无站台柱张弦桁架雨棚结构性能分析与倒塌模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度、大柱距的无站台柱钢结构雨棚被广泛应用于我国新时期的火车站建设中,其现代化的建筑设计、通透的站台视觉感受及宽敞舒适的使用效果已经得到业内与社会公众的普遍认可。本文对无站台柱雨棚中有鲜明特点及广泛应用前景的张弦桁架雨棚结构进行了研究,研究内容涉及该类结构的静力性能、稳定性能、抗震性能、抗风性能以及抗连续倒塌性能五个方面,研究结果为该类结构在设计时所需考虑的共性问题提供了分析方法及解决途径,并根据部分结论总结出供设计人员参考使用的规律和依据。
     本文第一章介绍了无站台柱雨棚的由来及在我国的应用现状。概括了张弦桁架结构的受力特点,分析了张弦桁架结构在应用于无站台柱雨棚时所具备的优势。对目前关于无站台柱张弦桁架雨棚的研究进行了总结,明确了本文要做的研究工作。
     本文第二章系统建立了无站台柱张弦桁架雨棚结构在静力荷载作用下的理论分析方法,给出了在对称均布荷载、反对称均布荷载、半跨均布荷载、温度荷载以及预拉力荷载作用下,结构受力及变形的理论计算公式。根据得到的理论公式研究了结构在各种静力荷载作用下的受力性能,给出了基于结构静力性能改进目标的预拉力值确定方法。
     本文第三章分析了无站台柱张弦桁架雨棚结构的失稳模式、失稳机理及影响结构稳定性能的相关因素。重点研究了目前较少涉及的倒三角立体桁架抗扭刚度对结构整体稳定性能的影响,研究过程揭示了增强立体桁架抗扭刚度能提高结构稳定性能的机理,并给出了增强立体桁架抗扭刚度的具体方法。此外本章内容还分析了结构体系中连系桁架在限制主桁架失稳时所发挥的作用,研究了杆件屈服对结构失稳的影响。
     本文第四章研究了无站台柱张弦桁架雨棚结构的自振特性,并在此基础上较为详细地计算分析了结构在水平及竖向地震作用下的位移、内力响应,根据响应规律研究了该类结构抗震设计时的简化分析方法。随后还考察了结构纵向区间长度与行波效应的相互关系。
     本文第五章研究了无站台柱张弦桁架雨棚结构的风载体型系数,给出了该类结构风载体型系数的分布规律和取值方法。编制了脉动风时程模拟程序,对结构进行了风致动力响应分析,得到了结构的风振系数。计算了作用在结构上的风荷载值,对结构进行了多级风荷载下的受力性能分析,并得到了结构在终级风荷载下的破坏模式。本章最后归纳了结构在风荷载作用下的性能特点。
     本文第六章在备选荷载路径设计思想的引导下,分析了无站台柱弦桁架雨棚结构中各类构件的敏感性,依据分析结果对结构在敏感构件失效后的响应或倒塌过程进行了模拟,根据模拟结果总结了该类结构可能发生的倒塌模式。在以上分析的基础上提出了两种防止无站台柱张弦桁架雨棚大面积连续倒塌的设计方法,并详细阐述了这两种方法在北京北站张弦桁架雨棚工程中的具体应用。
     本文第七章对全文所做主要工作及所得到的主要结论进行了总结,并指出该类结构在今后可以继续深入的研究工作。
Non-platform-column shelters, with long span and large column distance, has been widely applied to the construction of new-era train stations. Due to the modern appearance, transparent vision and comfortable to use, this type of shelters has been recognized by both the public and the profession. This thesis has focused on the truss string structure, which has distinctive features and wide application prospect in future non-platform-column shelters. An intensive study on the static performance, stability, seismic performance, wind-resistance performance and progressive collapse behavior of the truss string shelter has been carried out. The results offer new methods and solutions for the analysis design of the truss string shelter. Some instructive rules and useful experience are summarized for the future design.
     Chapter1introduces the origin and application status of the non-platform-column shelter in China. The mechanical characteristics and advantages of the truss string structure are presented. An review on the present study of the truss string shelter is given.,The main research work of this thesis is briefly introduced.
