高速侵彻混凝土弹体的动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高速侵彻混凝土过程中,弹体产生明显质量损失,并形成弹头钝化,这将影响弹体的动力学行为,进而降低弹体的毁伤性能。从上世纪九十年代起,国际学术界和工程界就开始关注计及质量损失和头形钝化的弹体问题,并取得了一定的研究进展,但至今仍未很好地解决。为此,本文主要研究计及质量损失和头形钝化的弹体动力学行为。研究弹体为高强合金钢的尖卵形长杆弹(以下简称尖长弹)或高速深侵彻概念弹(以下简称高深弹),相应的靶体为半无限无筋混凝土靶。弹体撞击速度一般在1500m/s以下。
     进一步归纳和分析尖长弹的侵彻试验结果发现,在试验速度范围内,弹体质量损失与初始动能成正比,比例系数随靶中骨料莫氏硬度增加而增加。对比侵彻试验前后的尖长弹形状发现,侵彻后弹头形状仍可近似为尖卵形,仅对应CRH值减小,而弹头形状仍在原形与半球形之间。根据对侵彻后弹头形状的描述,建立了弹体质量损失与侵彻前后弹头形状的定量关系,由此可通过侵彻前后弹头形状预测弹体总质量损失,或通过弹体总质量损失预测侵彻后弹头形状。
     在Jones模型中计及靶中骨料莫氏硬度的影响,建立弹体总质量损失的表征模型。该模型并未计入侵彻过程中弹体的质量和形状改变,它仅与6个参数相关:弹体初始的撞击速度、弹头CRH值、单位质量弹材熔化热、靶密度、无约束抗压强度和靶中骨料莫氏硬度。这些参数均可在侵彻试验之前预测或测量,因此模型可预测弹体总质量损失。对模型中参数开展敏感性分析发现,混凝土靶密度变化对弹体相对质量损失影响可忽略;靶中骨料莫氏硬度、弹头CRH值和靶无约束抗压强度对弹体相对质量损失的影响递减;在深侵彻弹体的实际取值范围内,靶无约束抗压强度对弹体相对质量损失的影响最大。
     假设在侵彻过程中,弹头形状始终保持为尖卵形,仅对应CRH值不断减小,并推广使用预测弹体总质量损失的表征模型于侵彻过程中任意时刻,建立同时模拟弹体质量损失、头形钝化和动力学行为的增量模型。弹体加速度时间历程、侵彻后弹头CRH值和弹体总质量损失的模型预测结果与试验结果吻合良好。弹体加速度的增量模型预测结果与理想刚性弹的分析结果可能存在显著差异,即增量计算所得弹体加速度绝对值在隧道段可能出现明显上升。进一步分析发现弹体加速度曲线形状随各参数的变化趋势与质量损失和头形钝化一致,弹体质量损失和头形钝化将改变加速度的曲线形状。
     基于能量守恒建立单位面积弹体上摩擦功率的表征模型,将其代入Jones模型,并在时间和空间尺度上离散弹体侵彻过程,利用弹体表面回退,建立同时模拟弹体质量损失、头形钝化和动力学行为的数值模型。该模型不依赖于假设的弹体头形钝化规律。侵彻后弹形、弹体侵彻深度和质量损失的模型预测结果与试验结果吻合。进一步分析发现,在弹头表层包附高强难熔金属材料,或采用适当设计的梯度材料制作弹头,均可减小弹头钝化,提高弹体侵彻深度。
     最后开展了高深弹正侵彻混凝土的实验研究。弹体质量约1.83kg,撞击速度在1130m/s-1650m/s之间。与尖长弹仅弹头形成质量损失不同,高深弹壳体段和头部均有明显质量损失。对侵彻后弹体开展金相分析发现,弹靶相互作用是弹体表面产生高温热影响区的主要原因,热影响区与弹体质量损失模式存在必然的关联。同时发现绝热剪切带是质量损失的又一模式,对弹体质量损失有一定影响;非对称分布的绝热剪切带还可能引起弹尖非对称磨蚀,导致弹体侵彻性能下降。综合分析弹体质量损失的试验结果发现,弹体总质量损失、头部和壳体质量损失均与初始动能成正比,并建立了预测侵彻后弹体形状的表征模型,模型预测结果与试验结果吻合良好。
The high-speed projectile penetrating into concrete usually has significant mass loss and nose blunting, which dramatically decreases its ballistic performance. Since the1990s, with considering mass loss and nose blunting, the dynamic behavior of high-speed projectile has already drawn great interests in the academic and engineering communities. The objective of this dissertation is to study the dynamic behavior of high-speed projectile with considering mass loss and nose blunting. The projectile is ogival long-rod projectile or the Concept Projectile for High-speed Penetration (CPHP) made of high-strength alloy steel. The corresponding target is plain concrete target assumed as semi-infinite. The striking velocity of projectile is usually below1500m/s.
