滤波多音调制(FMT)系统均衡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多载波调制技术具有抗多径能力和较高频谱利用率等优点,已经成为下一代宽带通信物理层核心技术之一。目前,对于多载波调制技术的研究主要集中在正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)和滤波多音调制(FMT,Filtered Multitone Modulation)上。OFDM具有均衡简单等优点,但其子信道间的正交性容易受频偏等因素的影响而被破坏,从而引起信道间干扰(ICI,Inter-channel Interference),导致系统性能下降。FMT与OFDM的本质区别在于FMT子信道频谱互不重叠。正因为如此,FMT系统的ICI很小,抗频偏性能好,并且不需要循环前缀和虚载波等开销。但FMT系统子信道频谱不重叠是通过不满足理想重构条件的原型滤波器来实现,这将不可避免地引入符号间干扰(ISI,Inter-symbol Interference),尤其当FMT应用于无线多径环境时,ISI将进一步增大,导致误码率急剧增加,严重影响FMT系统性能。因此,在接收端必须采用均衡来消除码间干扰。论文就是针对FMT系统的均衡问题,对子信道均衡、Turbo迭代均衡以及盲均衡等技术进行了深入的研究和分析。
     论文首先分析了无线衰落信道和FMT系统模型,以滤波器组技术为出发点,介绍了FMT系统的基本原理,结合图形说明了FMT系统基于离散傅立叶变换(IDFT,Inversed Discrete Fourie Transform)和傅立叶变换(DFT,Discrete Fourie Transform)的快速算法和多相滤波的有效实现结构,推导了FMT信号的矩阵表示式,并重点分析了平坦衰落信道、频率选择性衰落信道以及时变频率选择性衰落信道条件下FMT均衡器所要处理的对象。
     FMT系统的一个显著特点是ICI很小,而接收信号中的ISI可以通过采用每个子信道独立均衡的方法来消除。因此,论文随后重点研究了FMT系统的子信道频域均衡算法。首先分析了基于判决反馈均衡(DFE,Decision Feedback Equalization)的四种FMT子信道均衡算法,根据最小均方误差(MMSE,Minimum Mean Square Error)准则推导了DFE均衡器系数的求解表达式,并对四种算法的可达比特率(ABR,Achievable Bit Rate)和误比特率(BER,Bit Error Ratio)性能进行了仿真分析。DFE均衡器系数通常是以MMSE准则来计算,但接收机的BER与信号的信干噪比(SINR,Signal-to-interference-plus-noise Ratio)有关,当均衡器系数满足MMSE准则时,并不能保证信号的SINR最大,相应也不能确保系统BER或ABR性能最优。基于此,论文随后通过推导严格采样FMT(CS-FMT,Critically Sampled FMT)系统的SINR和ABR的表达式,分析了基于MMSE准则并提出了最大信干噪比(MSINR,Maximum the Signal-to-interference-plus-noise Ratio)准则和最大子信道比特速率(MSB,Maximum Subchannel Bit-rate)准则的子信道线性均衡算法,仿真结果表明,基于MSINR准则和MSB准则均衡算法的SINR、ABR以及BER性能都优于基于MMSE准则的线性均衡算法和DFE算法。针对信道的非线性畸变问题,论文将函数连接型神经网络(FLANN,Functional Link Artificial Neural Networks)引入到FMT系统子信道均衡中,并提出了基于扩展卡尔曼滤波(EKF,Extended Kalman Filter)的FLANN网络学习算法,收敛速度和稳态误差性能相比较于误差反传(BP,Back Propagation)算法都得到了改善。
     Turbo均衡器将信道均衡和译码联合处理,在迭代过程中,均衡器充分利用了信道编码所带来的冗余信息,获得了更好的均衡效果。论文将Turbo迭代均衡思想引入FMT系统,并针对信道响应已知和信道响应未知两种情况,分别提出了一种FMT系统的Turbo均衡方法。当信道响应已知,并且子信道响应较为平坦时,论文参考了组合后置式DFE均衡器结构,信道衰落可以通过单抽头均衡器来补偿,而FMT系统自身所产生的ISI则通过Turbo迭代均衡来消除;当信道响应未知时,论文将基于软信息的迭代信道估计算法应用于FMT系统,提出了一种联合迭代信道估计和Turbo均衡的FMT接收方案。仿真结果表明,经过2次以上的迭代后,采用Turbo迭代均衡的FMT系统在信道响应已知和信道响应未知情况下的BER性能相比较与DFE均衡都能得到大幅度提高。
     盲均衡技术具有在整个通信过程中不需要训练序列的优点,论文最后研究了盲均衡算法在FMT系统中的应用。针对修正常系数模(MCMA,Modified Constant Modulus Algorithm)算法收敛速度与稳态误差相矛盾的问题,通过构造新的误差函数,并建立误差函数与步长因子之间的非线性函数关系,在MCMA算法基础上,提出了一种新的修正步长(MS-MCMA,Modified Step-size MCMA)盲均衡算法,仿真结果表明,MS-MCMA算法不仅改善了收敛速度,同时也降低了稳态误差;最后,论文将MS-MCMA算法应用于FMT系统,仿真结果证明了采用基于MS-MCMA算法的子信道盲均衡器能很好地消除ISI,并且收敛速度较MCMA算法提高了一倍,同时误码率性能也得到了改善。
Multi-carrier modulation has been one of the physical layer key technologies of the next generation wideband communication due to its robustness to multi-path and high bandwidth efficiency, etc. The current research in multi-carrier modulation mainly focuses on OFDM (Orthogonal Frequency Division Multiplexing) and FMT (Filtered Multi-tone Modulation). OFDM has simple equalization, whereas the ICI (Inter-channel Interference) results in the performance degradation because the orthogonality is prone to be destroyed by the frequency offset. The essential difference between FMT and OFDM is the FMT’s non-overlapping sub-channel characteristics which bring a set of merits such as negligible ICI, good anti-frequency offset performance, no CP (Cyclic Prefix) and virtual carrier. However, the non-overlapping sub-channel characteristics are realized by the non-perfect reconstruction prototype filter, which inevitably introduce ISI (Inter-symbol Interference), and ISI will be future increased especially when FMT is applied in wireless multi-path environment. Thus, the receiver must eliminate ISI by equalization. This dissertation mainly makes a deep research on the equalization in the FMT systems, including subchannel equalization, Turbo iterative equalization and blind equalization.
