有源光旋转连接器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光旋转连接是一门跨学科的技术,它把光传输、电子电路、精密机械设计等
    技术领域的研究有机的结合起来,形成了一种能完成机械结构相对转动,光信号
    旋转耦合的复合技术。它具有光信号动态传输,防电磁干扰、小型易用等突出优
    点,在军事和民用领域有着不可替代的重要意义。本文为弥补传统的光旋转连接
    系统在机械精度要求高、结构复杂、成本高等方面的局限,提出了红外空间互连
    旋转连接器和采用自聚焦透镜的光电混合光纤旋转连接器两种设计方案,它们都
    具有机械结构简单,光信号耦合容易实现等特点。对这两种系统的设计方案和系
    统优化方法的探索,在现有技术的综合应用,以及开发新型光旋转连接器并推广
    使用方面具有开拓性意义。
    本文的主要工作:
    1. 提出将红外无线数据传输技术引入旋转连接器的设计思想,并根据旋转
    连接器的基本设计要求,及其与红外无线传输技术相结合的具体要求,完成了红
    外空间互连旋转连接器的整体设计方案。
    2. 设计了红外空间互连旋转连接器的电路。从微机接口、通信控制和红外
    收发三个层次讨论了电路的实现方法,并完成了信号调制与解调的时序仿真。采
    用多种新型器件和功能模块,设计了具有功能齐全,体积小等特点的电路硬件。
    3. 通过实验检验了红外空间互连旋转连接器的适应性。在不同主机操作系
    统下,对红外空间互连旋转连接器的传输性能进行分析与评估,测试了系统的通
    信速率、传输稳定性和可靠性等重要指标,并总结了红外空间互连旋转连接器的
    传输特点。
    4. 优化设计了旋转连接器中的红外光链路。分析了 IrDA 协议规定的红外
    无线信道的特性,从改善红外互连旋转连接器光链路,优化系统的角度设计了准
    直光学系统,用其减小红外光发散角,从而提高旋转连接器的传输性能。
    5. 设计了采用自聚焦透镜的光电混合光纤旋转连接器。该系统综合了有源
    及无源光纤旋转连接器的系统结构,转动部分用自聚焦透镜准直光信号,固定接
    收部分用光电和电光变换电路,从而完成光信号的旋转连接。文中根据系统性能
    要求,完成了系统整体结构和各组成部分的设计,并模拟和计算了系统的耦合效
    率,从理论上分析了该光电混合光纤旋转连接器传输光信号的有效性。
     I
    
    
    本文的创新之处:
    1. 将红外无线数据传输技术引入旋转连接器的设计,实现了红外空间互连
    旋转连接器对光信号的动态传输。
    2. 提出了采用集成准直光学系统,优化红外光链路的方法,并完成了相应
    的光学系统设计。该优化方法能提高红外空间互连旋转连接器的红外信道传输质
    量。
    3. 综合有源及无源光纤旋转连接器的系统结构,设计了光电混合光纤旋转
    连接器。该结构中,自聚焦透镜准直转动光纤的出射光,固定部分用光电和电光
    转换电路接收并再生光信号,从而实现光信号的旋转连接。
Optical rotary interconnection is a multi-discipline technique, which combines
    the study of optical transmission, circuitry and precise mechanical design. And it
    allows transmission of optical signals through rotating interfaces to stationary
    apparatus. It is indispensable in the fields of military and civil applications, where
    dynamic transmissions of optical signals, immune to electro-magnetic interference
    (EMI) and small size are required. But common optical rotary joints have
    disadvantages of extremely high-precision mechanical assembly requirements,
    complex configuration and high cost. In this paper, to avoid these shortcomings, two
    schemes of ORJ are presented: infrared spatial interconnection rotary joint and
    opto-electronic hybrid fiber-optic rotary joint using quarter-pitch graded-index (GRIN)
    rod lens. These two optical rotary joints have such advantages as simple mechanical
    configuration and easy realization of optical coupling. The research on the system
    design and optimization is helpful to the application of existent techniques and the
    development of novel optical rotary joints.
     Major work of this thesis:
     1. The scheme that applies the wireless infrared communication technique to
    the design of optical rotary joint was presented. Based on the analysis of the design
    requirements for both rotary joint and wireless infrared communications, the system
    architecture of infrared spatial interconnection rotary joint was designed.
