高速铁路大型客站建筑风荷载及流固耦合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内高速铁路建设热潮,各种造型新颖、布局复杂的大型交通枢纽客站陆续建成。这些客站采用了多种新型结构形式,风荷载成为其正常使用及安全运营的主要影响因素之一。外观造型及站场布局影响致使铁路客站产生了复杂的风致作用,站场建筑群的干扰影响进一步加剧了这种复杂性。目前,国内外对高速铁路客站风致作用研究较少,已有研究多局限于具体工程应用,缺少对其风致作用的形成机理、变化规律进行深入探讨。因此,对铁路客站风致作用展开深入系统地研究具有重要的工程意义和学术价值。
     本文基于CFD数值模拟、风洞试验和非定常流固耦合(FSI)理论,研究了大气边界层下铁路客站建筑的基本风荷载特性和风场特征,揭示了平均来流及脉动来流条件下站场建筑的风致作用形成机理及变化规律,并将研究成果应用于实际工程的抗风设计。论文完成的主要研究内容如下:
     首先,对计算风工程理论进行了梳理,搭建起数值风洞模拟的基本方法框架和参数体系。同时,基于CFX的全隐式瞬态时间步进算法,提出了准稳态时步逼近求解技术(QSMA:Quasi-Steady State Marching-on in time Approximation Techniques),通过数学推导证明了这种技术在时间离散格式上的稳定性、误差传递的趋零特性,给出了与之配套的多目标收敛监测、数值稳定控制参数,并与Murakami-3D立方体模型的隐式稳态模拟结果进行了比较,证明了其有效性。这种技术降低了瞬态算法求解稳态问题的时间步长及容差限制,和传统稳态算法相比,计算消耗没有增加,但由于利用了瞬态控制方程求解,针对复杂建筑风场数值模拟的收敛性增强。
     第二,基于准稳态时步逼近技术,结合TTU模型实测数据,对EARSM用于建筑数值风洞模拟的计算控制参数进行了系统研究,包括流场自平衡检验、网格形式、湍流模型、流场尺度、边界条件、对流项格式、近壁区网格△y值等。通过系统的校准研究,搭建起基于EARSM的数值风洞模拟计算参数框架。
     第三,基于几何拓扑分析原理,提出了铁路客站建筑群风荷载预测的模化特征体分析方法,结合12组特征体模型的试验数据,采用EARSM和准稳态时步逼近求解技术进行了数值风洞模拟,研究了风向角、屋面坡度、结构高度、屋面拓扑特征、结构开敞与否、矢跨比对风荷载形成机理以及风场特性的影响。将该方法用于实际铁路客站风荷载分析并与规范相似特征相比较,结果表明方法的实用有效。
     第四,设计了4组参数性风洞试验模型,考虑建筑群风场干扰影响、雨棚是否开缝、二期扩建、匝道阻塞影响,进行了风洞试验,研究了铁路客站的风场干扰影响规律。基于几何拓扑分析原理,将铁路客站简化为三种典型的模化布局特征体模型。结合数值风洞模拟、模化特征体分析方法以及试验数据,对站台区雨棚开缝率、主站房与站台雨棚的高度比、主站房入口大悬挑雨棚俯仰角等风场干扰影响因素进行了深入研究,给出了铁路客站风场干扰影响的主要变化规律。
     最后,采用AR法和WAWS法编制了多点三维相关脉动风速模拟程序、脉动风速散度修正程序,构建了非定常流固耦合(FSI)分析的脉动入流边界。基于TTU实测数据对人工模拟脉动风场进行了校准分析。基于自编目标概率法程序研究了脉动风场的统计特性。基于任意拉格朗日-欧拉(ALE)坐标下的有限体积法,采用大涡模拟(LES)求解Navier-Stokes方程,构建了大跨度弦支结构雨棚的气动分析模型;结合大跨度弦支结构雨棚的非线性瞬态动力学模型,采用ALE方法处理结构与风场的运动边界,实现了结构动力学与计算流体力学的结合,构建了结构-风场耦合分析模型;研究了不同风向角下大跨度弦支结构雨棚动力响应的频谱特征、脉动风压分布规律、预张力对弦索振动特性的影响、脉动风对弦索张力退化的影响等,可为工程设计提供参考。
With the rapid development of high-speed railway, a number of large train stations with various layouts have been built in recent years. Wind load has become a serious concern on normal use and safe operation of train stations where some new structures are adopted. Complicated appearance and layout of stations result into complex wind-induced action, and the influence of architectural complex makes it more serious. At present, very few study has been reported on the wind-induced action of the train stations at home and abroad. There is a lack of the researches in the mechanism and variation rule of wind-induced action of the train stations, except for some researches on specific projects. Therefore, it has important engineering significance and academic value to investigate the wind-induced action to train stations in detail.
     The characteristics of wind field of train station in the atmospheric boundary layer are studied based on CFD simulation, wind tunnel test and unsteady FSI theories. The mechanism and variation rule of wind-induced action under mean and fluctuating wind are revealed and then applied to practical wind resistant design. The main contents of the thesis are summarized below.
     Firstly, CFD theory and its latest achievements are sorted out to establish a frame including basic techniques and parameters in numerical wind tunnel. Quasi-steady State Marching-on in time Approximation method (QSMA) is proposed based on full implicit marching-on in time method in CFX. The stability of time discretization scheme and tendency to zero during error transfer are proved mathematically. The suggested Multi-goals monitoring method and control paramters of numerical stability coordinated with QSMA are provided. Besides, the validity of QSMA is testified by comparing with steady-implicit simulation results of Murakami-3D cube model. The analysis proves that the suggested QSMA-trans algorithm can decrease the restriction of the time spacing and convergence tolarence in the solution of steady state problem by means of Transient algorithm. Compared with the traditional steady-state algorithm, the suggested algorithm improves convergence in complicated numerical simulation for using transient N-S equations without additional consumption.
     Secondly, The control parameters of EARSM that are applicable to numerical wind tunnel simulation are studied in detail based on QSMA-transient method and TTU field model tests, including self-balance checking of the wind field, grid patterns, turbulence models, length scale of the wind field, boundary conditions, convection schemes,△y of grid near the wall, inflow velocity profiles and so on. The parameter system of EARSM involving in numerical wind tunnel simulation is provided on comprehensive verifications.
     Thirdly, the Characteristic-shape analysis method is proposed to predict the wind field of train station based on geometry topology analysis. According to the wind tunnel test of twelve typical Characteristic-shape models, EARSM and QSMA-transient method are employed in numerical wind tunnel simulation. The influence of wind directions, topological features on the generation of wind field and its characteristics are investigated. The wind field of practical projects is analyzed by using the Characteristic-shape method, comparing with Characteristic-shape in the codes, which indicates that this method is practical and effective.