     Several characteristics of the wireless fading channel and the system model of the FMT are firstly analyzed. The principle of FMT is introduced according to the filter technology, and the fast algorithm based on IDFT (Inversed Discrete Fourier Transform) and DFT (Discrete Fourier Transform), the efficient structure of poly-phase filter are presented by means of graphic illustration. And then the matrix representation of the FMT is deduced. Moreover, the objects of the FMT equalizer over flat fading channel, frequency selective fading channel and time varying frequency selective fading channel are especially analyzed.
     A notable feature of FMT system is the small ICI and the ISI in the received signal can be eliminated by independent per subchannel equalization. Therefore, the dissertation then focuses on the subchannel frequency domain equalization algorithms in FMT system. Firstly, four algorithms based on DFE (Decision Feedback Equalization) are analyzed and these ABR (Achievable Bit Rate) and BER (Bit Error Ratio) performance are simulated and compared, the coefficients of the four DFE equalizers are also deduced according to the MMSE (Minimum Mean Square Error) criterion. However, the equalizer coefficients satisfying the MMSE criterion cannot guarantee the maximum SINR (Signal-to-interference-plus-noise Ratio), corresponding the optimal BER or ABR performance since the BER performance is related to the received signal’s SINR. According to the above-mentioned analyses, the CS-FMT (Critically Sampled FMT) subchannel linear equalization algorithm based on MMSE criterion is analyzed, and the subchannel linear equalization algorithms based on MSINR (Maximum the Signal-to-interference-plus-noise Ratio) criterion and MSB (Maximum Subchannel Bit-rate) criterion are proposed respectively by deducing the expression of the CS-FMT’s SINR and ABR. Simulation results show that the SINR, ABR and BER performance of the equalization algorithms based on MSINR and MSB criterion and these superiority in comparison with those of the linear and DFE equalization algorithm based on MMSE criterion. Moreover, the FLANN (Functional Link Artificial Neural Networks) are introduced into the subchannel equalization in FMT system to combat the nonlinear distortion of the channel, and a novel learning algorithm based on EKF (Extended Kalman Filter) is proposed to train the FLANN networks. Simulation results indicate that the proposed algorithm can simultaneously improve the convergence and steady-state error performance by comparing the performance of BP (Back Propagation) learning algorithm.
     Making full use of the redundant information from channel coding in the iterative process, turbo equalization has better performance, in which the equalization and decoding are jointly processed. Introducing turbo equalization into FMT system, the dissertation respectively proposes a kind of turbo equalization algorithm for the known channel and the unknown channel. When the channel is known, and the subchannel is flat, the channel fading can be compensated by a one tap per subchannel equalizer, whereas the ISI caused by the prototype filers can be eliminated by the turbo equalizer. When the channel is unknown, a FMT receiver scheme using joint channel estimation and turbo equalization is presented by applying the iterative channel estimation algorithm based on soft information. Simulation results show that the proposed turbo equalization algorithms can yield great improvements in BER performance compared with the DFE equalizer whenever the channel is known or unknown.
     Blind equalizers do not require a training sequence in the whole communication process. Lastly, the dissertation researches the application of blind equalization algorithm in FMT systems. Constructing a kind of new error function and building a nonlinear function between the step-size factor and the error function, a novel MS-MCMA (modified step-size blind equalization algorithm) blind equalization algorithm is proposed to alleviate the contradiction between convergence speed and steady-state error of the MCMA (Modified Constant Modulus Algorithm). Simulation results show that the proposed algorithm can simultaneously improve convergence speed and reduce the steady-state error. And then, the proposed blind equalization algorithm is used in FMT system. Simulation results show that the subchannel blind equalizer adopting MS-MCMA can perfectly eliminate ISI and the MS-MCMA can simultaneously improve convergence speed by one time and reduce the steady-state error by comparing the performance of the MCMA.
引文
[1]丹尼斯?罗伯逊(美).移动通信:从第二代到第四代[C].中国科协2000年学术年会,第11期, 19.
    [2]尹长川,罗涛,乐关新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社, 2004.
    [3] Giovanni Cherubini, Evangelos Eleftheriou, and Sedat ?lcer. Filtered Multitone Modulation For VDSL[C]. IEEE Global Telecommunications Conference, Riode Janeiro, Brazil, 1999:1139~1144.
    [4] Giovanni Cherubini, Evangelos Eleftheriou, and Sedat ?lcer. Filter Bank Modulation Techniques for Very High-Speed Digital subscriber Lines[J]. IEEE Communication Magazine, 2000,3(5):98~104.
    [5] Giovanni Cherubini, Evangelos Eleftheriou, and Sedat ?lcer. Filtered Multitone Modulation for Very High-Speed Digital Subscriber Lines[J]. IEEE Journal on Selected Areas In Communications, 2002,20(5):1016~1028.