     2. The circuit of the infrared spatial interconnection rotary joint was designed.
    The implementation of the electronic circuit was discussed in three aspects, i.e.,
    computer interface, communication control, infrared transmitting and receiving. The
    simulation of the transmitting and receiving procedures was also finished. The
    hardware circuit was designed with new modules to achieve improved function and
    small size.
     3. The adaptability of the infrared spatial interconnection rotary joint was
    verified through experiments. The transmission performance in different operating
    systems (OSs) was analyzed and evaluated. The data rate and transmission stability
     III
    
    
    were also tested. Moreover, conclusions about transmission characteristics were
    drawn.
     4. The infrared data link in the rotary joint was optimized. Based on the analysis
    of the characteristics of the wireless infrared channel regulated by IrDA protocol, a
    collimation optical system was designed to optimize the optical link of the infrared
    spatial interconnection rotary joint. With this optical system, the radiation angle can
    be reduced and the transmission performance of the rotary joint can be improved.
     5. The opto-electronic hybrid fiber-optic rotary joint using GRIN was designed,
    in which the configurations of active and passive optical rotary joints were combined.
    The GRIN lens was used to collimate the light in the rotary part. And the
    opto-electronic and electro-optic conversion circuits were allowed to receive the
    optical signal. The two parts accomplished the signal connection. In the paper, both
    the architecture and the each of implementation part were designed according to the
    system requirements. In addition, the optic coupling efficiency was calculated to
    evaluate the validity of the opto-electronic hybrid fiber-optic rotary joint.
     Major innovation of this thesis:
     1. The wireless infrared communication technique was applied to design the
    optical rotary joint and realize the optical dynamic transmission in the infrared spatial
    interconnection rotary joint.
     2. A method to optimize the infrared link was presented. As a core of the
    method, an integrate collimate optical system was designed to optimize the infrared
    link and improve the transmission quality of infrared channel in the infrared spatial
    interconnection rotary joint.
     3. The opto-electronic hybrid fiber-optic rotary joint was designed, which
    combined the configurations of active and passive optical rotary joints. In t
引文
[1] Wang Zhong-lei, Mizutani Y, Hamamatsu Y, et al. “Simultaneous control
     signal and power transmission through mechanical rotary joint without wiring
     connection”, Industry Applications Conference, 1996. Vol.3, Oct. 1996, pp.
     1589-1593.
    [2] 吴国锋,张丽华,“四通道多模光纤旋转连接器的相关问题及措施”,光通
     信技术,1998,22(3),pp. 216-217
    [3] Masayoshi, Yamaguchi, “Application of Fiber Optics for Deep-sea Exploration
     Systems, IEEE Journal of Oceanic Engineering, Vol. 15, No. 3 , July 1990, pp.
     238 – 243
    [4] Iida F., Dravid R., Paul C., “Design and Control of a Pendulum Driven
     Hopping Robot”, 2002. IEEE/RSJ International Conference on Intelligent
     Robots and System, Vol. 3, No. 30, Oct. 2002, pp.2141 - 2146
    [5] Mathias Johansson, Sverker Hard, “Design, fabrication, and evaluation of a
     multichannel diffractive optic rotary joint”, Applied Optics, Vol.38, No.8,
     March 1999, pp.1302-1310
    [6] Thomas A. Edison. “Electrical generator and motor”, U.S patent 276,233(Apr
     24, 1883)
    [7] Harry T. Jensen, Milford, Conn. “Full-circle electrical slip-ring brush”, U.S
     patent 3,998,511 (Dec. 21, 1976).
    [8] 寇秉成,“光旋转连接器”,机电元件,1992,第 12 卷
    [9] Y. C. Shi, L. Klafter, E. E. Harstead, “A dual fiber optical rotary joint”, Journal
     of Lightwave Technologu, Vol. LT-3, No. 5, Oct. 1985, pp. 999-1004.