     Fourthly, four models are designed for wind tunnel test taking the influence of canopy slotting, second period of extension and ramps blocking into account, to study the interference effect of wind field. The structure is discretized into three types of typical Characteristic-shapes based on geometry topology analysis. The wind field influence factors of canopy slotting ratio, large cantilevered canopy pitch of the main station building and the height ratio of main station and platform canopy are investigated and the variation rule of wind field is revealed comprehensively combining numerical method, Characteristic-shape analysis method and test research.
     Lastly, the calculation schemes for 3D relevant fluctuation wind modeling by using AR and WAWS methods, and the free divergence operation are coded. The inflow boundery condition of unsteady FSI analysis is provided to calibrate the artificial simulated wind field based on the TTU test results. The statistical properties of fluctuation wind field are researched by the self-compiling program on target probability method. The LES, as well as Finite Volume method introducing Arbitrary Lagrangian-Eulerian scheme, is employed in solving the Navier-Stokes equation, to build the aerodynamic model for train station with large span cable-supported structure canopy. The FSI model whose boundary conditions is derived from the ALE scheme is set up in combination with nonlinear transient dynamic model of large span cable-supported structure canopy, to achive the integration of CSD and CFD. The spectrum characteristics, fluctuation wind pressure distribution, dynamic response of the cable and the influence of fluctuation wind on the tension stiffness degradation of large span cable-supported structure canopy in different wind directions are studied. The conclusions can be provided for reference in practical design.
引文
[1]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006,第1版.
    [2]Simiu E., Scanlan R.H. Wind effects on structures:an introduction to wind engineering[M]. New York:Wiley,1986.
    [3]Kareem A. Recent Advances in Wind Engineering[J]. J. Wind Eng. Ind. Aerodyn.,1990,36:1-15.
    [4]Bitsuamlak D.G. Computational blockage assessment for a new full-scale testing facility[A].Third National Conference in wind Engineering,2006, Kolkata, India.
    [5]Murakami S. Overview of turbulence models applied in CWE-1997[A].2nd European&African Conference on Win Engineering,1997.
    [6]Murakami S., Mochida A. Past, present and future of CWE the view from 1999[A]. Rotterdam, Balkema 1999:91-104.
    [7]Bitsuamlak D.G. Application of computational wind engineering: A practical perspective[A].Third National Conference in wind Engineering. Kolkata, India,2006.
    [8]Gosman A.D. Developments in CFD for industrial and environmental applications in wind engineering[J]. J. Wind Eng. Ind. Aerodyn.,1999,81:21-39.
    [9]Orszag S.A., Staroselsky I. CFD: Progress and problemsfJ]. Computer Physics Communications,2000, 127:165-171.
    [10]Franke, J., Hirsch, C., Jensen, A.G., Krus, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A.,Wright, N.G. Recommendations on the use of CFD in wind engineering. Proceedings of the International Conference Urban Wind Engineering and Building Aerodynamics, In:Van Beeck, J.P.A.J. (Ed.),Von Karman Institute,2004.
    [11]Tamura T., Nozawa K., Kondo K. AIJ guide for numerical prediction of wind loads on buildings[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:1974-1984.
    [12]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001,第1版.
    [13]项海帆.结构风工程研究的现状和展望[J].振动工程学报,1997,10(3):258-263.
    [14]沈世钊.大跨空间结构理论研究和工程实践[J].中国工程科学,2001,3(3):34-40.
    [15]沈世钊.大跨度空间结构的发展—回顾与展望[J].土木工程学报,1998,31(3):5-14.
    [16]沈世钊.大跨空间结构若干理论问题研究[J].苏州城建环保学院学报,2000,13(3):1-8.
    [17]Davenport A.G. How can we simplify and generalize wind loads[J]. J. Wind Eng. Ind. Aerodyn.,1995,54-55:657-669.
    [18]GB50009-2001建筑结构规范大全[S].北京:中国建筑工业出版社,2002,第1版:2-9-5.
    [19]张相庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社,1998,第1版.
    [20]张相庭.结构风工程理论.规范.实践[M].北京:中国建筑工业出版社,2006,第1版.
    [21]郑健.创新建设理念—建造一批百年不朽的铁路客站[R].南通,2007中国铁路客站技术国际交流会.
    [22]Holmes J.D. Effective static load distributions in wind engineering[J]. J. Wind Eng. Ind. Aerodyn.,2002,90:91-109.
    [23]Tamura Y., Kawai H., Uematsu Y., Marukawa H., Fujii K., Taniike Y. Wind load and wind-induced response estimations in the Recommendations for Loads on Buildings, AIJ 1993[J]. Engineering Structures 1996;18(6):399-411.
    [24]郑健,沈中伟,蔡申夫.中国当代铁路客站设计理论探索[M].北京:人民交通出版社,2009年.
    [25]Lun Y.F., Mochida A., Yoshino H., Murakami S. Applicability of linear type revised k-e models to flow over topographic features[J]. J. Wind Eng. Ind. Aerodyn.,2007,95:371-384.
    [26]Tsuchiya M., Murakami S., Mochida A., Kondo K., Ishida Y. Development of a new k-e model for flow and pressure fields around bluff body[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:169-182.
    [27]Murakami S. CFD与建筑环境设计[M].朱清宇译.北京:中国建筑工业出版社,2007,第1版.
    [28]Nahmkeon H., Kim S.R., Won C.S., Choi C.K. Wind load simulation for high-speed train stations[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:2042-2053.
    [29]黄鹏,顾明.一大跨度悬挑雨篷的风荷载及开洞比较[J].结构工程师,2004,20(4):51-55.
    [30]顾明等.上海铁路南站平均风荷载的风洞试验和数值模拟[J].建筑结构学报,2004,25(5):43-54.
    [31]何连华,符龙彪,郑冰心等.盐城火车站无站台柱雨棚风荷载的风洞试验研究[J].铁道建筑,2007,7:103-105.
    [32]何连华,赵鹏飞,潘国华等.武汉站高速列车过站列车风的数值模拟研究[J].铁道建筑,2008,8:108-110.
    [33]金新阳,杨易,盛平.新广州火车站大跨度屋盖结构风荷载风洞试验与数值模拟研究[J].建筑结构,2009,39(12):55-58.
    [34]孙炳楠,傅国宏,陈鸣,唐锦春.94年17号台风对温州民房破坏的调查[A].第七届全国结构风效应会议论文集[C].1996,81-129.
    [35]金玉芬,杨庆山,李启,轻钢房屋围护结构的台风灾害调查与分析[J].建筑结构学报(增刊),2010,31:197-201.
    [36]Okuda Y., Tamura Y., Nishimura H., Kikitsu H., Okada H. High Wind Damage to Buildings Caused by Typhoon in 2004[R].2004.
    [37]Unanwa C.O., McDonald J.R., Mehta K.C., Smith D.A. The development of wind damage bands for buildings[J]. J. Wind Eng. Ind. Aerodyn.,2000,84:119-149.
    [38]弓晓芸.台风灾害中轻钢结构建筑的破坏及分析[J].工业建筑,1997,27(10):51-55.
    [39]Kasperski M. Design wind loads for a low-rise building taking into account directional effects[J]. J. Wind Eng. Ind. Aerodyn.,2007,95:1125-1144.