     Chapter2systematically builds up a theoretical analysis method for truss string structures used in non-platform-column shelters. Analytical expressions for the internal force and displacement of the structure are achieved, which are applicable to many common load cases, including symmetrical distributed load, anti-symmetrical distributed load, half cross distributed load, temperature load and pretension load. The static behavior of the structure is analyzed according to the theoretical expressions, and methods to improve the static performance are also researched.
     Chapter3analyzes the failure model, stability and the related parameters of the non-platform-column truss string shelter. Importance is put on the influence of the torsion stiffness of the spatial truss string system on the structural stability The research gives the reason for the torsion stiffness improving structure stability, and then puts forward methods for enforcing the structural torsion stiffness. Besides, this chapter also studies the effect of the attached truss on restricting the primary truss failure, and the influence of the member yield on the structural integral stability.
     Chapter4analyzes the free vibration characteristics of the non-platform-column truss string shelter. The structural response under horizontal and vertical seismic is calculated, and then some simplified methods for the structural seismic design are researched. Finally, the relationship between the structural longitudinal dimension and the travelling wave effect is studied.
     Chapter5determines the wind-load shape coefficient of the shelter by simulations. Formulas for computing of the wind-load shape coefficient are fitted according to the simulation result. The wind-induced dynamic responses of the structure are also analyzed, and then the wind vibration coefficient is obtained. Based on these, the structural performance under multi-level wind load is analyzed and the structural failure models is identified. The structural mechanical characters under wind load is summarized.
     Chapter6takes Beijing north station as an example. The sensitivity of the structural elements is analyzed by the alternate path method. The response or collapsed process after failure of the sensitive members is simulated, and the possible collapse models is concluded. Two methods to prevent the progressive collapse of the structure are worked out, and both of them have been applied to Beijing north station successfully.
     Chapter7summarizes the main works and conclusions of this thesis, and also points out some further and meaningful works which may be done in the future.
引文
[1]郑健.空间结构在大型铁路客站中的应用[J].空间结构,2009,15(3):52-65.
    [2]杨晓川,李彬彬,汤朝晖.铁路旅客车站无站台柱雨棚[J].建筑科学,2008,24(3):170-173.
    [3]潘国华,无站台柱雨棚设计若干问题的探讨[J].铁道标准设计,2008(6):113-117.
    [4]高剑,无站台柱雨棚特性与设计[J].铁道工程学报,2008(12):75-78.
    [5]赵基达,蓝天.我国新时期火车站雨棚建设的特点与发展的思考[C]||第十三届空间结构学术会议论文集.深圳,2010:26-31.
    [6]M.Saitoh, Hybrid Form-Resistance Structure, Shell, Membrane and Space Frame, Pro.IASSSymposium, Osaka,1986,2:257-264.
    [7]M.Saiton. Role of string-Aesthetics and Technology of The Beam String Structure. Proceeding of the LSA98 Conference Light Structures in Architecture Engineering and Construction.1998:692-701.
    [8]Saiton, Masao, Okada, Akira. The role of string in hybrid string structure. Engineering structure,21(8), August,1999:664-673.
    [9]M.Saitoh, et al. Study on Mechanical Characteristics of a Light-weight Complex Structure Composed of a Membrane and a Beam String Structure. Spatial, Lattice and Tension Structure, Proc. of IASS-ASCE Int. Symp,1994,633-641.
    [10]董石麟,罗尧治,赵阳.新型空间结构的分析、设计与施工[M].北京:人民交通出版社,2006.
    [11]陆赐麟,尹思明,刘锡良.现代预应力钢结构(修订版)[M].北京:人民交通出版社,2006.
    [12]黄明鑫.大型张弦梁结构的设计与施工[M].山东:山东科学出版社,2005.
    [13]张彦.大跨度张弦桁架结构设计及试验研究[D].浙江杭州:浙江大学,2008.
    [14]张建华,许敏,曹登武.延安火车站站房及雨棚结构设计[J].华中建筑,2009,27(5):101-106
    [15]朱丹晖,赵建强.徐州火车站无站台柱雨棚结构设计[J].铁道标准设计,2009,4:117-120.
    [16]陶长君,利瓦伊滨,仇荣根.呼和浩特新火车站预应力张弦梁施工技术[J].施工技 术,2009,38(7):36-39.
    [17]饶益民,焦挺,钱建,等.银川火车站雨篷大跨度张弦桁架施工技术[J].施工技术,2011,40(353):17-19.
