MIMO-OFDM系统信道估计与同步技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最大限度的提高频谱利用效率是下一代无线移动通信的目标之一。在带宽和功率受限的无线通信中,利用多输入多输出(Multi-Input Multi-Output, MIMO)技术(多天线技术)能获得更高的频谱效率,同时正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术具有抵抗多径衰落和降低宽带接收机复杂度的特点,因此,MIMO技术和OFDM技术的结合(即MIMO-OFDM技术)更能够适应高信道容量、高比特信息速率等宽带多媒体应用的需求,被认为是第四代移动通信系统中的主流技术,也是当前无线移动通信领域的研究热点。
     同步问题是通信信号处理中首先需要解决的问题,直接关系到后续基带信号处理算法的性能,MIMO-OFDM系统对同步误差非常敏感,很小的载波频偏都将导致系统性能的急剧下降,因此准确的符号定时和精确的载波频偏估计是MIMO-OFDM系统正常工作的前提。同时,信道估计技术是实现相干检测和空时解码,使得系统在低信噪比的环境下依然具有低误码率的必要条件。基于此,本文针对MIMO-OFDM系统的信道估计和同步问题进行了相关研究,主要内容及取得的成果如下:
     第一,对快时变环境下MIMO-OFDM系统信道估计算法的研究。给出了MIMO-OFDM系统在时变条件下的信号模型,将基于插值的SISO-OFDM系统的时变信道估计算法推广得到了适合MIMO-OFDM系统的时变信道估计算法,并且提出了一种基于低通滤波的适用于快速时变环境下MIMO-OFDM系统的信道估计方法。该算法的基本思想是通过信道频率响应相对于导频子载波变化缓慢,而相对于噪声成分变化很快的特点,实现信道频率响应和噪声成分有效的分离,利用时域低通滤波的方法对噪声进行了有效的抑制,从而提高了信道参数估计的精确性。
     第二,对基于空时编码的MIMO-OFDM系统信道估计算法的研究。针对基于空时编码的MIMO-OFDM系统使用最小均方(LMS)或最小二乘(RLS)自适应信道估计算法性能差的缺点,提出了一种适用于空时分组编码MIMO-OFDM系统的两步信道估计方法。第1步运用最小方均误差估计算法对导频信道进行初始信道参数估计;第2步利用第1步得到的初始信道参数,运用提出的自适应估计算法来获得更精确的后续信道参数,从而进一步提高了信道估计的精度。理论分析和仿真表明在不同的多普勒频移的情况下,与完全采用MMSE信道估计及第二步运用LMS或RLS自适应信道估计算法相比,所提出的两步信道估计方法的MSE性能、SER性能都有明显的提高。
     第三,对基于导频的MIMO-OFDM系统同步算法的研究。从MIMO-OFDM信号模型出发,分析了同步误差对系统性能的影响。在此基础之上,为了克服基于传统训练序列定时同步的平顶效应及多尖现象和提高系统频谱的利用率,构造了MIMO-OFDM系统中一种倒序结构的同步训练序列并且提出了对应的定时和频偏估计方法。与传统算法相比,该算法能够进一步提高定时估计的精准度。此外,该算法只需要一个训练序列,就可以有效地对整数倍与小数倍频偏进行估计,与需要2个训练序列的传统算法相比,减少了训练序列的数量,有利于提高系统频谱的利用率。仿真结果表明,在AWGN和改进的Jake模型信道环境下,所提出的方法与Minn方案和Park方案相比在MSE性能、BER性能上都有明显的提高。
     第四,对基于IEEE802.11a前导结构的MIMO-OFDM系统同步算法的研究。简单介绍了IEEE802.11a的物理层标准,重点讨论了IEEE802.11a标准的符号定时算法。在此基础上,针对基于传统IEEE802.11a前导结构的符号定时同步精度不高的缺点,提出了一种适合基于IEEE802.11a的MIMO-OFDM系统的符号定时同步方法。该方法将传统正交前导结构中最后一个短训练序列的前半个周期进行了相位反转,使得基于改进的前导结构的接收信号与自身周期延时信号的互相关结果中产生一个明显的下陷,因此这可以在多径环境下更准确的获得短训练序列与长训练序列的分界点,从而有效的提高多径环境下MIMO-OFDM系统符号同步的精度。仿真结果表明,提出的符号定时方法能够准确的完成定时同步,比传统的符号定时方法的精度要高得多。
The target of next generation wireless mobile communication is to obtain higher efficiency of spectrum. In the wireless communication with the limitation of bandwidth and power, the implementation of MIMO technique can achieve high efficiency of spectrum. At the same time OFDM technology has the property of high tolerance to multi-path fading and low complexity to receiver design, therefore, the combination of these two technologies, that is MIMO-OFDM, can further be efficient for wideband multimedia transmission because of its high ability of anti-fading, high channel capacity and high bit-rate data, and widely be regarded as one of the most promised techniques for 4G wireless communication, which is also to be the focus research field in the future wireless mobile communication.