    [40]Gingera J.D., Holmes J.D. Effect of building length on wind loads on low-rise buildings with a steep roof pitch[J]. J. Wind Eng. Ind. Aerodyn.,2003,91:1377-1400.
    [41]Cheng-Hsin Chang, Robert N. Meroney, The effect of surroundings with different separation distances on surface pressures on low-rise buildings[J]. J. Wind Eng. Ind. Aerodyn.,2003,91:1039-1050.
    [42]Pearce W., Sykes D.M., Wind tunnel measurements of cavity pressure dynamics in a low-rise flexible roofed building[J]. J. Wind Eng. Ind. Aerodyn.,1999,82:27-48.
    [43]Marighetti J., Wittwer A., Bortoli M. D., Natalini B., Paluch M., etc. Fluctuating and mean pressure measurements on a stadium covering in wind tunnel[J]. J.Wind Eng. Ind. Aerodyn.,2000,84:321-328.
    [44]沈国辉,孙炳楠,楼文娟.体育场看台挑篷的风荷载及干扰效应分析[J].空气动力学学报,2005,23(4):490-495.
    [45]楼文娟,孙斌,卢旦,沈国辉.复杂型体悬挑屋盖风荷载风洞试验与数值模拟[J].建筑结构学报,2007,28(1):107-112.
    [46]朱川海,顾明.大型体育场主看台挑篷风荷载特性的风洞试验[J].同济大学学报,2002,30(5):30-5.
    [47]赵秀福,黄达达,张华.青岛颐中体育场膜结构风洞试验研究[J].建筑结构,2001,31(2):25-27.
    [48]Murakami S., Current status and future trends in computational wind engineering[J]. J. Wind Eng. Ind. Aerodyn., 1997,67-68:3-34.
    [49]陆锋.大跨度平屋面结构的风振响应和风振系数研究[D].杭州:浙江大学,2001.
    [50]楼文娟,李恒,余世策,孙炳楠.突然开孔对平屋盖结构静动力风荷载的影响[J].同济大学学报(自然科学版)2007,35(10):1316-1321.
    [51]余世策,楼文娟等.开孔结构内部风效应的风洞试验研究[J].建筑结构学报,2007,28(4):76-82.
    [52]田红旗.列车空气动力学[M].北京:中国铁道出版社,2007,第1版.
    [53]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [54]李明水.连续大气湍流中大跨度桥梁的抖振响应[D].成都:西南交通大学,1993.
    [55]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [56]Adina Theory and Modeling Guide[M]. ADINA R&D, Inc.,2005.
    [57]Nakamura O., Tamura Y., Miyashita K., ltoh M., A case study of wind Pressure and wind-induced vibration of a large span open-type roof[J]. J. Wind Eng. Ind. Aerodyn.,1994,52:237-248.
    [58]Nakayama M., Sasaki Y., Masuda K., Ogawa T., An efficient method for selection of vibration Modes contributory to wind response on dome-like roofs[J].J. Wind Eng. Ind. Aerodyn.,1998,73:31-44.
    [59]王国砚,黄本才,林颖儒,徐晓明.基于CQC方法的大跨度屋盖结构随机风振响应计算[A].第六届全国风工程及工业空气动力学学术会议论文集[C],2002,113-119.
    [60]黄开明,倪振华,谢壮宁.里兹向量直接叠加法在圆拱顶屋盖风致响应分析中的应用[A].第十一届全国结构风工程学术会议论文集[C],2003,321-326.
    [61]何艳丽,董石麟,龚景海.空间网格结构频域风振响应分析模态补偿法[J].工程力学,2002,19(4):1-6.
    [62]向阳.薄膜结构的初始形态设计、风振响应分析及风洞试验研究[D].哈尔滨:哈尔滨建筑大学,1998.
    [63]Uematsu Y., Isyumov N. Wind pressures acting on low-rise buildings [J]. J. Wind Eng. Ind. Aerodyn.,1992,82(1-3): 1-25.
    [64]Uematsu Y., Yamada M., Karasu A. Design wind loads for structural frames of flat long-span roofs:Gust loading factor for the beams supporting roofs[J]. J. Wind Eng. Ind. Aerodyn.,1997,66:35-50.
    [65]Uematsu Y, Yamada M., Inoue A., Hongo T. Wind loads and wind-induced dynamic behavior of a single-layer latticed dome[J]. J. Wind Eng. Ind. Aerodyn.,1997,66:227-248.
    [66]杨伟,金新阳,陈素琴.风工程数值模拟中平衡大气边界层的研究与应用[J].土木工程学报,2007,40(2):1-5.
    [67]星谷胜.随机振动分析[M].常宝琦译.北京:地震出版社,1977.
    [68]吴筑海,周岱,符旭晨,辛庆胜.大跨结构风模拟及其小波分析[J].振动与冲击,2004,23(4):34-39.
    [69]Thompson Joe F., Soni Bharat K., Weatherill Nigel P. Handbook of Grid Generation[M]. Boca Raton: CRC Press, 1999.
    [70]Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies[J]. J. Wind Eng. Ind. Aerodyn., 1997,69-71:55-75.
    [71]Anderson J.D., Degroote J., Degrez G.,Dick E., Grundmann R., Vierendeels J. Computational fluid Dynamics(the Basics with Applications) [M].北京:清华大学出版社,2002.
    [72]Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics[M]北京:世界图书出版社,1995年第1版.
    [73]Deardorff J.W. A three-dimensional numerical study of channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics,1970,41:453-480.
    [74]Germano M., Piomelli U., Moin P., Cabot W.H. A dynamic subgrid scale eddy viscosity model[J]. Physics Fluids, 1991,A3(7):1760-1765.
    [75]Lilly, D.K. A proposed modification of Germano subgrid scale closure method[J]. Physics Fluids.1992, A 4(3):633-635.
    [76]Piomelli U., Lu J. Large eddy simulation of rotating channel flows using a localized dynamic mode[J]. Physics Fluids 1995, A6(7):839-848.
    [77]Ghosal S., Moin P. The basic equations for the large eddy simulation of turbulent flows in complex geometry[J]. Journal of Computational Physics,1995,118:24-37.
    [78]Meneveau C., Lund T.S., Cabot W.H. A. Lagrangian dynamic subgrid scale model of turbulence[J]. Journal of Fluid Mechanics,1996,39:353-385.
    [79]Ahlborna B., Setob M.L., Noack B.R. Noack. On drag. Strouhal number and vortex-street structure[J]. Fluid Dynamics Research.2002,30:379-399.
    [80]Kogakia T., Kobayashi T., Taniguchib N. Large eddy simulation of flow around a rectangular cylinder[J]. Fluid Dynamics Research,1997,20:11-24.
    [81]Bouris D., Bergeles G.2D LES of vortex shedding from a square cylinder[J]. J. Wind Eng. Ind. Aerodyn.,1999,80: 31-46.