    [18]曾银枝,梁存之,赵洪斌.天津东站多跨连续张弦桁架预应力拉索施工技术[J].建筑科学,2011,27(增刊2):151-154.
    [19]刘明.沈阳北站无站台柱雨棚设计[J].铁道建筑,2005(3):79-81.
    [20]陈强.张家界车站无站台柱雨棚结构设计与分析[J].铁道标准设计,2008(8):112-114.
    [21]杨惠东,李娜,王士裴,等.某火车站无站台柱雨棚钢结构设计[J].2007(2):17-20.
    [22]周枫桃,汪瀚,张庆宪.阜阳站无站台柱钢结构雨棚设计和施工要点[J].四川建筑,2008,28(6):93-95.
    [23]许小波.哈尔滨西客运站无站台柱雨棚钢结构设计与分析[J].黑龙江科技信息,2011(4):320.
    [24]刘新佳.泰州无站台柱雨棚主桁架结构设计与施工[J].交通科技,2007(4):118-120.
    [25]蒋凡.车站无站台柱雨棚风荷载设计探讨[J].铁道标准设计,2011(5):94-96.
    [26]赵宪波,叶继红.张弦梁(桁架)结构荷载态受力性能分析[J].空间结构,2005,11(2):9-18
    [27]白正仙,刘锡良,李义生.单榀张弦梁结构各因素的影响分析[J].钢结构,2001,3(16):42-46.
    [28]王秀丽,刘永周.矢跨比和垂跨比对张弦立体桁架性能的影响分析[J].空间结构,2005,11(1):35-39.
    [29]吴祖咸,楼文娟,高子珺.单向张弦梁结构的受力性能研究[J].钢结构,2010,7(25):1-3.
    [30]陈汉翔,舒宣武.预应力值对张弦梁结构受力性能的影响分析[J].南理工大学学报(自然科学版),2003,31(5):79-84.
    [31]姜正荣,石开荣,徐牧,等.某椭圆抛物面辐射式张弦梁结构的非线性屈曲及施工仿真分析[J].土木工程学报,2011,44(12):1-8.
    [32]黄利锋,冯健,赵建,等.内凹式索拱结构极限承载力研究[J].建筑结构学报,2010,31(2),41-47.
    [33]邵瑞.张弦桁架结构的整体稳定性能研究[D].昆明:昆明理工大学,2009:63-72.
    [34]冯虹,施雄.宝钢游泳馆拱形张弦梁结构稳定分析[J].2008,34(3):14-16.
    [35]柯友华,陈波.张弦桁架结构的非线性地震响应及其参数分析[J].钢结构,2010,25(3):37-40.
    [36]熊伟,韩建强,吴敏哲.大跨度张弦桁架竖向地震作用下动力特性研究[J].建筑结构,2008,38(2):50-53.
    [37]杨学中,刘航,李晨光.预应力张弦桁架结构地震反应分析[J].钢结构,2006,21(1):5-8.
    [38]熊伟,吴敏哲.大跨度张弦桁架竖向地震反应分析[J].世界地震工程,2007,23(2):145-148.
    [39]刘开国.大跨度张弦梁式结构的分析[J].空间结构,2001,7(2):39-43.
    [40]赵基达,曾毅恒.张弦拱结构的结构分析与其静力性能研究[J].空间结构,201O,16(3):3-8.
    [41]陈侃.弦拱结构的理论分析和受力特性研究[D].浙江杭州:浙江大学,2000.
    [42]范峰,支旭东,沈世钊.哈尔滨国际会议展览体育中心主馆屋盖钢结构设计[J].建筑结构,2008,38(2):1-4.
    [43]陈荣毅,董石麟.广州国际会议展览中心展览大厅钢屋盖设计[J].空间结构,2002,8(3):29-33.
    [44]陈以一,沈祖炎,赵宪忠.上海浦东国际机场候机楼R2钢屋架足尺试验研究[J].建筑结构学报,1999,20(2):9-17.
    [45]GB 50009-2001建筑结构荷载规范(2006年版)[S].北京:中国建筑工业出版社,2002.
    [46]GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [47]范重,刘先明,范学伟,等.国家体育场大跨度钢结构设计与研究[J].建筑结构学报,2007,28(2):1-16.
    [48]罗尧治,张彦,李娜,等.北京北站张弦桁架结构工程[C].第八届全国现代结构工程学术研讨会,杭州,2008:426-429.
