stress and Strain in Soils, Journal of the soil mechanics and Foundation, Division ASCE, Vol.96, No.SMS, 1970
    [58] Goughnour R.R,Settlement of Vertically Loaded Stone Columns in Soft Ground,Proc.of 8 ECSMFE, 1983,26 (1).
    [59] Randolph M.F, An Analysis of Vertical Deformation of Pile Groups, Geotechnique, Vol.24, 1979.
    [60] Geddes J.D, Stress in Foundation Soils Due to Vertical Subsurface Loading, Geotechnique, Vol.16, No.3, 1966.
    [61] TAKAGI, Effect of Mandrel—Driven Sand Drains on Strength, Proc.of 9th ICSMFE, 1/1 P.3
    [62] Barron R.A, Consolidation of Fine Grained Soils by Drain Wells, Trans.ASCE, 1948,Vol.113
    [63] Hansbo S, Consolidation of Fine—Grained Sails by Prefabricated Drains, Proc.10th ICSMFE, 1981.
    [64] Yoshikuni H(吉国洋),Nakanodo H.(中,堂裕文), Consolidation of Sails by Vertical Drain Wells with Finite Permeability,Sails and Foundations,1974,Vol.14。
    [65] Madhav M.R, Recent Developments in the use and anlysis of Granular Piles,Symp. on Recent Developments in Ground Improvement Techniques,Bangkok 1982
    [66] O.C.Zienkiewicz,C.Emson and P.Bettess,A Novel Boundary Infinite Element,Int. J. Number methods Eng., Vol.19,1983.
    [67] Balaam N.P,Settlement Analysis of Soft Clays Reinforced with Granular Pile,1977
    [68] Balaan N.P, et.al, The Behaviour of Foundation Supported by Clay Stabilised by Stone Columns, Proc.of 8th ECSMFE, Vol.1.
    [69] Duncan J.M et al, FEADAM—84,A Computer Program for Finited Element Analysis of Dams ,Report No. UCB/GT/University of California,Berkeley,1984.
    [70] P.Bettess, Int, J. Num. Meth. Engng, 11(1977).
    [71] D.L. Andson and R.L.Ungless, Infinite Element, Int. Symp. on Innovative Numerical Analysis in Applied Engineering Science, France, 1977.5.
    [72] K.Yamamoto, J.Otani, Bearing Capacity Analysis of Reinforced Foundation Ground, Proceedings of the ninth international conference on computer methods and advances in geomechanics, Blakely, 1997, Vol.3, 2339~2344
    [73] Alamgir M,Miura N,Poorooshasb H B,Madhav M R,Deformation analysis of soft ground reinforced by columnar inculsions[J],Computer and Geotechnics,1996,18(4):267~290
    [74] Y.K.Chow, Settlement Analysis of Sand Compaction Pile, Soil and foundations, 1996,36(1)
    [75] P.V.Sivapullaiah,A.Sridharan,H.N,Ramesh, Strength Behaviour of Lime-treated Solis in the Presence of Sulphate, Can.Geotech.J, Vol37,2000
    [76] D.T.Bergado,C.teerawattanasuk, S.Youwai,Finite Element Modeling of Hexagonal Wire Reinforced Embankment on Soft Clay, Can.Geotech.J.,Vol37,2000
    [77] M.Alamgair,N.Miura,H.Bproorooshasb,M.R.Madhav, Deformation Analysis of Soft Ground Reinforcedby columnar Inclusion, Computers and Geotechnics,1996,18(4)
    [78] R.S.Merifield,S.W.Sloan,H.S.Yu, Rigorrous Plasticity for the Bearing Capacity of Two-layered Clays, Geotechnique 1999,49(4)
    [79] Mylonakis,G.Gazetas, Settlement and Additional Internal Forces of Grouped Piles in Layered Soil, Geotechnique, 1998,48(1)
    [80] TA LD,SMALL J C, Analysis and performance of piled raft foundations on layered soils-case studies, Soils and Foundations, 1998,38(4)
    [81] CHOW Y K, CHIN J T,LEE S L, Negative skin friction on pile groups, International Journal for Numerrical and Analytical Method in Geotechnics, 1990,14
    [82] 水利部西北水利科学试验中心,陕西省周至县委住宅楼载荷试验报告,陕西杨凌,1995.11
    [83] 杨红梅. 夯扩载体CFG桩复合地基工程性状研究与分析[D]. 西南交通大学, 2006 .
    [84] 靳元峻. 变刚度桩筏基础与地基土相互作用机理研究[D]. 河北大学, 2006
    [85] 刘冬林, 郑刚, 刘金砺, 李金秀. 刚性桩复合地基与复合桩基工作性状对比试验研究[J]. 建筑结构学报 , 2006,(04)
    [86] 潘安平, 刘忆川, 汤涵. 高层建筑裙房地基共同作用对筏基及柱内力的影响[J]. 岩土工程技术 , 2003,(06)
    [87] 刘蕊, 杨德健, 罗浩, 国晔. 刚性桩复合地基研究进展与若干问题探讨[J]. 天津城市建设学院学报 , 2005,(02)
    [88] 梁发云,李镜培,陈龙珠. 层状地基中单桩性状的积分方程解法及其参数[J]. 同济大学学报(自然科学版) , 2006,(09) .