    [82]Selvam R.P., Tarini M. J., Larsen A. Computer modelling of flow around bridges using LES and FEM[J]. J. Wind Eng. Ind. Aerodyn.,1998,77-78:643-651.
    [83]Selvam R.P., Computation of pressures on Texas Tech University building using large eddy simulation[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:647-657.
    [84]Selvam R.P., Finite element modelling of flow around a circular cylinder using LES[J]. J. Wind Eng. Ind. Aerodyn., 1997,67-68:129-139.
    [85]Tamura T. Towards practical use of LES in wind engineering[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:1451-1471.
    [86]Kato M., Launder B.E. The modeling of turbulent flow around stationary and vibrating square cylinders[R]. Prep, of 9th Symp, On turbulent shear flow,1993:4-16.
    [87]Selvam R.P. Computation of flow around texas tech building using k-ε and kata-launder k-ε turbulence model[J]. Engineering Structures,1996,18:856-860.
    [88]Murakami S., Mochida A., Hibi K. Comparison of various turbulence modles applied to a bluff body[A]. First international symposium on computational wind engineering, Tokyo; 1992.
    [89]Kawamoto S. Improved turbulence models for estimation of wind loading[J]. J. Wind Eng. Ind. Aerodyn.,1997, 67-68:589-599.
    [90]汪丛军,黄本才.越南国家体育场屋盖平均风压及风环境影响数值模拟[J].空间结构,2004,10(2):35-39.
    [91]金新阳,杨伟,金海等.数值风工程应用中湍流模型的比较研究[J].建筑科学,2006,22(5):1-5.
    [92]金海,金新阳,陈岱林.国家游泳中心风工程数值仿真初步分析[A].第十二届全国工程建设计算机应用学术会议论文集[C].
    [93]Sill B.L., Cook N.J., Fang C. The Aylesbury comparative experiment: A final report[J]. J. Wind Eng. Ind. Aerodyn., 1992,43:1553-1564.
    [94]Sill B.L., Cook N.J. The Aylesbury comparative experiment: A status report[J]. J. Wind Eng. Ind. Aerodyn.,1990, 36:1047-1052.
    [95]Dalley S. Surface pressure spectra on a model of the Silsoe structures building comparison with full-scale[J]. J. Wind Eng. Ind. Aerodyn.,1996,60:177-187.
    [96]Richardson G.M., Surry D. The Silsoe structures buildings:comparison between full-scale and wind-tunnel data[J]. J. Wind Eng. Ind. Aerodyn.,1994,51:157-176.
    [97]Richardson G.M., Blackmore P.A. The Silsoe structures building:comparison of 1:100 model-scale data with full-scale data[J]. J. Wind Eng. Ind. Aerodyn.,1995,57:191-201.
    [98]Richardson G.M., Hoxey R.P., Robertson A.P., Short J.L. The Silsoe Structures Building: Comparisons of pressures measured at full scale and in two wind tunnels[J]. J. Wind Eng. Ind. Aerodyn.,1997,72:187-197.
    [99]Levitan M.L., Mehta K.C., Vann W. P., Holmes J.D. Field measurements of pressure on the Texas Tech Building[J]. J. Wind Eng. Ind. Aerodyn.,1991,38:227-234.
    [100]Levitan M.L., Mehta K.C. Texas Tech field experiments for wind loads part 1:Building and pressure measuring system[J]. J. Wind Eng. Ind. Aerodyn.,1992,43:1565-1576.
    [101]Levitan M.L., Mehta K.C. Texas Teeh field experiments for wind loads part 2: Meteorological instrumentation and terrain parameters[J]. J. Wind Eng. Ind. Aerodyn.,1992,43:1577-1588.
    [102]Tieleman H.W. Model/full scale comparison of pressures on the roof of the TTU experimental building[J]. J. Wind Eng. Ind. Aerodyn.,1996,65:133-142
    [103]Endo M., Bienkiewicz B., Ham H.J. Wind-tunnel investigation of point pressure on TTU test building[J]. J. Wind Eng. Ind. Aerodyn.,2006,94:553-578.
    [104]Ham H.J., Bienkiewicz B. Wind tunnel simulation of TTU flow and building roof pressure[J]. J. Wind Eng. Ind. Aerodyn.,1998,77-78:119-133.
    [105]Tieleman H.W., Surry D., Mehta K.C. Full/model-scale comparison of surface pressures on the Texas Tech experimental building[J]. J. Wind Eng. Ind. Aerodyn.,1996,61:1-23.
    [106]Selvam R. P. Computation of pressures on Texas Tech University building using large eddy simulation[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:647-657.
    [107]He J.M., Song C.C.S. A numerical study of wind flow around the TTU building and the roof corner vortex[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:547-558.
    [108]Cheung J.C.K., Holmes J.D., Melbourne W.H., Lakshmanan N., Bowditch P. Pressures on a 1/10 scale model of the Texas Tech Building[J]. J. Wind Eng. Ind. Aerodyn.,1997,69-71:529-538.
    [109]Mochida A., Murakami S., Shoji M., Ishida Y. Numerical simulation of flowfield around Texas Tech building by large eddy simuIation[J]. J. Wind Eng. Ind. Aerdyn.,1993,46-47:455-460.
    [110]Paterson D.A., Holmes J.D. Computational of wind flow around the Texas Teeh Buildings[C]. Proc Workshop on Industrial Fluid Dynamics. Highett: CSIRO-DBCE,1989:31-34.
    [111]Selvam R.P. Computation of pressure on the Texas Tech Building[J]. J. Wind Eng. Ind. Aerodyn.,1992,43: 1619-1627.
    [112]顾明,杨伟,黄鹏,罗攀.TTU标模风压数值模拟及试验对比[J].同济大学学报(自然科学版),2006,3(12):1563-1567.
    [113]何明锦,陈若华.单折版式屋顶之低层厂棚建筑风载重特性研究[J].中华民国建筑学会,建筑学报增刊,2007(62):99-116.
    [114]Barnard R.H. Predicting dynamic wind loading on cantilevered canopy roof structures[J]. J. Wind Eng. Ind. Aerodyn., 2000,85:47-57.
    [115]Vickery B.J., Majowiecki M. Wind induced response of a cable supported stadium roof[J]. J. Wind Eng. Ind. Aerodyn.,1992,42:1447-1458
    [116]Katsumura A., Tamura Y., Nakamura O. Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof[J]. J. Wind Eng. Ind. Aerodyn.,2007,95:1145-1165.
    [117]Marighetti J., Wittwer A., Bortoli M.D., Natalini B., Paluch M., Natalini M. Fluctuating and mean pressure measurements on a stadium covering in wind tunnel[J]. J. Wind Eng. Ind. Aerodyn.,2000,84:321-328.
    [118]Yasui H., Marukawa H., Katagiri J., Katsumura A., Tamura Y., Watanabe K. Study of wind-induced response of long-span structure[J]. J. Wind Eng. Ind. Aerodyn.,1999,83:277-288.