    [6] Andrea M.Tonello, Silvano Pupolin, and Lucian. Discrete Multi-Tone and Filtered Multi-Tone Architectures for Broadband Asynchronous Multi-User Communications[C]. WPMC 2001, 2001:461~466.
    [7] Andrea M.Tonell. Performance Limits for Filtered Multitone Modulation in Fading Channels[J]. IEEE Transactions on Wireless Communications. 2005,4(5):2121~2135.
    [8] Vincenzo Lottici, Marco Luise. Non-Data-Aided Timing Recovery for Filter-Bank Multicarrier Wireless Communications[J]. IEEE Transactions on Signal Processing, 2006,54(11):4365~4375.
    [9] Tiejun Wang, John G.Proakis, James R.Zeidler. Interference Analysis of Filtered Multitone Modulation over Time-varying Frequency-Selective Fading Channels[J]. IEEE Transactions on Communications, 2007,55(4):717~727.
    [10] Andrea M.Tonell. A Concatenated Multitone Multiple-Antenna Air-Interface for the Asynchronous Multiple-Access Channel[J]. IEEE Journal on Selected Areas in Communications, 2006,24(3):457~469.
    [11] M.L.Doelz, E.T.Heald, and D.L.Martin. Binary Data Transmission Techniques for linear systems[C]. Proceedings of the IRE, 1957,45(5):656~661.
    [12] R.W.Chang. Synthesis of Band-limited Orthogonal Signals for Multichannel Data Transmission[R]. Bell Syst.Tech.J., 1966,45:1775~1796.
    [13] R.W.Chang and R.A.Gibby. A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Schemes[J]. IEEE Transactions on Communication Technology, 1968,16(4):529~540.
    [14] B.R.Saltzberg. Performance of an Efficient Parallel Data Transmission System[J]. IEEE Transactions on Communication Technology, 1967,15(6):805~811.
    [15] S.B.Weinstein and P.M.Ebert. Data Transmission by Frequency-division Multiplexing Using the Discrete Fourier Transform[J]. IEEE Transactions on Communication Technology, 1971,19(5):628~634.
    [16] A.Peled and A.Ruiz. Frequency Domain Data Transmission Using Reduced Computational Complexity Algorithms[C]. IEEE International Coference on Acoust.,Speech, and Signal Processing, 1980,5:664~967.
    [17] J.S.Chow, J.C.Tu, and J.M.Cioffi. A Discrete Multi-tone Transceiver System for HDSL Applications[J]. IEEE Journal on Selected Areas in Communications, 1991,9(8): 895~908.
    [18] P.Chow, J.Tu, and J.Cioffi. Performance Evaluation of a Multi-channel Transceiver System for ADSL and VHDSL Services[J]. IEEE Journal on Selected Areas in Communications, 1991,9(8): 909~919.
    [19] http://www.worlddab.org/
    [20] http://www.dvb.org/
    [21] http://standards.ieee.org/getieee802/download/802.11a-1999.pdf
    [22] J.Khun-Jush, P.Schramm, U.Wachsmann, and F.Wenger. Structure and Performance of the HIPERLAN/2 Physical Layer[C]. in VTC Conference Record, 5:2667~2671.
    [23] R.van Nee, G.Awater, and Masahiro Morikura. New High-rate Wireless LAN Standards[J]. IEEE Communications Magazine, 1999,37:82~88.
    [24] Zhefeng Li, Xiang-Gen Xia. Single-symbol ML Decoding for Orthogonal and Quasi-orthogonal STBC in Clipped MIMO-OFDM Systems Using a Clipping Noise Model with Gaussian Approximation[J]. IEEE Transactions on Communications, 2008,56(7):1127~1136.
    [25] Fatemeh Fazel, Hamid Jafarkhani. Quasi-Orthogonal Space-Frequency and Space-Time-Frequency Block Codes for MIMO OFDM Channels[J]. IEEE Transacions on Wireless Communications. 2008,7(1):184~192.
    [26] Antti Tolli, Marian Codreaun, and Markku Juntti. Compensation of Non-Reciprocal Interference in Adaptive MIMO-OFDM Cellular Systems[J]. IEEE Transactions on Wireless Communications, 2007,6(2):545~555.
    [27] Jianwu Chen, Yik-Chung Wu, Shaodan Ma, and Tung-Sang. Joint CFO and Channel Estimation for Multiuser MIMO-OFDM Systems With Optimal Training Sequences[J]. IEEE Transactions on Signal Processing, 2008,56(8):4008~4019.
    [28] Nghi H.Tran, Ha H.Nauyen, and Tho Le-Ngoc. Bit-Interleaved Coded OFDM with Signal Space Diversity: Subcarrier Grouping and Rotation Matrix Design[J]. IEEE Transactions on Signal Processing, 2007,55(3):1137~1149.
    [29] Hyungjoon Song, Jihyung Kim, and Daesik Hong. Joint Doppler-FrequencyDiversity for OFDM Systems Using Hybrid Interference Cancellation in Time-Varying Multipath Fading Channels[J]. IEEE Transactions on Vehicular Technology, 2008,57(1):635~641.
    [30] Ye Li, Andreas F.Molisch, and Jinyun Zhang. Practical Approaches to Channel Estimation and Interference Suppression for OFDM-Based UWB Communications[J]. IEEE Transactions on Wireless Communications, 2006,5(9):2317~2320.
    [31] Noah Jacobsen, Gwen Barriac, and Upamanyu Madhow. Noncoherent Eigenbeamforming and Interference Suppression for Outdoor OFDM Systems[J]. IEEE Transactions on Communications, 2008,56(6):915~924.