    [89] 金波,李志飙,顾尧章. 层状地基中的单桩沉降分析[J]. 岩土工程学报 , 1997,(05) .
    [90] 梁发云,陈龙珠,李镜培. 混合桩型复合地基工程性状的近似解法[J]. 岩土工程学报 , 2005,(04) .
    [91] 左人宇. “一桩三用”技术与实践[D]. 浙江大学 , 2001 .
    [92] 李晋. 黄土桩基桩土共同作用性状仿真与试验研究[D]. 长安大学 , 2006 .
    [93] 刘金波. 干作业复合灌注桩的试验研究及理论分析[D]. 中国建筑科学研究院 , 2000 .
    [94] 陈志军. 路堤荷载下沉管灌注筒桩复合地基性状研究[D]. 浙江大学 , 2005 .
    [95] 胡昌斌. 考虑土竖向波动效应的桩土纵向耦合振动理论[D]. 浙江大学 , 2003 .
    [96] 郑俊杰,刘志刚,吴世明. 石灰桩复合地基固结分析[J]华中理工大学学报 , 2000,(05) .
    [97] 刘松玉,杜广印,洪振舜,吴燕开. 排水粉喷桩加固软土地基(2D工法)的试验研究[J]. 岩土工程学报 , 2005,(08) .
    [98] 郝玉龙,陈云敏,王军. 深厚软土未打穿砂井超载预压地基孔隙水压力消散规律分析[J]. 中国公路学报 , 2002,(02) .
    [99] 谢康和. 双层地基─维固结理论与应用[J]. 岩土工程学报 , 1994,(05) .
    [100] 葛忻声. 高层建筑刚性桩复合地基性状[D]. 浙江大学 , 2003 .
    [101] 欧丽,叶梅新,颜东煌. 长短桩复合地基应力与沉降分析[J]. 铁道科学与工程学报 , 2006,(06) .
    [102] 梁发云,李镜培. 刚性承台下垫层-桩-土相互作用的近似解析法[J]. 地下空间与工程学报 , 2006,(03) .
    [103] 龚晓南. 广义复合地基理论及工程应用[J]. 岩土工程学报 , 2007,(01)
    [104] 刘杰,张可能. 柔性桩与土相互作用非线性分析的增量传递矩阵法[J]. 中国公路学报 , 2005,(01) .
    [105] 马克生,梁仁旺,白晓红. 水泥搅拌桩复合地基承载力的试验确定[J]. 岩石力学与工程学报 , 2004,(15) .
    [106] 陈仁朋,许峰,陈云敏,贾宁. 软土地基上刚性桩—路堤共同作用分析[J]. 中国公路学报 , 2005,(03) .
    [107] 陈艳平,赵明华,陈昌富,姚琪阳. 土工格室碎石垫层-碎石桩复合地基相似模型试验[J]. 中国公路学报 , 2006,(01) .
    [108] 陈小庭,夏元友,芮瑞,夏旭阳,冯仲仁. 管桩加固软土路基桩土应力现场试验[J]. 中国公路学报 , 2006,(03) .
    [109] 邢皓枫. 复合地基固结性状研究[D]. 浙江大学 , 2005 .
    [110] 孙林娜. 复合地基沉降及按沉降控制的优化设计研究[D]. 浙江大学 , 2006 .
    [111] 王宁伟. 复合地基理论及工程应用研究[D]. 中国地震局工程力学研究所 , 2006 .
    [112] 李海芳. 路堤荷载下复合地基沉降计算方法研究[D]. 浙江大学 , 2004 .
    [113] 高翔. 高速公路新老路基相互作用分析与处理技术研究[D]. 东南大学 , 2006 .
    [114] 崔溦. 山区高速公路沟谷软基处理技术研究[D]. 天津大学 , 2005 .
    [115] 张仪萍, 徐栋. 柔性桩复合地基的沉降分析[J]. 浙江大学学报(工学版) , 2007,(01)
    [116] 李海芳, 龚晓南. 填土荷载下复合地基加固区压缩量的简化算法[J]. 固体力学学报 , 2005,(01)
    [117] 马克生, 杨晓军, 龚晓南. 柔性桩沉降的随机特性[J]. 力学季刊 , 2001,(03)
    [118] 邓子胜. 柔性基础结构的土-结构动力相互作用基本方程[J]. 五邑大学学报(自然科学版) , 2003,(03)
    [119] 肖武权,冷伍明,律文田. 深层搅拌法加固软弱土层的室内实验研究[J]. 中南大学学报(自然科学版) , 2004,(03) .
    [120] 李舒瑶, 王俊, 丁继辉, 宋素华. 复合地基最终沉降量计算方法研究[J]. 河南大学学报(自然科学版) , 2007,(01)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700