     Synchronization is the primary procedure for signal processing, which influences the performance of following baseband signal processing. MIMO-OFDM system is sensitive to synchronization errors. Very small carrier frequency offset (CFO) may degrade system performance severely. Correct symbol timing and precise CFO estimation are necessary for MIMO-OFDM systems.At the same time, channel estimation plays a very important role in MIMO-OFDM system and that is required for coherent detection and space-time decoding in MIMO-OFDM systems. Channel estimation and system synchronization of wireless MIMO-OFDM system are discussed in this dissertation based on the above consideration. The main achievements are listed as follows:
     1. Based on the time-varying channels, an interpolation-based MIMO-OFDM channel estimation algorithm is discussed. The system model of MIMO-OFDM over time-varying channels is acquired, and a novel channel estimation method which adapt to time-varying channels is proposed. Because channel parameters change rather slowly with respect to subcarriers, and the intercarrier interference (ICI) and additive white Gaussian noise (AWGN) in the received signal appears as fast-changing function of subcarriers, therefore, the ICI and AWGN in the pilot subcarriers are reduced by lowpass filtering which employed by the proposed method, the performance of the system is effectively improved.
     2. In order to improve the performance of space-time block coded MIMO-OFDM channel estimation, a two-step channel estimation method is proposed in this paper. The Minimum Mean Square Error (MMSE) channel estimation algorithm is used to estimate initial channel parameter values in the first step and these values are used to obtain more accurate values by the proposed method in the second step, so the performance of channel estimation is improved. Simulation results show that the performance of the two-step channel estimation method greatly outperforms compared to the LMS channel estimation algorithm and the RLS channel estimation, while largely decreases the computational complexity and consumption.
     3. Starting from the time-domain signal model of MIMO-OFDM, this paper analyzes the influences of all kinds of errors on the received signal. Then, in order to improve the accuracy of the timing synchronization which obtained by using the conventional method and the utilization of the frequency spectrum, an efficient timing and frequency offset estimation method for MIMO-OFDM systems is presented. This algorithm constructs a special training sequence to gain a better symbol timing performance, and meanwhile requiring only one training symbol, this algorithm can efficiently estimate integer frequency offset and fraction frequency offset. Comparing with conventional algorithms, the proposed method reduces the number of the training symbols, and improves the utilization of the frequency spectrum. Simulation results show that with channel AWGN and Jake, the scheme gives very accurate estimates of symbol timing and carrier frequency offset and provides a very wide range of acquisition for the carrier frequency offset, outperforming other available methods.
     4. IEEE.802.11a Physical Layer Standard is introduced, and the symbol timing algorithm which is suit for IEEE802.11a is discussed. Then, in order to improve the accuracy of the symbol timing synchronization which obtained by using the conventional method, a modified preamble structure for MIMO-OFDM symbol timing synchronization is proposed. The proposed method creates a sharp fall in the delayed correlation of the samples at the last short preamble period by phase reversing the first half of the last short preamble samples and hence helps more reliable estimation of the end of the short preamble or the start of the long preamble boundary especially under high time dispersive channel. Analytical and simulation results show that the proposed timing algorithm can fulfill timing synchronization and has a higher precision than the traditional method.