     The experimental data of ogival long-rod projectile are further analyzed. It is found that the mass loss of projectile is proportional to its initial kinetic energy, and the proportional coefficient increases with the Moh's hardness of aggregate increasing. Furthermore, the nose shape of residual projectile could be approximated as ogive. The corresponding CRH value of residual projectile nose decreases, falling between0.5(hemisphere) and the CRH value of origin projectile nose. Therefore, the total mass loss of projectile could be predicted according to the projectile nose shape before and after penetration, and vice versa.
     A model for total mass loss of projectile is constructed by introducing Moh's hardness of aggregate into Jones Model. Specially, the mass loss and nose blunting of projectile are ignored during analyses. There are six parameters in the model, i.e., the initial striking velocity of projectile, CRH value of origin projectile nose, melting heat of unit mass of projectile material, the density, unconfined compressive strength and Moh's hardness of aggregate of concrete target. Two conclusions are obtained through parametric analysis. Firstly, the influence of target density upon relative mass loss of projectile can be ignored. Secondly, the parameters'influences on relative mass loss descend, i.e., the Moh's hardness of aggregate in concrete target, CRH value of projectile nose and unconfined compressive strength of target. When limited in the applicable range of deep-penetration projectile, the relative mass loss of projectile is affected most by the unconfined compressive strength.
     Assuming the nose shape of ogival long-rod projectile keeping ogival with decreasing CRH value during penetration, an incremental model is constructed to simulate nose blunting and mass loss of projectile by extrapolating the model for total mass loss to predict mass loss of projectile at any time during penetration. The dynamic behavior of projectile is also simulated. The model predictions respectively coincide with the experimental results, including the time history of projectile acceleration, CRH value of residual projectile nose and total mass loss of projectile. The acceleration is further discussed. It is found that the absolute value of acceleration may increase in tunnel stage, which indicates that the model prediction may be quite different from analysis of ideal rigid projectile. Further investigation indicates the variation of pulse shape of acceleration with parameters increasing resembles that of mass loss and nose blunting of projectile, which denotes that mass loss and nose blunting of projectile affect the pulse shape of acceleration.
     A model for the rate of frictional work on unit projectile surface is constructed based on the energy conservation law. Inserting it into Jones model and discretizing penetration process in time and space scales, a numerical model is constructed to simultaneously simulate nose blunting, mass loss and dynamic behavior of projectile in terms of receding in projectile surface. This model is independent of any assumption of nose blunting. The shape of residual projectile, DOP and mass loss of projectile obtained by the numerical model agree with that obtained by experiments, respectively. Two schemes of distribution of refractory material in projectile nose are analyzed. The refractory material is overlaid outside the projectile nose to protect the inner material in the first scheme. The projectile nose is made of a fictitious gradient material with decreasing melting heat from nose tip to shank in the second scheme. Both schemes could decrease nose blunting and increase DOP of projectile.
