基于不同场地条件下空间拱桁架地震反应特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们生活水平的不断提高以及工业生产、文化、体育等事业不断进步,大大增加了社会对空间结构尤其是大跨度高性能空间结构的需求。各类大型体育馆、会议中心和展厅、飞机库、厂房和仓库甚至钢拱桥如春后竹笋般出现在人们面前,这些建筑恢宏气势、造型优美,成为了一道道亮丽的风景。随着这种结构体系日益广泛的使用,其抗震性能也变得越来越重要。
     国内外大量震害表明,不同场地上建筑物震害的差异是十分明显的,并且场地类别的变化严重影响着结构的造价和安全度。为了能够深入探索不同场地条件对结构的影响程度,本文以跨度150m矢跨比为0.25的倒三角形截面大跨度钢管拱桁架结构模型为研究对象,利用SAP2000有限元分析软件建立模型,在不同场地条件下以8度小震的抗震设防水平对结构进行了初始设计,并研究其在各地震波作用下结构的动力响应、变形形状以及破坏形态,通过对计算结果的对比分析,得到了一些有益结论:
     (1)在弹性设计阶段,通过限定结构杆件应力比的方法对不同场地条件下钢拱桁架进行初步设计,使结构能满足规范要求的最低用钢量,进而进行模态分析与反应谱分析,对比其用钢量指标、应力比控制情况、周期、振型以及荷载作用组合下最大响应位移,得出不同场地条件在静力设计阶段各指标相差无几。
     (2)笔者根据地震动幅值、频谱特性、持续时间以及地面运动等几个控制条件建立了适合不同场地类别地震波数据库,但在进行罕遇地震下动力弹塑性时程分析时,结构在弹性阶段设计的截面组均不能满足“大震不倒”的规范要求。
     (3)在动力弹塑性分析阶段,钢拱桁架在不同场地条件响应有明显的差异。具体表现在结构处于失效界限时杆件的塑性发展程度、数量和位置有很大差别,结构的变形形态和破坏形态也明显不同。在进行描述时,笔者着重用量化的方法来说明不同场地类别对结构的影响程度。
In recent years, with the improvement of people's living standards and the progress of the industrial production, culture, sports, more and more spatial structures have been used in our society. Various types of large stadium, convention centers, exhibition halls, aircraft hangars, warehouses and steel arch bridges are widely applied in our own life. These buildings have quite imposing and beautiful shape, which make our city has a bright scenery. With the increasing great use of this structural system, the seismic performance becomes more and more important.
     The foreign and domestic research aiming at large number of earthquake damages show that the buildings in different venues have different kinds of earthquake damages. It also seriously affect the cost and safety of the structure. In order to explore this difference, a model which the arch truss's span is150m and the rise to span ratio is0.25was built in this paper. The model was designed by3D3S progrem of8degrees seismic protection level in the different venues. And lastly it was analised by SAP2000structure analysis program. The dynamic response, plastic development degree and damaged pattern of the structure were analyzed under the action of seismic wave. Therefore, some useful conclusions were found by comparing the analysis of calculation results:
     (1) In the flexible design stage, a spatial arch truss was designed in different site conditions by limiting the stress ratio. Next, the modal and response spectrum analysis of the spatial arch truss were practiced in the study. Most of the indicators are almost the same in the different site conditions after being compared with steel production, stress ratio, natural vibration period, mode of vibration and the displacement on the load combinations.
     (2) In this paper a suitable seismic wave database which was applicabled for different sites has been established according to seismic amplitude frequency, spectrum characteristics, duration and ground motion. But it dissatisfied the code requirement when the structure meet the rare occurrence earthquake.
     (3) In the elastic-plastic stage, it is clear that there were different responses in different site conditions and it embodied the great difference of the plastic development degree, damaged pattern, the plastic hinge number and location when the structure located on the failure boundaries. In this paper the influence degree was described in the different sites by quantitative analysis.