引文
1 Justin Chuang, Nelson Sollenberger. Beyond 3G wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Communications Magazine. 2000,38(7):78-87
    2 Helmut B, lcskei, A J Paulraj, et al. Fixed Broadband Wireless Access: State of the Art, Challenges, and Future Directions. IEEE Communications Magazine. 2001,39(1):100-108
    3许希斌,赵明,粟欣(译).宽带无线数字通信.电子工业出版社. 2002: 234-235
    4彭林.第三代移动通信技术.电子工业出版社. 2003:402-409
    5 Hyunsoo Cheon, Daesik Hong. Effect of channel estimation error in OFDM-based WLAN. Communications IEEE Letters. 2002,6:190-192
    6 Coleri S, Ergen, M Puri A Bahai A. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting. 2002, 48(3):223-229
    7 Jac-Ho Ryu, Yong-Hwan Lee. Design of implementation-efficient channel estimation filter for wireless OFDM transmission. IEEE Vehicular Technology Conference. Orlando, Florida. 2003, IEEE:1590-1594
    8修学俭,罗涛. OFDM移动通信技术原理与应用.人民邮电出版社, 2003:16-17
    9徐发强,益晓新.无线OFDM系统中基于导频的信道估值器的比较分析.通信学报. 2001, 22(5):17-23
    10 A M Sayeed. Deconstructing multi-antenna fading channels. IEEE Transactions on Signal Processing. 2006,50(10):2563–2579
    11 M J Gans, N Amitay, Y S Yeh, et al. Outdoor BLAST Measurement System at 2.44 GHz: Calibration and Initial Results. IEEE Journal on Selected Areas in Communications. 2003,20(3):570-582
    12 Qinfei Huang, Ghogho M, Freear S. Pilot Design for MIMO-OFDM Systems with Virtual Carriers. IEEE Transactions on Signal Processing. 2009,57(5):2024-2029
    13 C Chuah, D Tse, J Kahn, R A Valenzuela. Capacity scaling in MIMO wireless systems under correlated fading. IEEE Transactions on Information Theory.2002, 48:637-650
    14 X Mestre, J R Fonollosa, A Pags-Zamora. Capacity of MIMO Channels: Asymptotic Evaluation under Correlated Fading. IEEE Journal on Selected Areas in Communications. 2003,21:829-838
    15 T Xiaofeng, C Elena. New detection algorithm of V-BLAST space-time code. Proc. IEEE VTC 2001 Fall. 2001,4:2421 -2423
    16 S Choe. Space-time trellis-codes for high rate wireless CDMA systems. Electronics Letters. 2006,39(6):541-543
    17 W H Wong, Larsson E G. Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters. 2003,39(4):379-381
    18 Debbah M,Muller R R. MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory. 2007,51(5):1667-1690
    19 ASTM E2213, Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems–5GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications, http://www.astm.org, February 2007
    20陈晓敏,朱江.一种新的MIMO无线信道建模方法.通信技术. 2007, 12(40):24-28
    21 T Roman, M Enescu, V Koivunen. Time-domain method for tracking dispersive channels in MIMO OFDM systems. IEEE International Conference on Acoustics, Speech and Signal Processing. Helsinki University of Technology. 2003,IEEE:393-396
    22 S L Loyka. Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters. 2001,5(9):369–371
    23 Semih Serbetli, ylin Yener. MMSE transmitter design for correlated MIMO systems with imperfect channel estimates: ower allocation trade-offs. IEEE Transactions on Wireless Communications. 2006,5(8):2295-2304
    24 S Coleri, M Ergen, A Puri. A study of channel estimation in OFDM systems. IEEE Vehicular Technology Conference. University of California, Berkeley. 2006,IEEE:894-898
    25 Hlaing Minn, Yinghui Li, Al-Dhahir N. PAR-Constrained Training Signal Designs for MIMO-OFDM Channel Estimation in the Presence of Frequency Offsets. IEEE Transactions on Wireless Communications. 2008,7(8):2884-2889