     Finally, the CPHP normally penetrating into concrete is experimentally studied with striking velocities between1130m/s and1650m/s. The mass of projectile is approximately1.83kg. After penetration, there are significant marks of mass loss overall the outside surface of CPHP, which is much different from ogival long-rod projectile. The metallurgical observation of residual projectile indicates that the heat generated by interaction of target and projectile is the main cause of HAZ and the mass loss of CPHP still mainly comes from the peeling of molten surface layer of projectile. Moreover, there are a few Adiabatic Shearing Bands (ASBs) around the nose tip. Although a small quantity of ASBs have minor influence on mass loss of projectile, they may cause small part of projectile to suddenly fall off and then lead to asymmetrical abrasion of projectile nose and descending of DOP if their distribution is asymmetrical. Further analysis of the experimental data indicates that the total mass loss of projectile, mass loss of nose and shank of projectile are all proportional to the initial kinetic energy of projectile, and a model is also constructed to predict the residual shape of CPHP. The model predictions agree with the experimental results, respectively.
引文
1.王涛,余文力,王少龙,等.国外钻地武器的现状与发展趋势[J].导弹与航天运载技术,2005;278(5):51-56.
    2. 金丰年,刘黎,张丽萍,等.深钻地武器的发展及其侵彻[J].解放军理工大学学报(自然科学版),2002;3(2):34-40.
    3. Hewish M. Adding new punch to cruise missile[J]. Jane's International Defense Review, 1998; 40-45.
    4. 何唐甫,候蓉.美国常规深钻地武器的新近研究动态[J].防护工程,1999;4:89-95.
    5. 钱伟长.穿甲力学[M].国防工业出版社,1984.
    6. Jerome DM, Tynon RT, Wilson LL, et al. Experimental observations of the stability and survivability of ogive-nosed, high-strength steel alloy projectiles in cementious materials at striking velocities from 800-1800m/s[C]//Proceedings of the 3rd Joint Classified Ballistics Symposium, San Diego:Professional Engineering Publishing,2000, pp.1-4.
    7. 何翔,徐翔云,孙桂娟,等.弹体高速侵彻混凝土效应的实验研究[J].爆炸与冲击,2010;30(1):1-6.
    8. Forrestal MJ, Frew DJ, Hanchak SJ, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering,1996; 18(5): 465-476.
    9. Forrestal MJ, Piekutowski AJ. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering,2000; 24(1):57-67.
    10. Forrestal MJ, Okajima K, Luk VK. Penetration of 6061-T651 aluminum targets with rigid long rods[J]. ASME Journal of Applied Mechanics,1988; 55(4):755-760.
    11. Piekutowski AJ, Forrestal MJ, Poormon KL, et al. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering,1999; 23(1):723-734.
    12. Frew DJ, Hanchak SJ, Green ML, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering,1998; 21(6):489-497.
    13.杨建超,何翔,金栋梁.弹体高速侵彻混凝土质量侵蚀特性试验研究[J].防护工程,2010;32(1):6-10.
    14. Hazell PJ, Fellow NA, Hetherington JG. A note on the behind armour effects from perforated alumina/aluminum targets[J]. International Journal of Impact Engineering,1998; 21(7): 589-595.
    15.赵军,陈小伟,金丰年,等.非对称质量磨蚀导致正侵彻弹体的弯曲屈服[J].爆炸与冲击,2011;31(2);120-126.
    16. Iyengar NGR. Structural Stability of columns and plates[M]. Ellis Horwood Limited, John Wiley & Sons.1988.
    17. Jones SE, Hughes ML, McGann TG, et al. Dynamic buckling and instability in soil and sand penetration[C]//Proceedings of PVP, Problems Involving Thermal Hydraulics, Liquid Sloshing, and Extreme Loads on Structures, ASME. PVP 2004-3047,2004, pp.183-189.
    18. Erengil ME, Cargile DJ. Advanced projectile concept for high speed penetration of concrete targets[C]//Proceedings of 20th International Symposium on Ballistics. Orlando.2002.
    19. Forrestal MJ, Frew DJ. Hickerson JP, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal, of Impact Engineering,2003; 28(5): 479.497.
    20. Frew DJ, Forrestal MJ, Hanchak SJ. Penetration experiments with limestone targets and ogive-nose steel projectiles[J]. Journal of Applied Mechanics,2000; 67(4):841-845.
    21. Frew DJ, Forrestal MJ, Cargile JD. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering,2006; 32(10):1584-1594.
    22.梁斌,陈小伟,姬永强,等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击,2008;28(1):1-9.