    [10] H. Machida, H. Kobayashi, J. Akedo, “Optical Rotary Connector”, Applied
     Optics, Vol. 27, No. 15, August 1988, pp.3078-3080
    [11] Glenn F. Dorsey, “Fiber Optic Rotary Joints-A Review”, Components,
     Hybirds, and Manufacturing Technology, IEEE Transactions on, Vol.5, Issue 1,
     Mar. 1982, pp.37-41
    [12] E. L. Althouse, J. C. Willams, et al., “A low-loss, bidirectional optical rotary
     joint for fiber-optic applications”, Proceedings of SPIE. 479, pp. 117-120
    [13] 贾大功,张以谟,井文才,“无源光纤旋转连接器的发展”,仪器仪表学报,
     第 24 卷,第 4 期增刊,2003.8.,pp.199-202
    [14] James S. DeMarco, Jr., Waterford, Conn, “Single in-line Fiber- optic rotary
     joint”, U.S patent 5,553,176 (Sep. 3, 1996)
     71
    
    
    天津大学硕士学位论文 参考文献
    [15] Norris Earl Lewis, Anthory Lee Bowman, et al, “Fiber optic rotary joint”, U.S
     patent 6,104,849 (Aug. 15, 2000).
    [16] Wencai Jing, Yi-mo Zhang, Ge Zhou, et al, “Design of single channel optical
     rotary joint using bulk optical detector”, Optical Engineering, Vol. 42, No. 11,
     2003, pp.3285-3289.
    [17] Gerogy S. Svechnikov, Vladimir N. Shapar, “Optical rotary connector for
     transfer of data signals from fiber optic sensors plasing on rotary objects”,
     Proceedings of SPIE, Vol. 1589, 1991, pp. 24-31.
    [18] Georgy S. Svechnikov, Vladimir N. Shapar, “Multichannel Optical Rotary
     Connector for Non-contact Transfer of Data Signals Between Relatively
     Moving Bodies”, SPIE Vol. 1580, Fiber Optic Components and Reliability,
     1991, pp. 391-394
    [19] Warren H. Lewis, Michael B. Miller, “Single mode fiber optic rotary joint for
     aircraft applications”, Proceedings of SPIE, Vol.1369, 1990, pp.79-86.
    [20] James W Snow, “An overview of fiber optic rotary joint technology and recent
     advances”, Proceedings of the IFAC workshop on space robotics, Oct. 1998,
     pp.77-81.
    [21] 季伯言,光纤旋转连接器,光通信技术,1991 年第 1、2 期
    [22] Joseph C. Palais, “Fiber coupling using graded index rod lenses”, Applied
     Optics, Vol.19, No.12, 1980, pp.2011-2018
    [23] Guoda Xu, John Bartha, Sean Zhang, et al, “An Electro-Optic Hybrid Rotary
     Joint Technology for Air Force Tracker System Power and Signal Transmission
     Applications”, Proceeding of SPIE, Vol. 4025, 2000, pp.123-133
    [24] 邓玉秀,周革,刘卫等,“对称光学结构的双光信道旋转连接器”,光电子
     ·激光,Vol. 12, No. 8, 2001,pp.792-794
    [25] 贾大功,张红霞,张以谟等,“无源对称光学结构双通道光纤旋转连接器”,
     光电子技术与信息,第 16 卷增刊,第十届全国光电技术与系统学术会议
     论文摘要集,2003.10.,pp.133
    [26] Gregory H. Ames, Gales Ferry, Roger L. Morency, et al, “Passive
     Multi-channel fiber optic rotary joint assembly”, U.S patent 5,371,814 (Dec. 6,
     1994).
    [27] Gregory H. Ames, Gales Ferry, Conn, “Method providing optimum optical
     trains alignment in a passive multi-channel fiber optic rotary joint”, U.S patent
     5,271,076 (Dec. 14, 1993).
    [28] Shane H Woodside, et al, “In-line, two-pass, fiber optic rotary joint”, U.S
     patent 5,588,077 (Oct. 24, 1996)
    [29] John Oliver, John Purdy, Graham Smith, “Fibers optic rotational interfaces”,
     Proceedings of IEEE. Vol. 19, Sept. 1987, pp. 418 –423
     72
    
    
    天津大学硕士学位论文 参考文献
    [30] Gerogy S. Svechnikov, Vladimir N. Shapar, “Multi-channel optical rotary
     connector for non-contact transfer”, Proceedings of SPIE, Vol. 1580, 1991, pp.
     391-394
    [31] Georg Spinner, Manfred Lang, Anton Pautz, “Light rotation coupling for a
     plurality of channel”, U.S patent 4,519,670 (May 28, 1985)
    [32] Shah, N.J., DasGupta, S.,Sawkar, A.,“Wireless access networks and
     technologies , Personal Wireless Communications ”, IEEE International
     Conference, 18-19 Aug. 1994, pp. 174 –176
    [33] 陆晓文,朱近康,无线互联网,人民邮电出版社,pp.57,2002.1.