    [49]沈雁彬,郑君华,罗尧治.北京北站张弦桁架结构模型试验研究[J].建筑结构学报,2010,31(11),51-56.
    [50]龙驭球,包世华,匡文起,等.结构力学教程(Ⅰ)[M].北京:高等教育出版社,2001.
    [51]JGJ 7-2010空间网格结构技术规程[S].北京:中国建筑工业出版社,2010.
    [52]GB 50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [53]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [54]李爱群,高振世.工程结构抗震与设计[M].南京:东南大学出版社,2003.
    [55]Bogdanoff JL. Goldber JL. Shift JC. The effect of ground transmission time on the response of long structures. Boll Seism Soc Am,1965,55:627-640.
    [56]Kinreghian A D, Neuenhorer A. A Coherency Model for Spatially Varying Ground Motions[J]. EESD,1996,25:99-111.
    [57]Dumanogluid, IC Soyluk. A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect[J]. Engineering Structures,2003(25):1301-1310.
    [58]Hindy A, Novak M. Pipeline response to random ground motion[J]. J Eng Mech, 1980,106:339-360.
    [59]Li Q S, Zhang Y H, Wu J R, etc. Seismic random vibration analysis of tall buildings[J]. Engineering Structures,2004,26(12):1767-1778.
    [60]Lob C H, Ku B D. An efficient analysis of structural response for multiple-support seismic excitations[J]. Engineering Structures,1995,17(1):15-26.
    [61]Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement[J]. EESD,1988,16:583-596.
    [62]Luco J E, Wong H L. Response of a rigid foundation to a spatially random ground motion[J]. EESD,1986,14:891-908.
    [63]沈顺高,张微敬,朱丹.大跨度机库结构多点输入地震反应分析[J].土木工程学报,2008,41(2):17-21.
    [64]乔文涛,陈志华.弦支筒壳结构在多点输入下的地震响应分析[J].空间结构,2011,17(1):16-20.
    [65]张启灵,伍鹤皋.行波效应对大型水电站厂房地震响应的影响[J].振动与冲击.2010,29(6):76-79.
    [66]焦常科,李爱群,操礼林.三塔悬索桥行波效应研究[J].土木工程学报,2010, 43(12):100-106.
    [67]刘华宇,陈波.大跨度格构式拱结构对行波效应的响应研究[J].钢结构,2011,26(10):1-4.
    [68]Clough R W, Penzien J. Dynamics of structures[M]. California:Computers and Structures, Inc,1995.
    [69]何庆祥,沈祖炎.结构地震行波效应分析综述[J].地震工程与工程振动,2009,29(1):50-57.
    [70]张永亮,陈兴冲.行波效应对铁路大跨连续刚构桥地震反应的影响[J].西北地震学报,2010,32(3):268-272.
    [71]张传成.大跨空间结构多维多点地震反应分析[D].北京:北京工业大学,2008.
    [72]Leger P, Ide I M, Paultre P. Multiple support seismic analysis of large structures [J]. Computers& Structures,1990,36(6):1153-1158.
    [73]楼梦麟,黄明开.上海浦东机场(二期)候机楼水平地震行波效应时程分析[J].建筑结构,2009,39(2):8-11.
    [74]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特诊[J].计算力学学报,2001,18(3):358-363
    [75]刘保东,工程振动与稳定基础[M].清华大学出版出版设,北京:2010.
    [76]何晓宇,李宏男.地震与波浪联合作用下海洋平台动力特性分析[J].海洋工程,2007,25(3):18-25.
    [77]谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,25(3):250-261.
    [78]Mehta K C. Wind load standard, wind efects on buildings and structures, proceedings, jubileum conference on wind effects on buildings and structures[C]. Porto Alegre, Brazil,1998:307-313.
    [79]孙瑛,武岳,曹正罡.建筑风洞实验指南[M].中国建筑工业出版社,北京:2011.
    [80]Murakami S. Overview of turbulence models applied in CWE-1997[J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,74-76(0):1-24.
    [81]Vickery P J, Surry D, et al. Aylesbury and ACE:Some interesting findings[J]. Journal of Wind Engineering and Industrial Aerodynamics.1986,23:1-17.