    23. Chen XW, Chen G, Zhang FJ. Deformation and failure modes of soft steel projectiles impacting harder steel targets at increasing velocity[J]. Experimental Mechanics,2008; 48(3): 335-354.
    24. Borvik T, Clausen AH, Hopperstad OS, et al. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles-experimental study [J]. International Journal of Impact Engineering,2004; 30(4):367-384.
    25. Mu ZC, Zhang W. An investigation on mass loss of ogival projectiles penetrating concrete targets[J]. International Journal of Impact Engineering,2011; 38(8-9):770-778.
    26. Dancygier AN. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. ACI Structural Journal,1998; 95(3):291-303.
    27. Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. International Journal of Impact Engineering,2001; 25(7):703-714.
    28. Bull GV, Palacio LM. Sub-caliber projectile. United States Patent, Patent Number:3695181, 1972. [OL]//http://www.google.com
    29. Romer R, Jaeneke C, Sikorski G. Practice projectile. United States Patent, Patent Number: 4362107,1982. [OL]//http://www.google.com
    30. Rosenberg G, Gottesman M. Sub-caliber projectile. United States Patent, Patent Number: 4756255 [OL]//http://www.google.com/patents?hl=zh-CN&lr=&vid=USPAT4756255&id=-DU6AAAAEBAJ&oi=fnd&dq=Sub-caliber&printsec=abstract#v=onepage&q&f=false. 1988.
    31.王幸,黄家蓉.X-V型闪光X射线仪在常规武器试验中的应用[C]//中国土木工程学会防护工程分会第九次学术年会论文集.2004,pp.521-525.
    32. Forrestal MJ, Luk VK. Penetration into soil targets[J]. International Journal of Impact Engineering,1992; 12(3):427-444.
    33. Gao JZ, Sun YC, Du LM, et al. Present research and development on measurement technology of penetrating into hard target with hard recovery recorder[C]//Proceedings of the 25th International Symposium on Ballistics, China:Beijing,2010, pp.1187-1192.
    34. Franco RJ, Platzbecker MR. Miniature penetrator acceleration recorder development and test, conf-981013[R]. San Diego.1998.
    35. Jones SE, Foster JC, Toness OA, et al. An estimate for mass loss from high velocity steel penetrators[C]//Proceedings of the ASME PVP-435 Conference on Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, New York:ASME,2002; 422:227-237.
    36. Makinson JD, Weins WN, Snyder TW, et al. Diffracting particle size analysis of martensite-retained Austenitemicrostructures[J]. Advances in X-Ray Analysis,2000; 43:326-331.
    37. Klepaczko JR, Hughes ML. Scaling of wear in kinetic energy penetrators[J]. International Journal of Impact Engineering,2005; 31(4):435-459.
    38. Davis RN, Jones SE, Hughes ML. High-speed penetration of concrete using a new analytical model of velocity-dependent friction[C]//ASME 2003 Pressure Vessels and Piping Conference, Cleveland:ASME,2003; 454:111-116.
    39. Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering Design,1976; 37(2):183-203.
    40. Samuely FJ, Hamann CW. Civil Protection[M]. The Architectural Press,1939.
    41. Amirikian A. Design of protective structures[R]. Report NP-3726; NavDocks P-51. Technical Reprot.
    42. Chelapati CV, Kennedy RP, Wall IB. Probabilistic assessment of hazard for nuclear structures[J]. Nucl Eng Des,1972; 19(2):333-364.
    43. Linderman RB, Fakhari M, Rotz JV. Design of structures for missile impact[R]. BC-TOP-9, Rev.1, Bechtel Power Corporation, San Francisco, July 1973.
    44. ACE. Fundamentals of protective structures[R]. Report AT1207821, Army Corps of Engineers, Office of the Chief of Engineers,1946.
    45. NDRC. Effects of impact and explosion[R]. Summary Technical Report of Division 2, Vol.1, National Defence Research Committee, Washington, DC,1946.
    46. Kennedy RP. Effects of an aircraft crash into a concrete reactor containment building[R]. Anaheim, CA:Holmes & Narver Inc.,1966.