引文
[1]阴云芳.跨度6m矢跨比0.4钢管拱桁架拟动力试验模型的设计与试验过程模拟分析.太原理工大学硕士学位论文,2010.06.
    [2]建筑抗震设计规范(GB50011-2010)[M].北京:中国建筑工业出版社,2010.
    [3]蓝天,张毅刚.大跨度屋盖结构抗震设计.北京:中国建筑工业出版社,2002.
    [4]董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000.
    [5]王秀丽,沈世钊,朱彦鹏等.轻型钢管拱形屋盖结构体系的优化设计.建筑结构,2002,(07):60-62
    [6]傅志镇.大跨度抛物线形钢拱桁架在垂直于拱轴平面风载作用下的弯扭分析.建筑结构.1994,(06):23-29
    [7]刘殿中,刘灿军.三角形钢管桁架的研究.吉林建筑工程学院学报.2000,(03):1-4
    [8]李学军,史俊亮,李海旺.空间拱形桁架屋盖结构设计.低温建筑技术.2005,(01):42-44
    [9]郑宇淳.大跨度拱形立体桁架结构的推倒分析.天津大学硕士学位论文.天津,天津大学,2007
    [10]芦燕.强震作用下大跨度拱形立体桁架结构动力强度破坏研究.天津大学硕士学位论文.天津,天津大学,2009
    [11]李海旺,李建仙l.钢管拱桁架在地震作用下的动力响应研究.科技情报开发与经济,2007,17(8):144-146
    [12]李春艳.单榀钢管拱桁架在地震及三角脉冲荷载作用下的动力响应研究.太原理工大学硕士学位论文,2006.05.
    [13]李建仙.单榀钢管拱桁架在地震作用下的动力响应研究.太原理工大学硕士学位论文,2007.05.
    [14]吴静.跨度6m矢跨比0.2钢管拱桁架拟动力试验模型的设计与试验过程模拟分析.太原理工大学硕士学位论文,2010.06.
    [15]韩宝峰.跨度6m矢跨比0.1三心圆钢管拱桁架拟动力试验模型的设计与试验过程模拟分析,太原理工大学硕士学位论文.2010.06.
    [16]罗尧治.大型三心圆柱面网壳优化[C].结构与地基国际学术研讨会论文集.1994,320-325.
    [17]罗尧治,胡宁,沈雁彬.108米跨度干煤棚三心圆柱面网壳研究与设计[C].第二届现代结构工程学术研讨会,2004,34(4),171-177.
    [18]宋秀卿.双层柱面网壳选型优化,山东建筑大学硕士学位论文.2009.05.
    [19]杨慧东,李娜.王士裴等.某火车站无站台柱雨棚钢结构设计.铁道工程学报.2007,02:17-24.
    [20]李云鹏,柯梅.沈阳北站雨棚工程有关问题探讨.铁道建筑.2006,11:27-28.
    [21]周晓刚.无站台柱雨棚总体设计的相关技术探讨.铁道建筑.2006,07:70-71.
    [22]李伟民.北戴河站及某基地设施改造工程设计.建筑论坛与建筑设计.2006,26:62-64.
    [23]张恒.单层球面网壳的静力稳定性分析[J].山西建筑.2010.3,36(7):57-58.
    [24]彭建勋,贾宏伟.钢管拱桁架的静力稳定性研究[J].信阳师范学院学报(自然科学版).2008,(03).
    [25]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报.2000,(06).
    [26]陈帆,石卫华.地震作用下单层柱面网壳的动力稳定性能分析.华南地震.2004.
    [27]孙建恒,夏亨熹.网壳结构非线性动力稳定分析.空间结构.1994.
    [28]樊永盛,李彦君,杜雷鸣,李海旺.考虑下部结构的球面网壳在强震作用下破坏机理的研究.钢结构.2009.
    [29]路维,孙建恒,孙超,赵淑丽.K8型单层球面网壳非线性动力稳定分析.河北农业大学学报.2009.
    [30]郭瑞林,王玉娥.地震作用下肋环斜杆型单层球面网壳的动力稳定性.武汉大学学报(工学版)2010.