    [82]Richardson G M, Blackmore P A. The silsoe structures building:Comparison of 1 100 model-scale data with full-scale data[J]. Journal of Wind Engineering and Industrial Aerodynamics.1995,57 (2-3):191-201.
    [83]J. D. Anderson, Computational Fluid Dynamics:The Basics with Applications McGraw-hill Companies [M].北京:清华大学出版社,1995.
    [84]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [85]Whale J. Anderson C G Bareiss R. An experimental and numerical study of the vortex structure in the wake of a wind turbine[J]. Journal of wind Engineering and Industrial Aerodynamics,2000,84(1):1-21.
    [86]Murakami S. Mochida A. Hayashi Y Examining the k-ε model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,35:87-100.
    [87]GLORIA M, MORETRA, PEDRO M. Experimental and numerical study of wind pressures on irregular-plan shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93:741-756.
    [88]MERONEY R N. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer [J]. Wind and Structures,2002,5(2-4).
    [89]WU Jianghang, ZHU Huaigiu, PENG Gaozhu. Comparison of simulation of wind load on tall buildings by the digital wind tunnel with the test of atmosphere boundary layer wind tunnel [A].大型复杂结构体系的关键科学问题及设计理论研究论文集[C].上海,2000:56-65.
    [90]顾磊,齐宏拓,刘红军,等.奥运网球中心赛场风荷载和风环境数值模拟分析[J].建筑结构学报,2009,30(3):34-143.
    [91]王振华,袁行飞,董石麟.大跨度椭球屋盖结构风压分布的风洞试验和数值模拟[J].浙江大学学报(工学版),2007,41(9):1462-1466.
    [92]顾明,黄鹏,杨伟,等.上海铁路南站平均风荷载的风洞试验和数值模拟[J].建筑结构学报,2004,25(5):43-47.
    [93]马骏,周岱,李华锋,等.大跨度空间结构抗风分析的数值风洞方法[J].工程力 学,2007,24(7):77-85.
    [94]顾磊,齐宏拓,武芳,等.体育场罩棚倾角及连接开缝对风荷载的影响[J].空间结构,2011,17(1):33-41.
    [95]楼文娟,孙斌,卢旦,等.复杂形体悬挑屋盖风荷载风洞试验与数值模拟[J].建筑结构学报,2007,28(1):107-112.
    [96]黄本才,汪丛军.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [97]C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Vo1.I and II. Springer-Verlag, Berlin,1990.
    [98]Fluent Inc. FLUENT User's Guide. Fluent Inc.2003
    [99]Fluent Inc. FLUENT User's Defined Function Manual. Fluent Inc.2003.
    [100]http://www.tbsa.com.cn/wind.html
    [101]张相庭.结构风工程理论·规范·实践[M].北京:中国建筑工业出版社,2006.
    [102]DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution Civil Engineers,1961,28(2):187-196.
    [103]刘红波,陈志华,闫翔宇,等.凉都体育场屋盖平均风压与风振系数研究[J].空间结构,2010,16(4):60-66.
    [104]薛素铎,宋延杰,李雄彦.基于风速时程的体育场挑篷结构风振响应分析[J].地震工程与工程振动,2007,27(5),61-65.
    [105]裴永忠,寇岩滔,朱丹,等.北京A380机库风洞试验及风振回应分析[J].土木工程学报,2008,41(2):22-28.
    [106]A Iannuzzi, P Spinelli. Artificial wind generation and structural response[J]. Journal of Structural Engineering, ASCE,1987,113(lO):2382-2398.
    [107]G Deodatis. Simulation of ergodic multivariate stochastic process[J]. Journal of Engineering Mechanics, ASCE,1996,122(3):778-787.
    [108]M Shinozuka, C M Jan. Digital simulation of random process and its application[J]. Journal of Sound and Vibration,1972,25(1):111-128.
    [109]方治华,李晨,杜晓旭.基于AR模型的瞬时风模拟[J].内蒙古科技大学学报,2010,29(1):95-98.
    [110]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32.
    [111]J S Owen, et al. The application of auto-regressive time series modeling for the time-frequency analysis of civil engineering structures [J]. Engineering Structures, 2001,23:521-536.
    [112]S H Jeong, B Bienkiewicz. Application of autoregressive modeling in proper orthogonal decom position of building wind pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:685-695.