    26 V Veeravalli, Y Liang, A M Sayeed. Correlated MIMO Rayleigh Fading Channels: Capacity, Optimal Signaling and Asymptotics. IEEE Transactions onInformation Theory. 2008,51 (6):2058-2072
    27韩冰,高西奇,尤肖虎. OFDM系统的一种新的信道参数估计方法.应用科学学报. 2004,22(1): 41-45
    28 B Yang, K B Letaief, R S Cheng and Z Cao. Channel estimation for OFDM transmission in multi-path fading channels based on parametric channel modeling. IEEE Transactions on Communications. 2001,49(3):467-479
    29 J Du, Y Li. MIMO-OFDM channel estimation based on subspace tracking. IEEE Vehicular Technology Conference. Orlando, Florida. 2006, IEEE: 1084-1088
    30董亮,曹秀英,毕光国.基于空时分组训练序列的低复杂度MIMO-OFDM信道估计.通信学报. 2006,27(6):57-63
    31 Osvaldo Simeone and Yeheskel Bar-Ness. Pilot-based channel estimation for OFDM systems by tracking the delay-subspace. IEEE Transations on Wireless Communications. 2004,3:315-325
    32 Chun-Jung Wu, Lin, D W. Sparse channel estimation for OFDM transmission based on representative subspace fitting. IEEE VTC 2005. 2005,1:495-499
    33 Wei-Zheng, C Zhou, Y Zhao, M Zhao. Sparse channel estimation for OFDM systems based on pilot signals and MUSIC algorithm. ICWMMN 2006. 2006,1:709-712
    34 Kaibasi R, Falconer D D, Banihashemi A H, Dinis R. A Comparison of Frequency-Domain Block MIMO Transmission Systems. IEEE Transactions on Vehicular Technology. 2009,58(1):165-175
    35居敏,许宗泽. OFDM系统的自适应低秩信道估计.北京航空航天大学学报.2006, 32(3):328-332
    36 Benjamin Friedlander. Random Projections for Sparse Channel Estimation and Equalization. IEEE Conference on Signals, Systems and Computers. Pacific Grove. 2007:453-457
    37李立萍,文忠,陈天麒.多径信号到达角和时延高分辨联合估计算法.电子学报. 2006,34(4):746-750
    38 Gong Y, Letaief K B. Low complexity channel estimation for space-time coded wide band OFDM systems. IEEE Transactions on Wireless Communications. 2003,2:876-882
    39李国松,周正欧.无线OFDM系统中信道冲激响应有效阶数估计.通信学报. 2006,27(1):112-118
    40胡蝶,杨绿溪. OFDM系统中基于导频的时变信道估计.电子与信息学报.2004,26(9):1376-1382
    41姜永权,徐湘明.双选择性衰落信道中一种新的OFDM均衡算法.汕头大学学报. 2006,21(3):59-64
    42 Yi Liu, Yangyang Zhang, Chunlin Ji, Malik W Q, Edwards D J. A Low Complexity Receive-Antenna-Selection Algorithm for MIMO-OFDM Wireless Systems. IEEE Transactions on Vehicular Technology. 2009,58(6):2793-2802
    43 C N Chuah, J M Kahn, D N C Tse. Capacity Scaling in MIMO Wireless Systems under Correlated Fading. IEEE Transactions on Information Theory. 2002,48(3):637–650
    44于晓燕,王加庆,杨绿溪.基于多项式内插的MIMO时间一频率双选择性信道的信道估计.电子与信息学报. 2006,28(5):871-874
    45陈恩庆,陶然,张卫强.一种基于分数阶傅立叶变换的时变信道参数估计方法.电子学报. 2005,33(12):2101-2104
    46 Gorokhov A, Linnartz J P Robust. OFDM receivers for dispersive time-varying channels: equalization and channel acquisition. IEEE Transactions on Communications. 2007,52(4):572-583
    47任晓敏,倪卫明.一种快时变信道下多载波传输系统的信道估计方法.复旦大学学报. 2007,46(1):100-105
    48 Heung-Gyoon Ryu. System design and analysis of MIMO SFBC CI-OFDM system against the nonlinear distortion and narrowband interference. IEEE Transactions on Consumer Electronics. 2008,54(2):368-375
    49 G J Foschini. Layered space-time architecture for wireless communication in a fading environ-ment when using multiple antennas. Bell Labs Tech. J. 1996, 1(2):41–59
    50 Pozidis H, Petropulu A P. Cross-spectrum based blind channel estimation. IEEE Transactions on Signal Processing. 1997,45(12):2977-2992