    [119]Uematsu Y., Yamada M., Sasaki A. Wind-induced dynamic response and resultant load estimation for a flat long-span roof[J]. J. Wind Eng. Ind. Aerodyn.,1996,65:155-166.
    [120]Kazakevitch M. The aerodynamics of a hangar membrane roof[J]. J. Wind Eng. Ind. Aerodyn.,1998,77-78:157-169.
    [121]林启鹏,吴太成.佛山岭南明珠体育馆风洞动态测压试验分析[J].广东土木与建筑,2007(3):14-16.
    [122]李元齐,田村幸雄,沈祖炎.球面壳体表面风压分布特性风洞试验研究[J].建筑结构学报,2005,26(5):104-111.
    [123]李忠汤,汪大绥等.上海东方艺术中心风荷载试验[J].同济大学学报,2003,31(7):819-823.
    [124]田森源,楼文娟等.杭州大剧院风压分布的风洞试验研究[J].试验力学,2004,19(1):6-11.
    [125]裴永忠,朱丹,高撼.广州新白云国际机场机库风荷载体型系数研究[J].空间结构,2005,11(4):54-58.
    [126]陈伟,张锋等.汕头跳水游泳馆屋面风载分布的风洞试验研究[J].建筑结构学报,2001,22(4):72-76.
    [127]吴太成,陈钦豪.深圳机场航站楼扩建工程风压风洞试验研究[J].建筑结构学报,1997,18(4):44-50.
    [128]Kawakita S., Bienkiewicz B., Cermak.J.E. Aeroelastic model study of suspended cable roof[J]. J. Wind Eng. Ind. Aerodyn.,1992,42:1459-1470.
    [129]Miyake A., Yoshimura T., Makino M. Aerodynamic instability of suspended roof models[J]. J. Wind Eng. Ind. Aerodyn.,1992,42:1471-1482.
    [130]Nakamura O.,Tamura Y., Miyashita K., ltoh M. A case study of wind Pressure and wind-induced vibration of a large span open-type roof[J]. J. Wind Eng. Ind. Aerodyn.,1994,52:237-248.
    [131]Uematsu Y., Watanabe K., Sasaki A., etc. Wind-induced dynamic response and resultant load estimation of a circular flat roof[J]. J. Wind Eng. Ind. Aerodyn.,1999,83:251-261.
    [132]顾明,黄翔.体育场屋盖气弹模型设计及风洞试验研究[J].建筑结构学报,2005(1):60-64.
    [133]廖海黎,冷利浩等.重庆市袁家岗体育中心体育场风洞试验研究[J].四川建筑,2003,(23):143-146.
    [134]Gerhardt H.J., Kruger O. Wind and train driven air movements in train stations[J]. J. Wind Eng. Ind. Aerodyn.,1998, 74-76:589-597.
    [135]丁宗梁,张华.北京西站主站房建筑风荷载模拟试验研究[J].建筑结构学报,1996,17(5):56-61.
    [136]西南交通大学风工程试验研究中心.成都火车东站风洞试验报告[R].成都:西南交通大学,2009.
    [137]西南交通大学风工程试验研究中心.京沪高速铁路济南西客站风洞试验报告[R].成都:两南交通大学,2010.
    [138]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,第1版.
    [139]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1998,第1版.
    [140]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001,第1版.
    [141]Murakami S., Mochida A., Hibi K. Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation [J]. J. Wind Eng. Ind. Aerdyn.,1987,25:291-305.
    [142]Ogawa T., Suzuki T., Fukuoka Y., Large eddy simulation of wind flow around dome structures by the finite element method, J. Wind Eng. Ind. Aerdyn.,1993,46-47:461-470.
    [143]Menterl F.R., Kuntz M., Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model[R]. Software Development Department, ANSYS-CFX, Otterfing, Germany.
    [144]ANSYS Inc. ANSYS CFX-Solver Theory Guid. ANSYS Inc.,2009.
    [145]Wallin S., Johansson A. A complete explicit algebraic Reynolds stress model for incompressible and compressible flows[J]. Journal of Fluid Mechanics,2000,403:89-132.
    [146]Wallin S. Engineering turbulence modelling for CFD with a focus on explicit algebraic Reynolds stress models[R]. Royal Institute of Technology Department of Mechanics.2000. Stockholm,Swiden.
    [147]Hellsten A. New advanced turbulence model for high-lift aerodynamics[C]. AIAA 2004-1120.
    [148]Hellsten A., Lainey S. Explicit algebraic reynolds-stress modelling in decelerating and separating flows[C]. AIAA 2000-2313.
    [149]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.
    [150]Piomelli U. Large-eddy simulation: achievements and challenges[J]. Progress in Aerospace Sciences,1999,35: 335-362.
    [151]Maruyama T., Rodi W., Maruyama Y., Hiraoka H. Large eddy simulation of the turbulent boundary layer behind roughness elements using an articially generated inflow[J]. J. Wind Eng. Ind. Aerodyn.,1999,83:381-392.
    [152]Kondo K., Murakami S., Mochida A. Generation of velocity fluctuations for inflow boundary condition of LES[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:51-64.
    [153]迪尔比耶,汉森.结构风荷载作用[M].薛素铎,李雄彦译.北京:中国建筑工业出版社,2006.
    [154]Selvam R.P. Multigrid methods for computational wind engineering[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:952.
    [155]Akay H.U., Li Z.Y., He X.Y.. Parallel computing for aeroelasticity problems[R]. Turkey, AIAA 2003.
    [156]Cross M., Slone A. Fenet-multi-physics analysis(MPA) theme: a review of commercial MPA capability in 2005[A].MALTA.
    [157]Wolf K. News around MpCCI development and projects[A].8th MpCCI user forum,2007.
    [158]Pelzer M. Coupling fluent with FEM codes[A].8th MpCCI User Forum,2007.
    [159]Rang J., Krosche M., Niekamp R.,Matthies H.G. Solving fluid-structure interaction problems using MpCCI and the Component Template Library[A].8th MpCCI User Forum,2007.
    [160]Stoyanov D. Coupled simulations using the elasti city solver DDFEM and FLUENT via MpCCI[A].8th MpCCI User Forum,2007.
    [161]Weidmann E.P., Bauer W., Maihofer M. A new CFD and thermal analysis method based on MpCCI[A].8th MpCCI User Forum,2007.
    [162]秦云.结构静力风荷载数值模拟研究[D].哈尔滨:哈尔滨工业大学,2004.
    [163]Tamura T. Reliability on CFD estimation for wind-structure interaction problems[J]. J. Wind Eng. Ind. Aerodyn., 1999,81:117-143.
    [164]Xu Y.L. Model- and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech Building[J]. J. Wind Eng. Ind. Aerodyn.,1995,58:147-173.
    [165]Hoxey R.P., Reynolds A.M., Richardson G.M., Robertson A.P., Short J.L. Observations of Reynolds number sensitivity in the separated flow region on a bluff body[J]. J. Wind Eng. Ind. Aerodyn.,1998,73:231-249.