    [31]范峰,崔航宇,沈世钊.单层球壳结构弹塑性抗震性能分析.第九界全国空间结构学术会议.2000年9月
    [32]崔航宇,单层球壳弹塑性抗震性能分析,[硕士学位论文].哈尔滨建筑大学,2000.
    [33]闫安志,陈波.考虑几何和材料非线性时网壳结构的地震反应.河南理工大学学报(自然科学版).2009.10.
    [34]曹资,张毅刚.单层球面网壳地震反应特征分析.建筑结构.1998,8,40-43.
    [35]王健宁,薛素铎,曹资,张毅刚.双层柱面网壳在地震作用下的弹塑性性能.第九界全国空间结构学术会议.2000.9.
    [36]何放龙,马自克.强震作用下双层球面网壳结构非线性动力响应分析.湖南大学学报(自然科学版).2007.
    [37]张锦虹,陈扬骥.双层圆柱面网壳的抗震性能研究.同济大学学报.1998,26(5):498-502.
    [38]杨巧贞.刚架网壳结构的静动力特性分析及施工模拟分析[D].天津:天津大学硕士学位论文,2008.5.
    [39]范峰.网壳结构抗震性能、振动控制的理论与实验研究,[博士学位论文].哈尔滨建筑大学,]999.
    [40]范峰.空间网壳结构弹塑性地震响应及抗震性能分析.哈尔滨建筑大学学报.1999,32(1):132-37.
    [41]廖俊,张毅刚,吴金志.半刚性连接网壳动力弹塑性分析[J].科研开发.2010.04.
    [42]李霞.在地震作用下单层柱面网壳的动力响应分析[J].山西建筑.2009,35(34):68-69.
    [43]任彰芳.地震荷载作用下网壳结构的动力性能及设计适用原则[D].杭州:浙江大学硕士学位论文,2008.12.
    [44]陈鹏.近期地震动反应谱特性及其人工波模拟.青岛理工大学硕士学位论文.2008.06.
    [45]陈学中.Ⅱ类场地地震动反应谱研究.青岛理工大学硕士学位论文.2009.06.
    [46]张辛.Ⅲ类场地地震动反应谱研究.青岛理工大学硕士学位论文.2009.06.
    [47]徐海英.双向地震对地震波选取及柱抗震设计的影响.重庆大学硕士学位论文.2009.05.
    [48]赵鄂桂.大跨度钢结构动力时程分析研究.科技风.2011(2):266-268.
    [49]陈清军,袁伟泽,曹丽雅.长周期地震波作用下高层建筑结构的弹塑性动力响应分析.力学季刊.2011(3):403-410.
    [50]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析-原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践.中国建筑工业出版社.2009.12.
    [51]Freeman S A, Nicoletti J P,Tyrell J V,(1975).Evaluation of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard,Bremerton,Washington,Proc.1st U.S. National Conf.Earthquake Engng.,EERI,Berkeley,1975:113-122
    [52]Krawinkler H,Seneviratna G D P K,(1998).Pros and cons of a pushover analysis of seismic performance evaluation. Engineering structures,1998,20(4-6):452-464
    [53]ATC-40,(1996).Seismic Evaluation and Retrofit of Concrete Building,. Redwood City,CA.
    [54]FEMA-273,(1997)NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA, Washington, D.C.
    [55]FEMA-274,(1997)NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, FEMA, Washington, D.C.
    [56]BSL2000,(2000)Building Standard Law,2000
    [57]ATC-63, (2008).Quantification of building seismic performance factos,ATC-63 Project Report(90% Draft),FEMA P695/April 2008.