    [32] Giovanni Cherubini, Evangelos Eleftheriou, and Sedat ?lcer. Training of FMT Transceivers[S]. Committee T1, Study Group T1E1.t, Contribution T1E1.4/2000-072, Feb.21,2000.
    [33] Giovanni Cherubini, Evangelos Eleftheriou, and Sedat ?lcer. Frequency-division Duplexing for VDSL[S]. ITU-T, Study Group 15/4, Contribution NT-101, Nov.1-5,1999.
    [34] ITU-Telecommunication Standardization Sector (Study Group 15)[S]. G.vdsl: CAP/ QAM, DMT, and Filter–Bank Modulation Techniques for VDSL.
    [35]陈悦,朱维红,高振明等.基于线性相位FIR滤波器的FMT系统的实现方法.山东大学学报(理学版)[J], 2004, 39 (1): 93~97.
    [36]高有军,朱维红,高振明等. FMT系统中的滤波器组设计.山东大学学报(理学版)[J], 2004, 39(5): 69~72.
    [37]高有军,高振明,许峰等.滤波多音频技术及其滤波器组设计.山东大学学报(工学版), 2005, 35(5): 56~59.
    [38]张灿,高振明,朱维红等. FMT系统中滤波器组的优化设计.山东大学学报(理学版)[J], 2006, 8(41): 93~96.
    [39] B.Borna, T.N.Davidson. Efficient Filter Bank Design for Filtered Multitone Modulation[C]. 2004 IEEE International Conference on Communications, Paris, June,2004, 1: 38~42.
    [40] B.Borna, T.N.Davidson. Efficient Design of FMT Systems[J]. IEEE Transactions on Communications, 2006, 54(5):794~797.
    [41]张丙峰,朱维红,高振明等.滤波多音调制系统的滤波器优化设计.山东大学学报(理学版)[J], 2007, 42(5): 19~23.
    [42] J.S.Mao, W.S.Lu, and A.Antoniou. Multiplierless Implementation of Filtered Multitone Modulation for Very-High-Rate Digital Subscriber Lines[C]. 2001 IEEE PACRIM, Victoria, BC, Canada, 2001,1: 168~171.
    [43] P.Silhavy. Half-Overlap Subchannel Filtered Multitone Modulation with theSmall Delay[C]. the 7th International Conference on Networking, April 2008:474~478.
    [44] GuiXia Kang, M.Weckerle, and E.Costa. Space-time Joint Channel Estimation in Filtered Multi-tone based Multi-carrier Multi-branch Systems[C]. IEEE WCNC’04, 2004,3:1844~1849.
    [45] Yu Yang, Guixia Kang, and Jichao Liu et al. Pilot Sequence Design for Inter-cell Interference Mitigation in MIMO FMT Systems[C]. IEEE WCNC’07, 2007:1217~1221.
    [46]魏慧玲,高振明,朱维红等. FMT系统中信道估计的分析和仿真.山东大学学报(理学版)[J], 2005, 40(6): 62~65.
    [47]胡兰雨,高振明,朱维红等.基于PN码导频的FMT信道估计方法.山东大学学报(理学版)[J], 2006, 41(2): 120~124.
    [48]金国平,钟华,郑林华. FMT系统中一种新的信道估计算法[J].信号处理, 2009,25(5): 811~815.
    [49]金国平,钟华,郑林华.基于噪声功率估计的FMT时域信道估计[J].系统仿真学报, 2008, 20(9):2292~2295.
    [50] Andrea M.Tonell. A Concatenated Multitone Multiple Antenna Scheme for Multiuser Uplink Communications[C]. 2004 ITG Workshop on Smart Antennas, 2004:95~102.
    [51] N.Benvenuto, S.Tomasin. A Dynamic Rate Uplink Multiple Access Scheme Based on FMT Modulation[C]. 59th IEEE VTC 2004, Milan, Italy, 2004,2:909~913.
    [52] A.Assalini, A.M.Tonello. Time-Frequency Synchronization in Filtered Multitone Modulation Based Systems[C]. IEEE WPMC'03, Yokosuka, Japan, 2003:221~225.
    [53] A.M.Tonello, F.Rossi. Synchronization and Channel Estimation for Filtered Multitone Modulation[C]. WPMC04, Italy, 2004,2:590~594.
    [54] A.M.Tonello, F.Pecile. Synchronization Algorithms for Multiuser Filtered Multitone (FMT) Systems[C]. IEEE 61st VTC 2005, Stockholm, Sweden, 2005,3:1778~1782.
    [55] A.M.Tonello, F.Pecile. Iterative Synchronization for Multiuser Filtered Multitone Systems[C]. IEEE ISWC’05, Siena, Italy,2005:543~546.
    [56] V.Lottici, M.Luise and C.Saccomando et al. Non-Data-Aided Timing Recovery for Filter-Bank Multicarrier Wireless Communications[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4365~4375.
    [57] Tilde Fusco, Angelo Petrella, and Mario Tanda. Blind CFO Estimation for Noncritically Sampled FMT Systems[J]. IEEE Transactions on Signal Processing, 2008, 56(6):2603~2608.
    [58] Antonio Assalini, Silvano Pupolin, and Andrea M.Tonello. Analysis of the Effects of Phase Noise in Filtered Multitone (FMT) Modulated Systems[C]. IEEE Global Telecommunications Conference,2004, 2004,6:3541~3545.
    [59]朱维红,高振明,高有军等.滤波多音调制系统频偏分析与仿真[J].通信学报, 2005, 26(9):123~128.