    [34] 张尹馨,“基于 USB 接口的高速红外无线适配卡”,电子产品世界,2003.3
    [35] 胡昕,“试谈几大宽带无线接入技术及展望”,广东通信技术,Vol.22, No.9,
     2002.9.
    [36] Seidel, S.Y.,“Radio propagation and planning at 28 GHz for local multipoint
     distribution service (LMDS) ”, Antennas and Propagation Society
     International Symposium, 1998. IEEE , vol.2,June 1998,pp. 622-625
    [37] Cleary, K., “ Internet via MMDS”, International Broadcasting Convention,
     Sept. 1997, pp.79-82
    [38] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
     (PHY) specifications, LAN WAN Standards Committee of the IEEE Computer
     Society, IEEE Standards Board, June, 1997
    [39] Cypher, D., “Does future home networking look Blue? ”, 2002 IEEE 4th
     International Workshop on Network Appliances, Jan. 2002, pp. 20 –29
    [40] 严紫建,刘元安编著,蓝牙技术,北京邮电大学出版社,2001.12.
    [41] Stuart Williams, HP Laboratory, “IrDA: Past, Present and Future”, IEEE
     Personal Communications, Vol.7, No.1, Feb.2000, pp.11-19
    [42] 黄耀军等,“计算机红外无线互连的设计及实现”,电子技术,2000.2.
    [43] Vishay Corp, About IrDA, IrDA Compatible Data Transmission: Physical
     Layer, 1999.6.
    [44] David W. Suvak, “IrDA Serial Infrared Link Access Protocol Specificationfor
     16 Mb/s Addition (VFIR),Errata to IrLAP, Version 1.1”,January 5, 1999
    [45] Peter Barker, Anthony C., “Performance Modeling of the IrDA Protocol for
     Infrared Wireless Communication”, IEEE Communication Magazine,
     December 1998
    [46] Hewlett Packard Corp, IrDA Data Link Design Guide
    [47] 王同胜主编,计算机技术及应用基础,天津大学出版社,1998.8.
    [48] 王红智,周云,严国萍,“基于 IrDA 标准的红外无线通信原理及设计”,
     电子工程师,2000.5.
     73
    
    
    天津大学硕士学位论文 参考文献
    [49] 贾大功,张尹馨,张以谟等,“双通道红外耦合旋转连接器”,光电子·激光,
     Vol.14, No.12, Dec.2003, pp.1288-1291
    [50] 夏宏玉,尚建忠著,仪器仪表零件结构设计,国防科技大学出版社,2001.2.
    [51] 许海峰,李俊维,刘贤德等,“红外无线数字通信”,数字通信,1997.2.,
     pp.7-10
    [52] 黄战华,雷建龙等编著,微机原理与接口技术,机械工业出版社,2002.1.
    [53] 杨怀栋,视频监控跟踪系统的研究,天津大学硕士学位论文,2002.1.
    [54] IRMS6400 4Mb/s Infrared Data Transceiver Datasheet, Infineon Technologies
     Corp., March, 2000
    [55] [美]Jan Axelson 著,USB 大全,中国电力出版社,2001.5.
    [56] [美]Jan Axelson 著,串行端口大全,中国电力出版社,2001.5.
    [57] 陈启美,丁传锁编著,计算机 USB 接口技术,南京大学出版社,2003.1.,
     pp.2
    [58] 曾峰,侯亚宁等编著,印刷电路板(PCB)设计与制作,电子工业出版社,
     2002.11.
    [59] 沈保锁,侯春萍著,现代通信原理,天津科学技术出版社,2000.1.
    [60] IrDA Serial Infrared Physical Layer Specification, Version 1.3, October 15,
     1998
    [61] Alves R., Gameiro A., “Coding of PPM Based Modulation Techniques to
     Improve the Performance of Infrared WLAN’s”, Vehicular Technology
     Conference, 2000. Vol.3, pp.1345-1352
    [62] Iain Miller, Martin Beale, “IrDA Standards for High-speed Infrared
     Communications”, the Hewlett-Packard Journal, Feb.1998
    [63] 陈世伟著,锁相环路原理及应用,兵器工业出版社,1990.6.