    [58]Fajfar P, Vidic T, Fihchinger M,(1990).A measure Dynamics of earthquake motion capacity to damage medium-period structures. Soil Dynamics and Earthquake Engineering,9(5):236-242
    [59]Housner G W, Jennings P C,(1977).The capacity of extreme earthquake motions to damage structures. Structural and Geotechnical Mechanics, A volume honoring N M Newmark, Prentice Hall:102-116
    [60]Nau J M, Hall W J,(1984).Scaling methods for earthquake response spectra. Structure Engineering.,110(7):1533-1548
    [61]M. Midorikawa:Performace-Based Seismic Design Provisions for Buildings in Japan, Proceedings of the IASS 2005, Vol.I, 307-316,2005.
    [62]T. Takeuchi, T. Ogawa, M. Nakagawa and T. Kumagai:Response Evaluation of Medium Span Lattice Domes with Substructures using Response Spectrum Analysis, Proceedings of the IASS 2004, TP076, 2004.
    [63]T.Takeuchi, T.Ogawa, C.Yamagata and T.Kumagai:Seismic Response Evaluation of Cylindrical Lattice Shell Roofs with Substructures Using Amplification Factor, Proceedings of the IASS 2005, Vol.I, 391-398,2005.
    [64]S. Kato, Y. Konishi and S. Nakazawa, Pushover Analysis and Static Estimation of Seismic Response of Large Steel Space Structures, Proceedings of the IASS-APCS 2003,54-55,2003
    [65]Koichiro Ishikawa, Shiro Kato:Elastic-plastic Dynamic Buckling Analysis of Reticular Domes Subjected to Earthquake Motion, International Journal of Space Structures 1997, 12:205-215.
    [66]Y. Taniguchi, P. L. Gould, M. Kurano:Earthquake Input Energy at Dynamic Collapse for Double-Layer Cylindrical Lattice Roofs, Journal of the IASS 2008; 49.
    [67]Shoji Nakazawa, Toshio Shima, Ikuo Tatemichi, Shiro Kato, Kenta Hirano:Evaluation for Seismic Risk Based on Damage Ratio and Seismic Resistance of Spatial Structures, Proceedings of the IASS-APCS2006, China, Beijing, AO16,2006.
    [68]Shiro Kato, Shoji Nakazawa:A Trial for Seismic Fragility Evaluation of a Large Lattice Dome Supported by Buckling Restrained Braces, International Journal of Space Structures 2010.25:125-134,.
    [69]Spatial Structures -Seismic Design and Realization in Japan, published by Architectural Institute of Japan, 2001 (in Japanese)
    [70]Dynamic Behavior and Seismic Design of Spatial Structures, published by Architectural Institute of Japan, 2006 (in Japanese)
    [71]Morris N, Effect of member snap on space truss collapse, Journal of Engineering Mechanics, 1993, 119(4):870-886
    [72]Malla R, Wang B, Nalluri B, Dynamic effects of progressive member failure on the response of truss structures[C]// Dynamic Response and Progressive Failure of Special Structures. Reston:ASCE,993
    [73]Blandford G, Review of progressive failure analysis for truss structures, Journal of Structural Engineering, 1997, 123(2): 122-129
    [74]Hanaor A, Dallard P R B, Levy R, et al, Member buckling with joint instability-design Application, International Journal of Space Structures, 2000, 15(3):205-213
    [75]Ma, Alternate path analysis of space trusses for progressive collapse, Jorsh C, Improving space truss performance by member removal [C]/ Shells, Membranes and Space Frames, Amsterdam:Elsevier, 1986
    [76]Murtha-Smith E, Aurnal of Structural Engineering, 1988, 114(9):1978-1999
    [77]Ishikawa K., Kato S., Earthquake Resistant Capacity and Collapse Mechanism of Dynamic Buckling Analysis on Double Layer Lattices Domes under Vertical Motions,Proceedings of the Seiken-IASS Symposium, 1993,10,569-576
    [78]Ishikawa K., Kato S., Dynamic Buckling Behaviour of Single and Double Domes Lattices due to Vertical Earthquake Motions, Proceedings of the Fourth International Conference of Space Structures, 1993,1,466~475
    [79]Ishikawa K., Kato S., Elastic-plastic Dynamic Buckling Analysis of Reticular Domes Subjected to Earthquake Motion, International Journal of Space Structures,1997, 12, 205~215
    [80]Zuyan She, Qilin Zhang. Interaction between overall and local instability of compressed box columns. Journal of Structural Engineering, ASCE,1991; Vol. 17, No.11
    [81]Tatjana Isakovic. Applicability of pushover methods for the seismic analysis of single-column bent viaducts. Earthquake Engineering & Structural Dynamics,2008, 37(8)
    [82]J. C. Vielma, A. H. Barbat and S. Oller. Seismic safety of low ductility structures used in Spain. Bulletin of earthquake engineering, 2010, 8(1)
    [1]北京金土木软件技术有限公司.SAP2000中文版使用指南,第一版.北京:人民交通出版社,2006.9.