    [60] Tiejun Wang, John G.Proakis, and James R.Zeidler. Interference Analysis of Filtered Multitone Modulation over Time-varying Fading Channels[C]. IEEE Global Telecommunications Conference, 2005:3586~3591.
    [61] Andrea M.Tonello, Francesco Pecile. Analytical Results about the Robustness of FMT Modulation with Several Prototype Pulses in Time-frequency Selective Fading Channels[J]. IEEE Transactions on Wireless Communications, 2008,7(5):1634~1645.
    [62] Andrea M.Tonello. Orthogonal Space-Time Discrete Multitone and Space-Time Filtered Multitone Coded Architectures[C]. 59th IEEE VTC 2004,2004,2:713~717.
    [63] Andrea M.Tonello. MIMO MAP Equalization and Turbo Decoding in Interleaved Space-Time Coded Systems[J]. IEEE Transactions on Communications, 2003, 51 (2):155~160.
    [64] N.Benvenuto, S.Tomasin, and L Tomba. Receiver Architectures for FMT Broadband Wireless Systems[C]. 53rd IEEE VTC’01, Rhodes Island, Greece, 2001,1:643~647.
    [65] N.Benvenuto, S.Tomasin, and L.Tomba. Equalization Methods in OFDM and FMT Systems for Broadband Wireless Communications[J]. IEEE Transactions on Communications, 2002, 50(9):1413~1418.
    [66]陈悦,朱维红,高振明等.一种FMT系统内的MMSE-DFE均衡方法及其性能研究[J].信号处理, 2005, 21(1):32~34.
    [67] Inaki Berenguer, Ian J.Wassell. Efficient FMT Equalization in Outdoor Broadband Wireless Systems[C]. Proc. IEEE International Symposium on Advances in Wireless Communications, Victoria, Canada, 2002.
    [68] Kuo-Song Liao, Shyue-Win Wei. Two-stage Frequency-domain Equalizer for Filtered Multi-tone Transmission Systems[C]. ISPAC’06, Yonago, Japan, 2006:207~210.
    [69] Weihong Zhu, Zhenming Gao. Data-aided Equalization Scheme for Filtered Multitone Modulation System[C]. IEEE ICDT '06, 2006:3~6.
    [70]张丙峰,朱维红,高振明等.基于滤波多音调制系统的辅助判决均衡器.山东大学学报(工学版)[J], 2007, 37(2):76~79.
    [71]李晨,高振明,朱维红等.滤波多音调制中的预编码性能研究[J].山东大学学报(理学版), 2005, 40(1):90~94.
    [72] N. Benvenuto, S.Tomasin. Efficient Pre-coding Schemes for FMT Broadband Wireless Systems[C]. 13th IEEE PIMRC, Lisbon, Portugal, 2002,4:1493~1497.
    [73] Sun Qiaoyun,Gao Zhenming. The Research on Precoding in Filtered Multitone Modulation[C]. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, 2005,1:661~664.
    [74] Matthias P?tzold. Mobile Fading Channels[M]. England West Sussex: John Wiley & Sons Ltd, 2000.
    [75]杨大成.移动传播环境—理论基础·分析方法和建模技术[M].北京:机械工业出版社, 2003年8月.
    [76]仇佩亮,陈慧芳,谢磊.数字通信基础[M].北京:电子工业出版社, 2007年1月.
    [77] Willian H.Tranter, K.Sam Shanmngan等著,肖明波,杨光松等译.通信系统仿真原理与无线应用[M].北京:机械工业出版社, 2005年6月.
    [78] Marina Barbiroli. A New Statistical Approach for Urban Environment Propagation Modeling[J]. IEEE Transactions on Vehicle Technology, 2002,51(5):1234-1240.
    [79] C.Komninakis. A Fast and Accurate Rayleigh Fading Simulator[C]. IEEE Conference GLOBECOM’03, 2003,6:3306-3310.
    [80] W.C.Jakes. Microwave Mobile Communications. Piscataway[M]. NJ:IEEE Press, 1994.
    [81] R.E.克劳切, L.R.拉宾纳.多抽样率数字信号处理[M].人民邮电出版社, 1988年2月.
    [82]宗孔德.多抽样率信号处理[M].清华大学出版社, 1996年7月.
    [83] Helmut B?lcskei, Franz Hlawatsch. Noise Reduction in Oversampled Filter Banks Using Predictive Quantization[J]. IEEE Transactions On Information Theory, 2001,47(1):155~172.
    [84] Behrouz Farhang-Boroujeny. Multicarrier Modulation with Blind Detection Capability Using Cosine Modulated Filter Banks[J]. IEEE Transactions on Communications, 2003,51(12):2057~2070.
    [85] Mariane R.Petraglia, Paulo B.Batalheiro. Filter Bank Design for a Subband Adaptive Filtering Structure with Critical Sampling[J]. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2004,51(6):1194~1202.
    [86] A.V.奥本海默,R.W.谢弗, J.R.巴克著,刘树棠,黄建国译[M].离散时域信号处理(第2版).西安:西安交通大学出版社, 2002年9月, 241~243.
    [87]金国平.滤波多音调制技术(FMT)中信道估计和同步技术研究[D].长沙:国防科学技术大学研究生院, 2008年8月.
    [88] A.M.Tonello. Time Domain and Frequency Domain Implementations of FMTModulation Architectures[C]. ICASSP2006,2006,4:14~19.
    [89] A.M.Tonello, F.Pecile. A Filtered Multitone Modulation Modem for Multiuser Power Line Communications with an Efficient Implementation[C]. IEEE ISPLC’07,2007:155~160.