    51 Hung Nguyen Le, Tho Le Ngoc, Chi Chung Ko. Joint Channel Estimation and Synchronization for MIMO-OFDM in the Presence of Carrier and Sampling Frequency Offsets. IEEE Transactions on Vehicular Techology. 2009,58(6):3075-3081
    52 Jingbo Gao, Xu Zhu, Nandi A K. Non-Redundant Precoding and PAPR Reduction in MIMO-OFDM Systems with ICA Based Blind Equalization. IEEE Transactions on Wireless Communications. 2009,8(6):3038-3049
    53 Feifei Gao, Yonghong Zeng, Nallanathan A, Tung-Sang Ng. Robust subspaceblind channel estimation for cyclic prefixed MIMO-OFDM systems: algorithm, identifiability and performance analysis. IEEE Journal on Selected Areas in Communications. 2008,26(2):378-388
    54 Roy S, Chengyang Li. A subspace blind channel estimation method for OFDM systems without cyclic prefix. IEEE Transactions on Wireless Communications. 2002.1(4):572-579
    55 X Zhou, X Wang. Channel estimation for OFDM systems using adaptive radial basis function networks. IEEE Transactions on Vehicular Technology. 2003, 52(1):48-59
    56 Gorokhov A, Linnartz J P Robust. OFDM receivers for dispersive time-varying channels: equalization and channel acquisition. IEEE Transactions on Communications. 2007,52(4):572-583
    57黄学军,毕厚杰,余松煜. OFDM系统信道盲估计的子空间算法.上海交通大学学报. 2004,38(增刊):6-9
    58 Kongara K P, Ping Heng Kuo, Smith P J, Garth L M. Block-Based Performance Measures for MIMO-OFDM Beamforming Systems. IEEE Transactions on Vehicular Technology. 2009,58(5):2236-2248
    59 G J Foschini. Layered space-time architecture for wireless communication in a fading environ-ment when using multiple antennas. Bell Labs Tech. J. 1996, 1(2):41–59
    60 Q H Spencer, L Swindlehurst, M Haardt. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing. 2007,2(2):461-471
    61 Tugnait J K, Luo W. On Channel Estimation Using Superimposed Training and First-Order Statistics. IEEE Communications Letters. 2003,7(9):413-415
    62徐斌,张建秋,胡波.正交频分复用信道估计的隐藏导频法.信息与电子工程. 2006,4(1):1-5
    63 Wei Lan Huang, Letaief K, Ying Jun Zhang. Cross-Layer Multi-Packet Reception Based Medium Access Control and Resource Allocation for Space-Time Coded MIMO-OFDM. IEEE Transactions on Wireless Communications. 2008,7(9):3372-3384
    64 Yu Fu, Krzymien W A., Tellambura C. Precoding for Orthogonal Space-Time Block-Coded OFDM Downlink: Mean or Covariance Feedback? IEEE Transactions on Vehicular Techology. 2009,58(7):3263-3270
    65 Zhou S, Giannakis G B. Optimal transmitter eigen-Beamforming and Space-Time Block Coding Based on Channel Correlations. IEEE Transactions on Information Theory. 2003,49(7):1673-1690
    66 C.Windpassinger, R F H Fischer, Vencel, J B Huber. Precoding in multiantenna and multiuser communications. IEEE Transactions on Wireless Communications. 2004,(4):1305-1316
    67 Stuber G L, Barry J R, Mclaughin S W, et al. Broadband MIMO-OFDM wireless communications. Proceedings of IEEE. 2006,92(2):271-294
    68 Koffman I, Roman V. Broadband wireless access solutions baded on OFDM access in IEEE 802.16. IEEE Communications Magazine. 2006,40(4):96-103
    69 Ning Chen, G Tong Zhou. Superimposed Training for OFDM: A Peak-to-Average Power Ratio Analysis. IEEE Transactions on Signal Processing. 2006,54(6):2277-2287