    [166]Hoxey R.P., Robertson A.P., Richardson G.M., Short J.L. Correction of wind-tunnel pressure coefficients for Reynolds number effect[J]. J. Wind Eng. Ind. Aerodyn.,1997,69-71:547-555.
    [167]Blocken B., Stathopoulos T., Carmeliet J. CFD simulation of the atmospheric boundary layer:wall function problems [J].Atmospheric Environment,2007,41 (2):238-252.
    [168]Hargreaves D.M., Wright N.G., On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer[J]. J. Wind Eng. Ind. Aerodyn.,2007,95:355-369.
    [169]Franke J. Recommendations of the cost action C14 on the use of CFD in predicting pedestrian wind environment [C]. The Fourth International Symposium on Computational Wind Engineering, Yokohama. Japan,2006:529-532.
    [170]Mochida A., Tominaga Y., Yoshie R. AIJ guideline for practicalapplications of CFD to wind environment around buildings[C].The Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan,2006: 533-535.
    [171]Richards P.J., Hoxey R.P. Appropriate boundary conditions for computational wind engineering models using the k-ε model[J]. J. Wind Eng. Ind. Aerodyn.,1993,46-47:145-153.
    [172]Palmer D.G, Vazquez D.B., Knapp G.,Wright D.N. The practical application of cfd to wind engineering problems[A]. Eighth International IBPSA Conference,Eindhoven, Netherlands,2003.
    [173]Hooff T.V., Blocken B. CFD analysis of natural ventilation in large semi-enclosed buildings-case study: Amsterdam arena football stadium[A].Eleventh International IBPSA Conference,Glasgow, Scotland,2009.
    [174]Delaunay D., Lakehal D., Barre C., Sacre C. Numerical and wind tunnel simulation of gas dispersion around a rectangular building[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:721-732.
    [175]Delaunay D., Lakehal D., Pierrat D., Numerical approach for wind loads prediction on buildings and structures[J]. J. Wind Eng. Ind. Aerodyn.,1995,57:307-321.
    [176]Xu Y.L., Reardon G.F., Vairations of wind pressure on hip roofs with roofs pitch[J]. J. Wind Eng. Ind. Aerodyn., 1998,73:267-284.
    [177]Tominaga Y., Murakami S., A. Mochida. CFD prediction of gaseous diffusion around a cubic model using a dynamic mixed SGS model based on composite grid technique[J]. J. Wind Eng. Ind. Aerodyn.,1997,67-68:827-841.
    [178]Slack M.D., Prasad R.O., Bakker A., Boysan F. Advances in cyclone modeling using unstructured grids[J]. Institution Of Chemical Engineers, TRANS ICHEME,2000,78:1098-1104
    [179]张雅,刘淑艳,王保国.雷诺应力模型在三维湍流流场计算中的应用[J].航空动力学报,2005,20(4):572-576.
    [180]Sarkar P.P., Zhao Z.S, Mehta K. C. Flow visualization and measurement on the roof of the Texas Tech building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:597-606.
    [181]Ginger J.D., Mehta K.C., Yeatts B.B., Internal pressures in a low-rise full-scale building[J]. J. Wind Eng. Ind. Aerodyn.,1997,72:163-174.
    [182]Ahmad S., Kumar K., Effect of geometry on wind pressures on low-rise hip roof buildings[J]. J. Wind Eng. Ind. Aerodyn.,2002,90:755-779.
    [183]Jia Y.Q., Sill B.L. Pressures on a cube embedded in a uniform roughness field of variable spacing density[J]. J. Wind Eng. Ind. Aerodyn.,1998,77-78:491-501.
    [184]Chay M.T., Letchford C.W. Pressure distributions on a cube in a simulated thunderstorm downburst-Part A: stationary downburst observations[J]. J. Wind Eng. Ind. Aerodyn.,2002,90:711-732.
    [185]Mishra A.R., James D.L., Letchford C.W. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:1258-1273.
    [186]Tieleman H.W., Reinhold T.A., Hajj M.R., Importance of turbulence for the prediction of surface pressures on low-rise structures[J]. J. Wind Eng. Ind. Aerodyn.,1997,69-71:519-528.
    [187]Hajj M.R., Tieleman H.W., Tian L. Wind tunnel simulation of time variations of turbulence and effects on pressure on surface-mounted prisms[J]. J. Wind Eng. Ind. Aerodyn.,2000,88:197-212.
    [188]Jordan D.A., Hajj M.R., Tieleman H.W. Wavelet analysis of the relation between atmospheric wind and pressure fluctuations on a low-rise building[J]. J. Wind Eng. Ind. Aerodyn.,1997,69-71:647-655.
    [189]Tieleman H.W., Hajj,M.R. Reinhold T.A. Wind tunnel simulation requirements to assess wind loads on low-rise buildings[J]. J. Wind Eng. Ind. Aerodyn.,1998,74-76:675-685.
    [190]Lin J.X., Surry D., Tieleman H.W. The distribution of pressure near roof corners of flat roof low buildings[T]. J. Wind Eng. Ind. Aerodyn.,1995,56: 235-265.
    [191]Ho T.C.E., Davenport A.G., Surry D. Characteristic pressure distribution shapes and load repetitions for the wind loading of low building roof panels[J]. J. Wind Eng. Ind. Aerodyn.,1995,57:261-279.
    [192]Holmes J.D. Wind pressures on tropical housing[J]. J. Wind Eng. Ind. Aerodyn.,1994,53:105-123.
    [193]Holmes J.D., Syme M.J., Kasperski M. Optimised design of a low-rise industrial building for wind loads[J]. J. Wind Eng. Ind. Aerodyn.,1995,57:391-401.
    [194]Uematsu Y., Yamada M., Sasaki A. Wind-induced dynamic response and resultant load estimation for a flat long-span roof[J]. J. Wind Eng. Ind. Aerodyn.,1996,65:155-166.
    [195]Uematsu Y., Watanabe K., Sasaki A.,Yamada M., Hongo T. Wind-induced dynamic response and resultant load estimation of a circular flat roof [J]. J. Wind Eng. Ind. Aerodyn.,1999,83:251-261.
    [196]Meecham D., Surry D., Davenport A.G. The magnitude and distribution of wind-induced pressures on hip and gable roofs[J]. J. Wind Eng. Ind. Aerodyn.,1991,38:257-272.
    [197]Peterka J.A., Hosoya N., Dodge S., Cochran L., Cermak J.E. Area-average peak pressures in a gable roof vortex region[J]. J. Wind Eng. Ind. Aerodyn.,1998,77-78:205-215.
    [198]Stathopoulos T. Wind pressures on a hemispherical dome[J]. J. Wind Eng. Ind. Aerodyn.,1995,57:111.
    [199]向阳,沈世钊,赵臣.伞形屋面风压分布系数的风洞试验研究[J].哈尔滨建筑大学学报,1998,31:19-23.
    [200]余志祥,赵世春,吴吴等.丽江火车站大悬挑重檐钢结构站房风荷载CFD分析[J].建筑结构学报,2010,31(Supp12):153-158.