    47. Li QM, Reid SR, Wen HM, et al. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering,2005; 32(1-4):224-284.
    48. Chen XW. Dynamics of Metallic and Reinforced Concrete Targets Subjected to Projectile Impact:Doctoral Dissertation[D]. Nanyang Technological University, PHD Thesis.2003.
    49. Chen XW, Li QM. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering,2002; 27(6):619-637.
    50. Li QM, Chen XW. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering,2003; 28(1):93-116.
    51. Forrestal MJ, Altman BS, Cargile JD, et al. An empirical eqation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994; 15(4):395-405.
    52. Luk VK, Forrestal MJ. Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering,1987; 6(4):291-301
    53. Allen WA, Mayfield EB, Morrison HL. Dynamics of a projectile penetrating sand[J]. Journal of Applied Physics,1957; 28(3):370-376.
    54. Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures,1997; 34(31-32):4127-4146.
    55. Forrestal MJ, Luk VK, Rosenberg Z, et al. Penetration of 7075-T651 aluminum targets with ogive-nose rods[J]. Int. J. Solids Struct.,1992; 29:1729-1736.
    56. Wen HM. Penetration and perforation of thick FRP laminates[J]. Composite Science and Technology,2001; 61(8):1163-1172.
    57. Wen HM. Predicting the penetration and perforation of targets struck by projectiles at normal incidence[J]. Mech. Struct. Mach.,2003; 30(4):543-577.
    58. Luk VK, Forrestal MJ, Amos DE. Dynamics spherical cavity expansion of strain-hardening materials[J]. ASME Journal of Applied Mechanics,1991; 58(1):1-6.
    59. Xu Y, Keer LM, Luk VK. Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles[J]. International Journal of Solids and Structures,1997; 34(12):1479-1491.
    60. Durban D, Masri R. Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium[J]. International Journal of Solids and Structures,2004; 41(20):5697-5716.
    61.王儒策等.弹丸终点效应[M].北京理工大学出版社,1993.
    62. Jones SE, Davis RN, Hughes ML. Penetration with high-speed friction[C]//ASME 2002 Pressure Vessels and Piping Conference, Vancouver:ASME,2002; 435:255-262.
    63. Jones SE, Hughes ML, Toness OA, et al. A one-dimensional analysis of rigid-body penetration with high-speed friction[J]. Journal of Mechanical Engineering Science,2003; 217(4):411-422.
    64. Murff JD, Coyle HM. Low velocity penetration of Kaolin[J]. ASCE J. Soil Mech. Found Div., 1973; 99(SM5):375-389.
    65. Riera JD. Penetration, scabbing and perforation of concrete structure hit by solid missile[J]. Nucl. Eng. Des.,1989; 115(1):121-131.
    66. Bishop RF, Hill R, Mott NF. The theory of indentation and hardness[C]//Proceedings of the Physical Society,1945; 57(3):147-159.
    67. Forrestal MJ, Longcope DB, Norwood FR. A model to estimate forces on conical penetrators into dry porous rock[J]. Journal of Applied Mechanics,1981; 48(1):25-29.
    68. Forrestal MJ, Norwood FR, Longcope DB. Penetration into targets described by locked hydrostats and shear strength[J]. International Journal of Solids and Structures,1981; 17(9): 915-924.
    69. Goodier JN. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft sphere[C]//Proceedings of the 7th Symposium on Hypervelocity Impact, AIAA J,1965, Vol Ⅲ.
    70. Ross B, Hanagud S. Report 7000-452-4, Stanford Research Institute, Mento Park, California, 1969.
    71. Ross B, Hanagud S. Report N0014-71A0243, Stanford Research Institute, Mento Park, California,1971.
    72. Hanagud S, Ross B. Large deformation, deep penetration theory for a compressible strain-hardening target material[J]. AIAA Journal,1971; 9(5):905-911.
    73. Butler DK. An analytical study of projectile penetration in rock[R]. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-7 AD-A012140,1975.
    74. Rohani B. Analysis of projectile penetration into concrete and rock targets[R]. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 016909,1975.