    70 Yu Fu, Tellambura C, Krzymien W. Limited-Feedback Precoding for Closed-Loop Multiuser MIMO-OFDM Systems with Frequency Offsets. IEEE Transactions on Wireless Communications. 2008,7(11):4155-4165
    71 Yinghui Li, Hlaing Minn. Robust and consistent pilot designs for frequency offset estimation in MIMO-OFDM systems. IEEE Transactions on Communications. 2008,56(10):1737-1747
    72 G L Stuber, J R Barry, S W McLaughlin, Ye Li, M A Ingram and T G Pratt. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE. 2006,92(2):271-294
    73 G Santella. Frequency and symbol synchronization system of MIMO-OFDM signals: Architecture and simulation results. IEEE Transactions on Vehicular Technology. 2007,37(3):127-133
    74 Seteendam H, Moeneclaey M. Sensitivity of Orthogonal Frequency Division Multiplexed System to Carrier and Clock Synchronization Errors. Signal Processing. 2000,80(7):1217-1229
    75 Van de Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal processing. 1997,45(7):1800-1805
    76 K Shi and E Serpedin. Coarse Frame and Carrier Synchronization of OFDM Systems: A New Metric and Comparison. IEEE Transactions on Wireless Communications. 2004,3(4):163-167
    77 Aoki T, Sandell M. Analysis of pilots for residual frequency offset estimation inMIMO-OFDM systems. IEEE Transactions on Wireless Communications. 2009,8(3):1128-1132
    78 L Navid and K Sayfe. Class of Cyclic-Baased Estimators for Frequency-Offset Estimation of OFDM Systems. IEEE Transactions on Communications. 2000, 48(12):34-38
    79 T J Lv, H Li, and J Chen. Jiont Estimation of Symbol Timing and Carrier Frequency Offset of OFDM Signals Over Fast Time-Carying Multipath Channels. IEEE Transactions on Signal Processing. 2008,53(12):126-131
    80 B G Yang, K B Letaief, R S Cheng, Z G Cao. Timing recovery for OFDM transmission. IEEE Journal on Selected Aareas in Communications. 2000, 18(11):2278-2291
    81 Yun Hee Kim, Iickho Song, Seokho Yoon. An Efficient Frequency offset Estimator for OFDM Systems and Its Performance Characteristics. IEEE Transactions on Vehicular Technology. 2001,50(5):1307-1312
    82 Tureli U, Kivanc D, Hui Liu. Experimental and analytical studies on a high resolution OFDM carrier frequency offset estimator. IEEE Transactions on Vehicular Technology.2001,50(2):629-643
    83 Tureli U, Liu H, Zoltowski MD. OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications. 2000,48(9):1459-1461
    84 F M Gardner. Interpolation in digital modems-Part 1: Fundamentals. IEEE Transactions on Communications. 1993,41(3):118-123
    85 Donghong Lee, Kyungwhoon Cheun. Coarse symbol synchronization algorithms for OFDM systems in multipath channels. IEEE Communication letters. 2002,6(10):446-448
    86 Chunlin Yan, Shaoqian Li, Youxi Tang, Jiayi Fang, et al. A novel frequency offset estimation method for OFDM systems with large estimation range. IEEE Transactions on Broadcasting. 2006,52(1):58-61
    87许魁,沈越泓.分布式MIMO-OFDM系统的捕获同步算法.电子与信息学报. 2008,30(9):32-36
    88 Jing Lei, Tung-Sang Ng. A consistent OFDM carrier frequency offset estimator based on distinctively spaced pilot tones. IEEE Transactions on Wireless Communications. 2004,3(2):588-599
    89 Liu H, Tureli U. A high-efficiency carrier estimator for OFDM coummunications. IEEE Communications Letters. 1998,2(4):104-106
    90 Y Li, J H Winters, and N R Sollenberger. MIMO-OFDM for wirelesscommunications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications. 2002,50(9):1471-1477