    [201]Kawamura S., Kiuchi T. Proposed design method for high rise pneumatic structures:cylindrical type and spherical type. Pentech Press,1984.
    [202]Takahashi T., Ohtsu T., Yassin M.F., Kato S., Murakami S. Turbulence characteristics of wind over a hill with a rough surface, J. Wind Eng. Ind. Aerodyn.,2002,90:1697-1706.
    [203]Takahashi T., Kato S., Murakami S., Ooka R., Yassin M. F., Kono R. Wind tunnel tests of effects of atmospheric stability on turbulent flow over a three-dimensional hill[J]. J. Wind Eng. Ind. Aerodyn.,2005,93:155-169.
    [204]Cao S.Y., Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. J. Wind Eng. Ind. Aerodyn.,2006,94:1-19
    [205]Oguro M., Morikawa Y., Murakami S., Matsunawa K., Mochida A., Hayashi H. Development of a wind environment database in Tokyo for a comprehensive assessment system for heat island relaxation measures[T]. J. Wind Eng. Ind. Aerodyn.,2008,96:1591-1602.
    [206]Murakami S., Mochida A., Kato S. Development of local area wind prediction system for selecting suitable site for windmill[J]. J. Wind Eng. Ind. Aerodyn.,2003,91:1759-1776.
    [207]史锋.野外风沙跃移运动的观测实验与数值模拟[D].兰州:兰州大学,2010.
    [208]王吉民,孙炳楠等.膜结构风荷载特性和风振响应特性的风洞试验研究[J].空间结构,2001,7:18-24.
    [209]余世策,孙炳楠等.伞形膜结构组合屋盖风荷载特性的风洞试验研究[J].空气动力学学报,2005,23(1):40-45.
    [210]沈世钊,徐崇宝,赵臣.悬索结构设计[M].中国建筑工业出版社,1997.
    [211]Letchford C.W., Sarkar P.P. Mean and fluctuating wind loads on rough and smooth parabolic domes[J]. J. Wind Eng. Ind. Aerodyn.,2000,88:101-117.
    [212]李元齐,田村幸雄,沈祖炎.单层网壳结构等效静风荷载分布估计[J].工程力学,2006,23:57-61.
    [213]Li Y.Q., Tamura Y., Yoshida A., Katsumura A. Wind loading and its effects on single-layer reticulated cylindrical shells[J]. J. Wind Eng. Ind. Aerodyn.,2006,94:949-973.
    [214]Uematsu Y., Tsuruishi R. Wind load evaluation system for the design of roof cladding of spherical domes[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:2054-2066.
    [215]Taylor T. J. Wind pressures on a hemispherical dome[J]. J. Wind Eng. Ind. Aerodyn.,1992,40:199-213.
    [216]王旭,顾明.半球形屋面结构风荷载特性试验研究[J].中国工程机械学报,2009,7(3):351-355.
    [217]Kim W., Tamura Y, Yoshida A., Interference effects of local peak pressures acting on walls of tall buildings[A]. 11th Americas conference on wind engineering, San Juan, Puerto Rico,2009.
    [218]Lam K.M., Zhao J.G. Interference effects of wind loads on a row of tall buildings[A],The fourth international symposium on computational wind engineering(CWE2006), Yokohama,2006.
    [219]Lien F.S., Yee E. Numerical modelling of the turbulent flow developing within and over a 3-d building array, Part II:a distributed drag force approach, its implementation and application[A]. Boundary-Layer Meteorology 112,427-66.
    [220]Lien F.S., Yeeb E., Cheng Y. Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach[J]. J. Wind Eng. Ind. Aerodyn.,2004,92:117-158.
    [221]Xie Z.N., Gua M. Mean interference effects among tall buildings[J]. Engineering Structures,2004,26:1173-1183.
    [222]Mohammadi A. K, Student M.E. The effect of aerodynamic interference on the dynamic response of tall rectangular buildings[A].7th International Congress on Civil Engineering ICCE,2006.
    [223]John A. D., Gairola A., Mukherjee M. Interference effect of boundary wall on wind loads[A].11th Americas conference on wind engineering, San Juan, Puerto Rico,2009.
    [224]Cheng H.C., Meroney R.N. The Effect of Surroundings with Different Separation Distances on Surface Pressures on Low-Rise Buildings[A].First American Conference on Wind Engineering, Clemson University, South Carolina,2001.
    [225]Cheng H.C., Meroney R.N. Concentration and flow distributions in urban street canyons: wind tunnel and computational data [J]. J. Wind Eng. Ind. Aerodyn.,2003,91:1141-1154.
    [226]Surfer9.0 Griding Guide[A]. Golden software Inc.,2010.
    [227]刘锡良.现代空间结构[M].天津:天津大学出版社,2003,第1版:1-6.
    [228]郭彦林,田广宇等.施工环境温度对车辐式结构成型状态影响分析[J].建筑结构,2010,40(2):46-51.
    [229]郭彦林,田广宇等.宝安体育场屋盖张拉结构施工环境温度影响分析[J].建筑结构,2010,40(2):52-55.
    [230]陈志华.弦支穹顶结构[M].北京:科学出版社,2010.
    [231]陆赐麟,尹思明,刘锡良.现代预应力钢结构[M].北京:人民交通出版社,2003.
    [232]Cirak F., Radovitzky R. A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets[J]. Computers&Structures,2005,83:491-498.
    [233]Tezduyar T.,Osawa Y. Fluid-structure interactions of a parachute crossing the far wake of an aircraft[J]. Computer Methods in Appl. Mech.Engrg,2001,191:717-726.
    [234]Stein K.R., Benney R.J., Tezduyar T.E. Fluid-Structure Interactions of a Round Parachute:Modeling and Simulation Techniques[J]. Journal Of Aircraft,2001,38(5):800-808.
    [235]Stein K., Tezduyar T.E., Benney R. Automatic mesh update with the solid-extension mesh moving technique[J]. Computer Methods in Appl. Mech.Engrg.,2004,193:2019-2032.
    [236]Loon V.R., Anderson P.D., Vosse F.N., Sherwin S.J. Comparison of various fluid-structure interaction methods for deformable bodies[J]. Computers&Structures,2007,85:833-843.
    [237]Pedrizzetti G. Fluid flow in a tube with an elastic membrane insertion[J]. J. Fluid Mech,1998(375):39-64.
    [238]Gluck M., Breuer M., Durst F., Halfmann A., Rank E. Computation of fluid-structure interaction on lightweight structures[J]. J. Wind Eng. Ind. Aerodyn.,2001,89:1351-1368.
    [239]Gluck M., Breuer M., Durst F., Halfmann A., Rank E. Computation of wind-induced vibrations of flexible shells and membranous structures[J]. Journal of Fluids and Structures,2003,17:739-765.
    [240]Halfmann A., RankA E. Partitioned solution approach for the fluid-structure interaction of wind and thin-walled structures[J]. J. Wind Eng. Ind. Aerodyn.,2001,89:1351-1368.