    75. Zhou H, Wen HM. Penetration of bilinear strain-hardening targets subjected to impact by ogival-nosed projectiles[C]//Proceedings of 2003 International Autum Seminar on Propellants, Explosives and Pyrotecnics, In:Theory and Practice of Energetic Materials (Vol. 5), Science Press, Beijing/New York,2003,933-942.
    76.周辉,文鹤鸣。动态柱形空穴膨胀模型及其在侵彻问题中的应用[J]。高压物理学报,2006;1:67-78.
    77.周辉。弹塑性材料中的空穴膨胀理论及其在侵彻力学中的应用:硕士论文[D]。合肥:中国科学技术大学,2004.
    78. Warren TL. The effect of strain rate on the dynamic expansion of cylindrical cavity[J]. Journal of Applied Mechanics, ASME,1999; 66(3):818-821.
    79.李建春。高速弹体对半无限厚混凝土板的侵彻研究:博士论文[D]。西安:西安交通大学,2001.
    80.魏雪英。长杆弹侵彻问题的理论研究:博士论文[D]。西安:西安交通大学,2002.
    81.王延斌,张西前,俞茂宏,等。长杆弹对岩石靶的侵彻分析[J]。岩石力学与工程学报,2005;24(8):1301-1307.
    82. Longcope DB, Forrestal MJ. Closed-form approximation for forces on conical penetrators into dry porous rock[J]. Sandia National Laboratories, ASME Journal of Applied Mechanics, 1981; 48(4):971-972.
    83. Forrestal MJ, Grady DE. Penetration experiments for normal impact into geologic targets[J]. International Journal of Solids and Structures,1982; 18(3):229-234.
    84. Longcope DB, Forrestal MJ. Penetration of target described by a Mohr-Coulomb failure criterion with a tension cut-off[J]. Journal of Applied Mechanics, ASME,1983; 50:327-333.
    85. Forrestal MJ, Longcope DB, Lee LM. Analytical and experimental studies on penetration into geological targets[R]. Sandia National Laboratories, Albuqerque, Report AD-P001710, 1983.
    86. Forrestal MJ. Penetration into dry porous rock[J]. International Journal of Solids and Structures,1986; 22(12):1485-1500.
    87.何涛.动能弹在不同材料靶体中的侵彻行为研究:博士论文[D].中国科学技术大学,2007.
    88. Chen XW, Li QM. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics,2004; 130(1): 123-127.
    89. Silling SA, Forrestal MJ. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets[J]. International Journal of Impact Engineering,2007; 34(11): 1814-1820.
    90. Wen HM, Yang Y, He T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets[J]. Latin American Journal of Solids and Structures.2010; 7:413-422.
    91.何涛,文鹤鸣.弹体侵彻混凝土靶板过程中的磨蚀效应[C]//第七届全国工程结构安全防护学术会议论文集,宁波,2009,pp.153-159.
    92. Johnson W. Impact Strength of Materials[M]. Edward Arnold,1972.
    93. Chen XW, He LL, Yang SQ. Modeling on mass abrasion of kinetic energy penetrator[J]. European Journal of Mechanics A/Solids,2010; 29(1):7-17.
    94. Jones, SE, Toness, O, Jerome, DM, et al. Normal penetration of semi-infinite targets by ogive-nose projectiles, including the effects of blunting and erosion[C]//Proceedings of the ASME-PVP-421 Conference on Thermal Hydraulics, Liquid Sloshing, Extreme Loads, and Structural Response, New York:ASME,2001; 421:53-59.
    95. Zhao J, Chen XW, Jin FN, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering,2010; 37(9): 971-979.
    96.赵军,陈小伟,金丰年,等.考虑头形磨损变化的动能弹极限侵彻深度研究[J].力学学报,2010;42(2):212-218.
    97. Davis RN, Neely AM, Jones SE. Mass loss and blunting during high-speed penetration [J] Journal of Mechanical Engineering Science,2004; 218(9):1053-1062.
    98. Beissel SR, Johnson GR. An abrasion algorithm for projectile mass loss during penetration [J]. International Journal of Impact Engineering,2000; 24(2):103-116.