    [90] A.M.Tonello, R.M.Vitenberg. An Efficient Implemation of a Wavelet Based Filtered Multitone Modulation Scheme[C]. IEEE ISSPIT’04, 2004:225~228.
    [91] R.M.Vitenberg. A Wavelet Based Filtered Multitone[C]. ICACT’08, 2008,3:1849~1853.
    [92] Lineu C.Barbosa. Maximum Likelihood Sequence Estimation:A Geometric View[J]. IEEE Transaction on Information Theory, 1989, 35(2):419~427.
    [93] John G.Proakis著,张力军等译.数字通信(第四版)[M].北京:电子工业出版社, 2003年1月.
    [94] Naofal Al-Dhaihir, John M.Cioffi. MMSE-Decision-Feedback Equalizers: Finite-Length Results[J]. IEEE Transactions on Information Theory, 1995,41(4):961~975.
    [95] Naofal Al-Dhaihir, John M.Cioffi. Mismatched Finite-Complexity MMSE Decision Feedback Equalizers[J]. IEEE Transactions on Signal Processing, 1997, 45 (4):935~944.
    [96] John M.Gioffi, Glen P.Dudevoir, M.Vedat Eyuboglu. MMSE Decision-Feedback Equalizers and Coding—PartyⅠ: Equalization Results[J]. IEEE Transactions on Communications, 1995, 43(10):2582~2594.
    [97] Simon Haykin著,郑宝玉等译.自适应滤波器原理(第四版)[M].北京:电子工业出版社, 2006年11月.
    [98] Milica Stojanovic. An Adaptive Algorithm for Differentially Coherent Detection in the Presence of Intersymbol Interference[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9):1884~1890.
    [99] Michele Morelli, Luca Sanguinetti, and Umberto Mengali. Channel Estimation for Adaptive Frequency-Domain Equalization[J]. IEEE Transactions on Wireless Communications, 2005,4(5):2508~2518.
    [100] Nevio Benvenuto, Giovanni Cherubini, Luciano Tomba. Achievable Bit Rates of DMT and FMT Systems in the Presence of Phase Noise and Multipath[C]. IEEE 51th VTC, 2000,3:2108~2112.
    [101] EISI Normalization Committee. Broadband Radio Access Networks(BRAN); HIPERLAN Type2; Physical Layer[S]. 2001,2: doc.RTS0023003~R2.
    [102] J.Medbo, P.Schramm. Channel Models for HIPERLAN/2[S]. ETSI/BRAN doc.3ERI085B, 1998.
    [103]朱维红.滤波多音调制(FMT)在WLAN环境下的技术研究[D].济南:山东大学, 2006年10月.
    [104]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004,529~547.
    [105] Koen Vanbleu, Geert Ysebaert, and Gert Cuypers. Adaptive Bit Rate Maximizing Time-Domain Equalizer Design for DMT-Based Systems[J]. IEEE Transactions on Signal Processing, 2006, 54(2):483~498.
    [106] Geert Ysebaert, Koen Vanbleu, and Gert Cuypers. Joint Window and Time Domain Equalizer Design for Bit Rate Maximizing in DMT-Receivers[J]. IEEE Transactions on Signal Processing, 2005, 53(3):1132~1146.
    [107] Koen Vanbleu, Geert Ysebaert, and Gert Cuypers. Bitrate-Maximizing Time-Domain Equalizer Design for DMT-Based Systems[J]. IEEE Transactions on Communications, 2004, 52(6):871~876.
    [108] Güner, Brian L.Evans, Sayfe Kiaei. Equalization for Discrete Multitone Transceivers to Maximize Bit Rate[J]. IEEE Transactions on Signal Processing, 2001, 49(12):3123~3135.
    [109] Naofal Al-Dhahir, John M.Cioffi. Optimum Finite-Length Equalization for Multicarrier Transceivers[J]. IEEE Transactions on Communications, 1996,44(1):56~64.
    [110] K.Halford, M.Webster. Multipath Measurements in Wireless LANS[R]. Intersil Application Note AN9895.1,2001.
    [111] Sheng-Sung Yang, Chia-Lu Ho, and Chien-Min Lee. HBP:Improvement in BP Algorithm for an Adaptive MLP Decision Feedback Equalizer[J]. IEEE Transactions on Circuits and Systems—Ⅱ:Express Briefs, 2006, 53(3):240~244.
    [112] Nan Xie, Henry Leung. Blind Equalization Using a Predictive Radial Basis Function Neural Network[J]. IEEE Transactions on Neural Networks, 2005,16(5):709~720.
    [113] Jongsoo Choi, Martin Bouchard, and Tet Hin Yeap. Decision Feed Recurrent Neural Equalization with Fast Convergence Rate[J]. IEEE Transactions on Neural Networks, 2005, 16(5):699~708.
    [114] Jagdish C.Patra, Ranendra N.Pal. Nonlinear Channel Equalization for QAM Signal Constellation Using Artificial Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 1999, 29(4):262~271.
    [115] Y.-H.Pao, G.-H.Park. Adaptive Pattern Recongnition and Nerual Networks, Reading[D]. MA: Addison-Wesley, 1989.
    [116] Jagdish C.Patra, Alex C.Kot. Nonlinear Dynamic System Identification Using Chebyshev Functional Link Artificial Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2002, 32(8):505~511.
    [117] Jiawei Zhang, Keqi Wang, and Qi Yue. Data Fusion Algorithm based on Functional Link Artificial Neural Networks[C]. The Sixth World Congress on Intelligent Control and Automation, Dalian China, 2006:2806~2810.
    [118] W.-D. Weng, C.T.Yen. Reduced-decision feedback FLANN Nonlinear Channel Equaliser for Digital Communication Systems[J]. IEE Proceedings Communications, 2004, 151(8):305~311.