    [241]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-8.
    [242]杨庆山,王基盛,王莉.膜结构与风环境的流固耦合作用[J].空间结构,2003,9(1):20-24.
    [243]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [244]Timperi A., Pattikangas T., Karppinen I., Lestinen V. Validation of fluid-structure interaction calculations in a large break loss of coolant accident[A]. Proceedings of the 16th International Conference on Nuclear Engineering,2008.
    [245]郑廷辉,杨吉军,汪渊.流固耦合问题求解的两个关键问题[A].2008年ADINA中国用户大会论文集,2008:1-8.
    [246]张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报.1997,14(1):91-102.
    [247]Noh W. F. C. A time-dependent two-space dimensional coupled Eulerian-Lagrangian code[J]. Methods in Computational Physics,1964,3:123-144.
    [248]Doneal J., Huerta A., Ponthot J.P., Ferran A.R. Arbitrary Lagrangian-Eulerian methods[J]. Encyclopedia of Computational Mechanics[A]. John Wiley & Sons, Ltd,2004
    [249]Benson D.J. An efficient, accurate, simple ALE method for nonlinear finite element programs[J]. Computer Methods in Applied Mechanics and Engineering,1986,72:305-350.
    [250]Tezduyar T E., Sathe S S., Stein K. Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:5743-5753,.
    [251]Amsden A.A., Hirt C.W. An Arbitrary Lagrangian-Eulerian Computer program for fluid flow at all speeds.Report LA-5100, Los Alamos Scientific Laboratory, Los Alamos, NM,1973.
    [252]Hirt C.W., Amsden A.A.,Cook J.L. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J]. Journal of Computational Physics,1974,14:227-253.
    [253]Pracht W.E. Calculating three-dimensional fluid flows at all flow speeds with an Eulerian-Lagrangian computation mesh[J]. Journal of Computational Physics,1975,17:132-159.
    [254]Amsden A.A., Ruppel H.M.,et al. SALE-3D: A simplified ALE computer program for calculating three-dimensional fluid flow. Loa Alamos Scientific Laboratory, Los Alamos, NM,1981.
    [255]Winslow A. M. "Equipotential" Zoning of two-dimensional meshes. UCRL-7312, Lawrence Radiation Laboratory. 1963.
    [256]Winslow A. M. and Barton R. T. Rescaling of equipotential smoothing. UCID-19486, Lawrence Livermore National Laboratory, Livermore, CA,1982.
    [257]Giuliani S. An algorithm for continuous rezoning of the hydrodynamic grid in arbitrary Lagrangian-Eulerian computer codes[J]. Nucl. Engrg. Design.1982,72:205-212.
    [258]Ponthon J.P. A method to reduce cost of mesh deformation in Eulerian-Lagrangian formulation[A]. Modeling of Metal Forming Processes.1988:65-74
    [259]Schreurs P. J.G, Veidpaus F.E. An arbitrary Eulerian-Lagrangian finite element model for simulation of geometrical non-linear hyperelastic and elasto-plastic deformation processes. J.F.T. Pittman et al. eds. Numerical Methods in Industiral Forming Processess, Pinerridge Press, Swansea, U.K.1982:501-509
    [260]王军利,白俊强,詹浩.非结构动网格在三维可动边界问题中的应用研究[J].航空计算技术.2005,35(3):12-16.
    [261]郭正,李晓斌,瞿章华等.用非结构动网格方法模拟有相对运动的多体绕流[J].空气动力学学报.2001,19(3):310-316.
    [262]钮珍南,诸乾康,张伯寅,王厚雄.沙漠大风地区铁路路堤风荷载模拟实验研究[J].空气动力学学报.1994,12(1):76-81
    [263]Yang J.N. Simulation of random envelope processes[J]. Journal of sound and vibration.1972,25(1):73-85.
    [264]Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engrg.Mech.,1996,122(8):778-787.
    [265]Liu C., Xiang H. Simulation of buffeting response history for long span bridges[A].8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, PMC2000-159.
    [266]曹映弘.大跨度桥梁非线性颤振和抖振时程分析[D].上海:同济大学,1999.
    [267]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.
    [268]Imre K. Analysis aerodynamic investigation of Cable-Stayed Helgeland bridge[J]. Journal of Structureral engineering, 1992,18(1).
    [269]刘锡良,周颖.风荷载的几种模拟方法[J].工业建筑,2005,35(5)81-84.
    [270]Shirani E., Ferziger J H. Reynolds W.C. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence[R]. report TF-15,1981, Mech.Eng.Dept., Standford Univ.
    [271]毛国栋,孙炳楠,楼文娟.膜结构的附加空气质量[J].工程力学,2004,21(2):153-158.
    [272]Davenport A G. The response of tension structures to turbulent wind:The role of aerodynamic dampingfA]. lstOleg Kerensky Memorial Conference[C]. London:[s.n.],1988,41-47.
    [273]沈世钊,武岳.大跨度张拉结构风致动力响应研究进展[J].同济大学学报,2002,30(5):533-538.
    [274]Bathe K.J. Finite element procedures in engineering analysis[M]. Prentice-Hall Inc, New Jersey,1996.
    [275]蓝天,张毅刚.大跨度屋盖结构抗震设计[M].北京:中国建筑工业出版社,2000.
    [276]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005,第1版.
    [277]Yoshimura T., Savage M.G., Tanaka H., Urano D., Wind-induced oscillations of groups of bridge stay-cables[J]. J. Wind Eng. Ind. Aerodyn.,1995,54-55:251-262.
    [278]Loredo-Souza A.M., Davenport A.G. Wind tunnel aeroelastic studies on the behaviour of two parallel cables[J]. J. Wind Eng. Ind. Aerodyn.,2002,90:407-414.
    [279]Kazakevitch M., Zakora A. Cable stabilization for wind and moving load effect[J]. J. Wind Eng. Ind. Aerodyn.,1998, 74-76:995-1003.
    [280]武岳.大跨度屋盖结构的风效应及抗风设计理论研究[D].上海:同济大学博士后出站报告,2006.
    [281]Okada H., Ha Y.C., Comparison of wind tunnel and full-scale measurement tests on the Texas Tech building[J]. J. Wind Eng. Ind. Aerodyn.,1992,43:1601-1612.
    [282]Surry D., Pressure measurements of the Texas Tech building: wind tunnel measurements and comparisons with full scale[J]. J. Wind Eng. Ind. Aerodyn.1991,38:235-247.
    [283]陈艾荣,艾辉林.计算桥梁空气动力学[M].北京:人民交通出版社,2010.
    [284]Murakami S., Mochida A., Sakamoto S. CFD analysis of wind-structure interaction for oscillating square cylinders[J]. J. Wind Eng. Ind. Aerodyn.,1997,72:33-46.
    [285]Tominaga Y., Mochida A., Murakami S., Sawaki S. Comparison of various revised k-ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer[J]. J. Wind Eng. Ind. Aerodyn.,2008,96:389-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700