    [2]杜文风,张慧.空间结构.北京,中国电力出版社.2008.4.
    [3]张剑.弹塑性动力时程分析若干问题的分析与探讨[J].工程抗震与加固改造.33(5):2011.10.
    [4]钱稼茹,纪晓东,范重,刘先明.国家体育场大跨度钢结构罕遇地震性能分析[J].建筑结构学报.2007.04,28(2):17-25.
    [5]芦燕.强震作用下大跨度拱形立体桁架结构动力强度破坏研究[D].天津:天津大学硕士学位论文.2009.
    [6]程绍革,王理,张允顺.弹塑性时程分析方法及其应用[J].建筑结构学报.2000.2,21(1):52-56.
    [7]蓝天,张毅刚.大跨度屋盖结构抗震设计.北京:中国建筑工业出版社.2000.12
    [8]彭俊生,罗永坤.结构概念分析与SAP2000应用.成都:西南交通大学出版社.2005.10.
    [9]谢礼立,马玉宏,崔长海.基于性态的抗震设防与设计地震动.北京:科学出版社.2009.4.
    [10]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造.2010.2,32(1).13-18.
    [11]陆新征,李易,叶列平,马一飞,梁益.钢筋混凝土框架结构抗连续倒塌设计方法的研究[J].工程力学.2008.12,25(SupplⅡ):150-157.
    [12]李会军.大跨度空间网格结构的可靠度、敏感性及失效过程研究.大连:大连理工大学博士论文.2011.9.
    [13]Budiansky, B.and Roth.R.S.Axisymmetric dynamic buckling of clamped shallow spherical shells. Collected Papers on instability of shell structures-1962, NASA Langley Researeh Centre TN D-1510, 1962:597-600.
    [14]Hsu, C.S. On dynamic stability of elastic bodies with prescribed initial conditions[J]. International Journal of Engineering Seienee, 1966, 4(1):1-21.
    [15]Hsu, C.S. The effects of various parameters on the dynamic stability of shallow areh[J]. Journal of Applied Mechanics, 1967, 34(2):349-356.
    [16]Hsu, C.S. Equilibrium configurations of a shallow arch of arbitrary shape and theory dynamic stability character[J]. International Journal of Nonlinear Mechanies,1968,3(2):113-136.
    [17]Hsu, C.S. W.H.Cheng, H.C.Yee. Steady—state response of a non-linear system under impulsive periodic parametric excitation [J].Jounralof Sound and Vibration, 1977, 50(1):95-116.
    [18]Simitses, G.J. Dynamic snap- through buckling of low arches and shallow spherical caps[D]. Ph.D.dissertation, Department of Aeronaut and Astronaut, Stanford University, June 1965.
    [19]Simitses, G.J. Suddenly-loaded structural configurations [J]. Journal of Engineering Meehanies, ASCE.1984, 110(9):1320-1334.
    [20]Simitses.GJ. Instability of dynamieally-loaded struetures [J]. Applied Mechanics Review,1987, 40(10):1403-1408.
    [21]沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报.2005.1,38(1):11-20
    [22]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报(自然科学版).2012.1,42(1):109-13.
    [23]齐麟.强震作用下单层网壳结构动力破坏机理[D].天津:天津大学博士论文.2011.3.