    [113]Rssi R, Lazzari M. Wind field simulation for structural engineering purposes[J]. International Journal for Numerical Methods in Engineering,2004,61:738-763.
    [114]李春祥,都敏,韩兵康.基于AR模型模拟超高层建筑的脉动风速时程[J].地震工程与工程振动,2008,28(3):87-93.
    [115]American Society of Civil Engineers. ASCE 7-05 Minimum Design Loads for Buildings and Other Structures[S].2005.
    [116]崔京浩.灾害的严重性及土木工程在防灾减灾中的重要性[J].工程力学,2006,23(增刊Ⅱ):49-77.
    [117]弗朗西斯K哈梅,史蒂文M巴德雷基,SK戈什.防止多高层混凝土建筑渐次倒塌的设计与分析[M].北京:中国建筑工业出版社,2010.
    [118]日本钢结构协会&美国高层建筑和城市住宅理事会(著),陈以一&赵宪忠(译).高冗余度钢结构倒塌控制设计指南[M]上海:同济大学出版社,2007.
    [119]江晓峰,陈以一.建筑结构连续性倒塌控制与抗倒塌设计的研究现状[M].土木工程学报,2008,41(6):37-44.
    [120]Leyendechker E VEllingwood B R. Design methods for reducing the risk of progressive collapse in buildings[R]. Washington:National Bureau of Standards, 1977.
    [121]Griengsak Kaewkulchai. Dynamic progressive collapse of frame structures[D]. The USA:The University of Texas,2003.
    [122]McGuire W:Prevention of progressive collapse:Proceedings of the Regional Conference on Tall Buildings, Bangkok,1974[C]. Bangkok:Asian Institute ofTechnology,1974.
    [123]Marjanishvili S M. Progressive analysis procedure for progressive collapse[J]. ASCE Journal of Performance of Constructed Facilities,2004,18(2):79-85.
    [124]BSI. BS 8110-1:1997 Structural use of concrete-Part 1:Code of practice for design and construction[S]. London,2002.
    [125]BSI. BS 5950-1:2000 Structural use of steelwork in building-Part 1:Code of practice for design-Rolled and welded sections[S]. London,2001.
    [126]Draft PREN 1991-1-7 Eurocode 12Actions on structures. Part 1.7:General actions2accidental actions [S]. European Committee for Standardization,2005.
    [127]UFC 4-023-03 Unified Facilities Criteria Design of structures to resist progressive collapse[S]. US:Department of Defense,2005.
    [128]U.S. General Services Administration. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S]. 2003.
    [129]蔡建国,王蜂岚,冯健.大跨空间结构连续倒塌分析若干问题探讨[J].工程力学,2012,29(3):143-149.
    [130]丁阳,葛金刚,李忠献.空间网格结构连续倒塌分析的瞬时移除构件法[J].天津大学学报,2011,4(6):471-476.
    [131]陈肇元,钱稼茹.建筑与工程结构抗倒塌分析与设计[M].北京:中国建筑工业出版社,2010.
    [132]喻莹.基于有限质点法的空间钢结构连续倒塌破坏研究[D].浙江杭州:浙江大学,201O.
    [133]江晓峰.大跨桁梁结构体系的连续性倒塌机理与抗倒塌设计研究[D].上海:同济大学,2008.
    [134]ANSYS, Inc. ANSYS release 9.0 documentation[M].
    [135]John D. Reid. LS-DYNA EXAMPLES MANUAL. Livermore Software Tech-nology Corporation. Livermore,1998.
    [136]John O. Hallquist, LS-DYNA THEORETICAL MANUAL. Livermore Software Tech-nology Corporation. Livermore,1998.
    [137]LSTC. LS-DYNA KEYWORD USER'S MANUAL. Livermore Software Tech- nology Corporation. Livermore,2003.
    [138]LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005.
    [139]M.M. Kamal& J.A.Wolf陈砺志译.现代汽车结构分析[M].北京:人民交通出版,1987.
    [140]雷宏刚.钢结构事故分析与处理[M].北京:中国建筑工业出版社,2003.
    [141]CECS 212:2006预应力钢结构技术规程[S].北京:中国计划出版社,2006.
    [142]JGJ 257-2012索结构技术规程[S].北京:中国建筑工业出版社,2012.
    [143]陈志华,王小盾.日本索结构设计规程和应用[J].钢结构,2004,19(4):70-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700