    [119] Y.H.Zweire, J.F.Whidborne, and L.D.Senevirratne. A Three-term Backpropagation Algorithm[J]. Neurocomputing, 2003,50(5):305~318.
    [120] Gao Daqi, Yang Genxing. Influence of Multilayer Feedforward Neural Networks[J]. Pattern recognition, 2003,36(4):869~878.
    [121] Nicholas.K.Treadgold, Tamas.D.Gedeon. Simulated Annealing and Weight Decay in Adaptive Learning: the SARPROP Algorithm[J]. IEEE Transactions on Neural Networks, 1998,9(4):662~668.
    [122] C.Berrou, A.Glavieux, and P.Thitimajshima. Near Shannon Limit Error-correcting Coding and Decoding: Turbo Codes[C]. Proc.IEEE ICC’93, Geneva, Switzerland, 1993:1064~1070.
    [123] C.Vanstraceele, B.Geller, J.-M.Brossier, and J.-P.Barbot. A Low Complexity Block Turbo Decoder Architecture[J]. IEEE Transactions on Communications, 2008,56(12):1985~1987.
    [124] Nick Letzepis, Alex Grant. Bit Error Rate Estimation for Turbo Decoding[J]. IEEE Transactions on Communications, 2009, 57(3):585~590.
    [125] Husheng Li, Sharon M.Betz, and H.Vincent Poor. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels[J]. IEEE Transactions on Signal Processing, 2007, 55(5):1981~1993.
    [126] Galib Asadullah M.M, Gordon L.Stüber. Joint Iterative Channel Estimation and Soft-Chip Combing for a MIMO MC-CDMA Anti-jam System[J]. IEEE Transactions on Communications, 2009, 57(4):1068~1078.
    [127] C.Douillard, A.Picart, and P.Didier. Iterative Correction of Intersymbol Interference: Turbo Equalization[J]. European Transaction Telecommunication, 1995,6(5):507~511.
    [128] S.Benedetto, D.Divsalar, G.Montorsi, and F.Pollara. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding[R]. The Telecommunications and Data Acquisition Progress Report, 1996:42~126.
    [129]刘东华. Turbo码原理与应用技术[M].北京:电子工业出版社, 2004.
    [130] A.Glavieux, C.Loat, and J.Jabat. Turbo Equalization over a Frequency Selective Channel[C]. International Symposium on Turbo Codes and Related Topics, Brest, France, Sept.1997:96~102.
    [131] D.Raphaeli, A.Saguy. Linear Equalizers for Turbo Equalization: A New Optimization Criterion for Determining the Equalizer taps[C]. The 2nd International Symposium on Turbo Codes, Brest, France, Sept.2000:371~374.
    [132] Michael Tüchler, Ralf Koetter, and Andrew C.Singer. Turbo Equalization:Principles and New Results[J]. IEEE Transactions on Communications, 2002,50(5):754~767.
    [133] Michael Tüchler, Andrew C.Singer, and Ralf Koetter. Minimum Mean Squared Error Equalization Using A Priori Information[J]. IEEE Transactions on Signal Processing, 2002, 50(3):673~683.
    [134] Zigang Yang, Xiaodong Wang. Turbo Equalization for GMSK Signaling over Multipath Channels[J]. IEEE Journal on Selected Areas In Communications, 2001,19(9):1753~1763.
    [135] H.Poor. An Introduction to Signal, Detection and Estimation 2nd ed[M]. New York: Springer-Verlag, 1994.
    [136] A.Dejonghe, L.Vandendorpe. Turbo-Equalization for Multilevel Modulation: An Efficient Low-complexity Scheme[C]. Proc IEEE ICC’2002, 2002:1863~1867.
    [137] Patrick Robertson, Peter Hoeher, and Emmanuelle Villebrum. Optimal and Sub-optimal Maximum a Posteriori Algorithms Suitable for Turbo Decoding[J]. European Transactions on Telecommunication, 1997,2(8):119~125.
    [138]金国平,钟华,郑林华. FMT频域信道估计算法的研究及其性能分析[J].计算机工程, 2009, 35(10):98~100.
    [139] Bee Leong Yeap, Choong Him Wong, and Lajos Hanzo. Reduced Complexity In-Phase/Quadrature-Phase M-QAM Turbo Equalization Using Iterative Channel Estimation[J]. IEEE Transactions on Wireless Communication, 2003,2(1):2~10.
    [140] Seongwook Song, Andrew C.Singer, and Koeng-Mo Sung. Soft Input Channel Estimation for Turbo Equalization[J]. IEEE Transactions on Signal Processing, 2004,52(10):2885~2894.
    [141] Noura Sellami, Aline Roumy, and Inbar Fijalkow. The Impact of Both a Priori Information and Channel Estimation Errors on the MAP Equalizer Performance[J]. IEEE Transactions on Signal Processing, 2006, 54(7):2716~2724.
    [142] Roald Otnes, Michael Tüchler. Iterative Channel Estimation for Turbo Equalization of Time-Varying Frequency-Selective Channels[J]. IEEE Transactions on Wireless Communications, 2004,3(6):1918~1923.
    [143] Roald Otnes. Improved Receivers for Digital High Frequency Communications: Iterative Channel Estimation, Equalization, and Decoding (Adaptive Equalization) [D].Norwegian University. Science and Technology, Trondheim, Norway, Dec.2002.
    [144] Alexei Gorokhov. Blind Equalization in SIMO OFDM Systems with Frequency Domain Spreading[J]. IEEE Transactions on Signal Processing, 2000,48(12):3536~3549.