    [24]吴玉华,元兴军,郭剑飞.拱结构动力失稳实用判别方法[J].地震工程与工程振动.2010.8,30(4):31-36.
    [1]建筑抗震设计规范(GB50011-2010).北京,中国建筑工业出版社.2010.8.
    [1]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010).北京,中国建筑工业出版社.2010.8.
    [2]北京金土木软件技术有限公司.SAP2000中文版使用指南,第一版.北京:人民交通出版社,2006.9.
    [3]FEMA 356 The Seismic Rehabilitation of Buildings. Federal Emergency Management Agency, 2000.
    [4]王亚勇.关于设计反应谱时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21—28.
    [5]Bommer J J, Acevedo A B. The use of real earthquake accelerator grams as input to dynamic analysis [J] Journal of Earthquake Engineering,2004,8(1):43-91.
    [6]李英民,赖明,白绍良.从结构抗震设计理论看地震动输入[J].工程力学,2002(S):549—554.
    [7]王国新,陶夏新,姜海燕.反应谱特征参数的提取及其变化规律研究[J].世界地震工程,2001,17(2):73-78.
    [8]A.Neuenhofer and F.C.Filippou.Evaluation of Nonlinear Frame Finite Element Models[R]. J.Struct. Engrg,ASCE,1997,123 (7):958-966.
    [9]王亚勇,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(2):51-60.
    [10]Paul Somerville,Nancy Smith,Sujan Punyamurthula,Joseph SunWooddward-Clyde FederalServiees. Development of Ground Motion Time Histories for Phase 2 of theFEMA/SAC Steel Project Report NO SAC/BD-97/04 1997.
    [11]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [12]白峻昶,靳金平.时程分析用地震波选取的探讨[J].山西建筑,2001.1,33(3):62-63.
    [13]胡文源,邹晋华.时程分析法中有关地震波选取的几个注意问题[J].南方冶金学院学报.2003,24(4):26-28.
    [14]宋宝峰,秦毅.关于建筑结构时程分析法输入地震波的研究[J].丹东纺专学报,2004.9,11(3):41-42.
    [15]ASCE Standard ASCE/SEI 7-05 (2005)
    [16]赵东升.时程分析方法的几点思考[J].长春工程学院学报(自然科学版),2006,7(1):22-24.
    [17]肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程.2006.9,22(3):89-93.
    [18]王傅,潘文,崔辉辉,白良.弹性时程分析时地震波选用的一种方法[J].河南科学.2010.08,28(8):971-974.
    [19]赵伯明,王挺.高层建筑结构时程分析的地震波输入[J].沈阳建筑大学学报(自然科学版),2010.11,26(6):1111-1118.
    [20]徐海英.双向地震对地震波选取及柱抗震设计的影响[D].重庆:重庆大学硕士论文,2009.
    [21]庞文忠.强震下60m跨倒三角形截面钢管拱桁架工作性能研究[D].太原:太原理工大学硕士论文,2009.
    [1]郭锋,吴东明,许国富,伋雨林.场地条件对抗震设计反应谱最大值的影响[J].土木工程与管理学.2011.328(1):69-71.
    [2]薄景山.场地分类和设计反应谱调整方法研究(博士后研究报告)[R].哈尔滨:中国地震局工程力学研究所,1998.
    [3]李小军,彭青,刘文忠.设计地震动参数确定中的场地影响考虑[J].世界地震工程,2001,17(4):34-41.
    [4]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,2007,29(1):67-76.
    [5]李媛媛,徐扬,李冬梅.不同类别场地地震震动反应分析[J].山西地震.2005.10.
    [6]林莉.场地类别对建筑结构的影响分析[J].山西建筑.2005.12.
    [7]单立华,赵艳,李化明,杨廷玉.不同类别场地水平向峰值加速度的变化规律[J].佳木斯大学学报.2009.5.27(3):416-418.
    [8]王玉珍,南国栋.建筑场地类别对同一结构地震作用效应的影响[J].山西建筑.2009.8.35(22)71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700