    [64] Djahani P., Kahn J.M., “Analysis of infrared wireless links employing
     multibeam transmitters and imaging diversity receivers”, IEEE Transactions on
     Communications, Vol.48, Issue 12, Dec. 2000, pp. 2077-2088
    [65] Sigmatel, “STIr4200 USB/IrDA Bridge Controller” Datasheet
    [66] Agilent Technologies, “IrDA Compliant 4Mb/s 3V Infrared Transceiver”
     Technical Data
    [67] TPS76333,Texas Instruments, “Low-power 150mA Low-dropout Linear
     Regulators” Datasheet
    [68] 诸邦田著,电子线路抗干扰技术手册,北京科学技术出版社,1988.10.
    [69] Anthony C. Boucouvalas, “Symmetry of IrDA Optical Links”, Optical Free
     Space Communication Links, IEEE Colloquium on, 19 February 1996
    [70] A.C. Boucouvalas, P. Barker, “Asymmetry in Optical Wireless Links”, IEE
     Proc.-Optoelectron, Vol.147, No. 4, August 2000
     74
    
    
    天津大学硕士学位论文 参考文献
    [71] J. M. Kahn and J. R. Barry, “Wireless Infrared Communications”, Proceedings
     of the IEEE, vol.85, NO. 2, February 1997, pp.265~289
    [72] Peter Barker, Anthony C. Boucouvalas, “Effect of Random Alignment sway on
     the Performance of IrDA Handheld Devices”, , IEEE Colloquium on Optical
     wireless communication (Ref. No.1999/128), 1999
    [73] J. M. Kahn. J .R. Barry, M. D. Audeh, J. B. Carruthers et al., “Non-directed
     infrared links for high-capacity wireless LANs,” IEEE Personal Commun.
     Mag., vol. 1, pp. 12-25, May 1994.
    [74] 赵秀丽编著,红外光学系统设计,机械工业出版社,1997.5.,pp.3-5
    [75] 郁道银,谈恒英主编,工程光学,机械工业出版社,1999.5.
    [76] 张尹馨,周革,井文才等,“准直光学系统在红外无线互连传输中的应用”,
     光电子·激光,Vol.13, No.9, Sept. 2002,pp.904-907
    [77] Robert W. Gilsdorf, Joseph C. Palais, “Single-mode Fiber Coupling Efficiency
     with Graded-index Rod Lenses, Applied Optics”, Vol.33, No.16, June, 1994
    [78] W. J. Tomlinson, “Applications of GRIN-rod lenses in optical fiber
     Communication systems”, Applied Optics, Vol.19, No.7, April 1980
    [79] 刘德森,殷宗敏,祝颂来等编著,纤维光学,科学出版社,1987,pp.158-160
    [80] (美)Djafar K. Myndaev, Lowell L. Scheiner, 光纤通信技术,机械工业出
     版社,pp.403-434, 2002.8.
    [81] (美)Gerd Keiser 著,光纤通信,电子工业出版社,2002.7.
    [82] 黄章勇编著,光纤通信用光电子器件和组件,北京邮电大学出版社,2001.7.
     pp. 23-45
    [83] 李玉权,崔敏编著,光波导理论与技术,人民邮电出版社,2002.6.,pp.300
    [84] 井文才,周革,张以谟,“用半导体激光器和 PIN 光电探测器设计和实现
     的光互连链路”,光电子·激光,Vol.10,No.5,Oct.1999,pp.440-443
    [85] MAXIM,3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers Datasheet
    [86] MAXIM, 3.0V to 5.5V, 1.25Gbps/2.5Gbps LAN Laser Drivers Datasheet
    [87] 胡卫生,曾庆济,“自聚焦棒透镜准直系统的装配误差引起的附加耦合损
     耗分析”,中国激光,Vol.A26, No.3, March, 1999
    [88] 邱传凯,杜春雷,邓启凌等,衍射微透镜在红外单元探测器中的应用,光
     电工程,Vol.27, No.2,April, 2002,pp.35-38
    [89] ZEMAX, Optical Design Program User’s Guide Version 10.0
    [90] Y. M. Cheung, C. H. Yiu, “Simulation of the Alignment Sensitivity on the
     Coupling Efficiency of a Ball-Lens Capped TO-Can Laser Diode Source into a
     Single-Mode Fiber”, Proceedings of the 4th International Symposium on
     Electronic Materials and Packaging, 2002., 4-6 Dec. 2002, pp.197 – 203
    [91] 井文才,用于机群系统的千兆光互连链路,天津大学博士学位论文,1998.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700