    [145] Roberto L V, Soura D. Blind Equalization of Nonlinear Channels FromSecond-Order Statistics[J]. IEEE Transactions On Signal Processing, 2001,49(12):3084~3097.
    [146] Yang J, Werner J J, and Dumont G A. The Multimodulus Blind Equalization and Its Generalized Algorithms[J]. IEEE Journal on Selected Areas in Communications, 2002,20(5):997~1015.
    [147] Shafayat Abrar, Syed Ismail Shah. New Multimodulus Blind Equalization Algorithm with Relaxation[J]. IEEE Signal Processing Letters, 2006,13(7):425~428.
    [148] Nong Gu, Yong Xiang, Min Tan, and Zhiqiang Cao. A New Blind-Equalization Algorithm for an FIR SIMO System Driven by MPSK Signal[J]. IEEE Transactions on Circuits and Systems—Ⅱ:Express Briefs, 2007, 54(3):227~231.
    [149] Y.Sato. A Method for Self-recovering Equalization[J]. IEEE Transactions on Communications. 1975,23(6):679~682.
    [150] Lee M.Garth. A Dynamic Convergence Analysis of Blind Equalization Algorithms[J]. IEEE Transactions on Communications, 2001,49(4):624~634.
    [151] Vinod Sharma, V.Naveen Raj. Convergence and Performance Analysis of Godard Family and Multimodulus Algorithms for Blind Equalization[J]. IEEE Transactions on Signal Processing, 2005,53(4):1520~1533.
    [152] Xilin Li, Xianda Zhang. A Family of Generalized Constant Modulus Algorithms for Blind Equalization[J]. IEEE Transactions on Communications, 2006,54(11):1913~1917.
    [153] Alban Group, Jacques Palicot. New Algorithms for Blind Equalization: The Constant Norm Algorithm Family[J]. IEEE Transactions On Signal Processing, 2007,55(4):1436~1444.
    [154] Pascal Bianchi, Philippe Loubaton. On the Blind Equalization of Continuous Phase Modulated Signals Using the Constant Modulus Criterion[J]. IEEE Transactions On Signal Processing, 2007,55(3):1047~1061.
    [155] Jie Zhu, Xi-Ren Cao, and Ruey-wen Liu. A Blind Fractionally Spaced Equalizer Using Higher Order Statistics[J]. IEEE Transactions on Circuits and Systems—Ⅱ:Analog and Digital Signal Processing, 1999, 46(6):755~764.
    [156] Roberto López-Valcarce, Soura Dasgupta. Blind Channel Equalization with Colored Sources Based on Second-Order Statistics: A Linear Prediction Approach[J]. IEEE Transactions On Signal Processing, 2001,49(9):2050~2059.
    [157]张立毅,梁静毅,腾建辅.实数系统中三、二阶归一化累积量盲均衡算法研究[J].电路与系统学报, 2007,12(1):78~81.
    [158] Cheolwoo You, Daesik Hong. Nonlinear Blind Equalization Schemes Using Complex-Valued Multilayer Feedforward Neural Networks[J]. IEEE Transactions on Neural Networks, 1998,9(6):1442~1455.
    [159] Yong Fang, Tommy W.S.Chow. Blind Equalization of a Noisy Channel by Linear Neural Network[J]. IEEE Transactions on Neural Networks, 1999,10(4):918~924.
    [160] Ying Tan, Jun Wang, and Jacek M.Zurada. Nonlinear Blind Source Separation Using Radial Basis Function Nerwork[J]. IEEE Transactions on Neural Networks, 2001,12(1):124~134.
    [161] Nan Xie, Henry Leung. Blind Equalization Using a Predictive Radial Basis Function Neural Nerwork[J]. IEEE Transactions on Neural Networks, 2005,16(3):709~720.
    [162]张立毅.数字通信系统中盲均衡技术的研究[D].北京:北京理工大学, 2003年7月.
    [163]张贤达,保铮.通信信号处理[M].北京:国防工业出版社, 2000年12月.
    [164] O.Shalvi, E.Weinstein. New Criteria for Blind Deconvolution of Non-minimum Phase Systems(Channels)[J]. IEEE Transactions on Information Theory, 1990.36(2):312~321.
    [165] Cadzow.J.A. Blind Deconvolution via Cumulant Extrema[J]. IEEE Signal Processing Magazine. 1996,13(3):24~42.
    [166] J.R.Treichler, B.G.Agree. A New Approach to Multipath Correction of Constant Modulus Signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983,31(2):459~471.
    [167] D.N.Goard. Self-recovering Equalization Carrier Tracking in Two-dimensional Data Communications Systems[J]. IEEE Transactions on Communications, 1980,28(11):1867~1875.
    [168] Kil N O, Yong O C. Modified Constant Modulus Algorithm: Blind Equalization and Carrier Phase Recovery Algorithm[C]. IEEE International Conference on Communications, 1995:498~502.
    [169]田俊霞,匡镜明,王华.一种新的基于进化规划方法的盲CMA快速收敛均衡算法[J].信号处理, 2006,22(3):395~397.
    [170]潘立军,刘泽民.一种适用于QAM通信系统的盲均衡算法[J].电子与信息学报,2005,27(4):663~665.
    [171]郑应强,李平,张振仁.用于MQAM调制的双模式Sign-CMA盲均衡算法[J].通信学报, 2004,25(5):155~159.
    [172] Hung K C, Lin D W. A Hybrid Variable Step-Size Adaptive Blind Equalization Algorithm for QAM Signals[C]. IEEE Global Telecommunications Conference, 2005:2140~2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700