    99. Beissel SR, Johnson GR. A three-dimensional abrasion algorithm for projectile mass loss during penetration [J]. International Journal of Impact Engineering,2002; 27(7):771-789.
    100. Johnson GR, Stryk RA, Holmquist TJ, et al. Numerical algorithms in a Lagrangian hydrocode, WL-TR-1997-7039[R]. Walton Beach:US Air Force.1997.
    101. Flis WJ. Fully automatic rezoning for a finite-element hydrocode in 2D and 3D[C]// Proceedings of the 17th International Symposium on Ballistics, South Africa:Midrand.1998.
    102. Anderson CE. From fire to ballistics:a historical retrospective [J]. International Journal of Impact Engineering,2003; 29(1):13-67.
    103. McGlaun JM, Thompson SL, Elrick MG. CTH:a three-dimensional shock wave physics code[J]. International Journal of Impact Engineering,1990; 10(1-4):351-360.
    104. Scheffler DR. Modeling non-eroding perforation of an oblique aluminum target using the Eulerian CTH hydrocode[J]. International Journal of Impact Engineering,2005; 32(1-4): 461-472.
    105. Davis RN. Modeling of high-speed friction using multi-step incrementation of the coefficient of sliding friction[C]//AIAA 54th Annual Southeastern Regional Student Conference, Kill Devil Hills, NC, March 27-28,2003.
    106.陈小伟,杨世全,何丽灵.动能侵彻弹体的质量侵蚀模型分析[J].力学学报,2009;41(5):739-747.
    107. He LL, Chen XW, He X. Parametric study on mass loss of penetrators[J]. Acta Mechanica Sinica,2010; 26(4):585-597.
    108. He LL, Chen XW. Analyses of the penetration process considering mass lossfJ]. European Journal of Mechanics A/Solids,2011; 30(2):145-157.
    109. Rosenberg Z, Dekel E. The penetration of rigid long rods-revisited[J]. International Journal of Impact Engineering,2009; 36(4):551-564.
    110. Chen XW, Li JC. Analysis on the resistive force in the deep penetration of a.rigid projectile[C]//International Workshop on Structural Response to Impact and Blast (IWSRIB), Israel:Haifa.2009.
    111.陈小伟,李继承.刚性弹侵彻深度和阻力的比较分析[J].爆炸与冲击,2009;29(6):584-589.
    112. Hisuppliers[OL]//http://www.hisuppliers.com
    113. Bourne B, Cowan KG, Curtis JP. Shaped charge warheads containing low melt energy metal liners[C]//Proceedings of the 19th International Symposium on Ballistics, Switzerland: Interlaken,2001. pp.583-590
    114. Bridgman PW. [J] Physics Review.1935; 48:825
    115. Jing Q, Bi Y, Wu Q, et al. Yield strength of molybdenum at high pressures [J]. Review of Scientific Instruments.2007; 78(7):073906. doi:10.1063/1.2758549
    116. Properties of Tungsten. [OL]//http://www.tungsten.com/mtstung.html
    117.武海军,黄风雷,王一楠.高速弹体非正侵彻混凝土试验研究[C]//第八届全国爆炸力学学术会议论文集,2008,pp.488-494.
    118.陈小伟.动能深侵彻弹的力学设计Ⅰ:侵彻/穿甲理论和弹体壁厚分析[J].爆炸与冲击,2005;25(6):499-505.
    119.陈小伟,高海鹰,梁斌.高侵彻能力的先进钻地弹的结构分析[J].防护工程,2007;29(3):6-9.
    120.陈小伟,金建明.动能侵彻弹结构的力学分析Ⅱ:弹靶相关力学分析和实例[J].爆炸与冲击,2006;26(1):71-78.
    121.陈小伟,张方举.钻地弹缩比实验分析,Y01010138-BGZ14-04[R].中物院总体工程研究所,GF报告.ZW-D-2004084.2004.
    122. Duan CZ, Wang MJ. Characteristics of adiabatic shear bands in the orthogonal cutting of 30CrNi3MoV steel[J]. Journal of Materials Processing Technology,2005; 168(1):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700