    91 H Minn, D I Kim, and V K Bhargava. A reduced complexity channel estimation for OFDM systems with transmit diversity in mobile wireless channels. IEEE Transactions on Communications. 2002,50:799-807
    92 P Kyritsi and D C Cox. Correlation properties of MIMO radio channels for indoor scenarios. IEEE Transactions on Communications. 2002,2:587-592
    93 Telatar E. Capacity of Multi-Antenna Gaussian Channels. European Transactions on Telecommunications. 1999,10(6):585-595
    94赵俊义,贾世楼,孟维晓.基于离散长椭球序列的双择性衰落OFDM信道估计.哈尔滨工业大学学报. 2008,40(增刊1):114~117
    95 A G Orozco-Lugo, M M Lara, and D C McLernon. Channel estimation using implicit training. IEEE Transactions on Signal Processing. 2004, 52(1):240–254
    96 Jorswiech E, Boche H. On Transmit Diversity with Imperfect Channel State Information.IEEE Transactions on Signal Processing. 2002,13(6):2181-2184
    97 Breiling M SLM. Peak-power reduction without explicit side information. IEEE Communications Letters. 2000,5(6):239?241
    98 Gong Yi and K B Letaief. Performance evaluation and analysis of space-time coding in unequalized multipath fading links. IEEE Transactions on Communications. 2002,48(11):1778-1782
    99 Li Y. Simplified channel estimation for OFDM systems with multiple transmitter antennas. IEEE Transactions on Wireless Communications.2007, 1(1):67-75
    100 Gong Yi and K B Letaief. Low complexity channel estimation for space-time coded wideband OFDM systems. IEEE Transactions on Wireless Communications. 2005,2(5):876-882
    101 Yanxiang Jiang, Hlaing Minn, Xiqi Gao, Xiaohu You, Yinghui Li. Frequency Offset Estimation and Training Sequence Design for MIMO-OFDM. IEEE Transactions on Wireless Communications. 2008,7(4):1244-1254
    102梁永明,罗汉文,黄建国. MIMO-OFDM系统中一种基于自适应滤波的信道估计方法.电子与信息学报.2007,29(2):310-313
    103 Miao HL, Markku J. Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation. IEEE Transactions on Vehicular Technology. 2005,54(6):2003-2016
    104 Y R Zheng and C Xiao. Simulation models with correct statistical properties for rayleigh fading channels. IEEE Transactions on Communications. 2003, 51(6):920–928
    105 Kalman R E. A new approach to linear filtering and prediction problems. IEEE Transactions on ASME. 1960, 82:35-45
    106 Whirte Mc. Recursive least-squares minimization using systolic arrays. Realtime Signal Processing VI. 1983:431
    107 H Li, D Liu, J Li, P Stoica. Channel order and RMS delay spread estimation with application to AC power line communications. Digital Signal Processing. 2003,13(2):284–300
    108 Timothy M, Schmidl, Donald C Cox. Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications. 1997, 45(12):1613-1621
    109 Schenk Tcw, Zelst Avan. Implementation of a MIMO-OFDM based wireless LAN System. IEEE Transactions on Signal Processing. 2007,52(2):483-494
    110 Shikai, Erchin Sepedin. Coarse frame carrier synchronization of OFDM systems. IEEE Transaction on Wireless Communication. 2006,36(4):1271-1284
    111 Seung Duk Choi, Jung Min Choi, Jae Hong Lee. An initial timing offset estimation method for OFDM systems in rayleigh fading channel. IEEE Vehicular Technology Conference. Hyatt Regency Montreal. 2006:1-5
    112 Bai Jie, Zhang Jianhua, Liu Ruoju, et al. Timing and multipath delay estimation for a MIMO-OFDM system. Journal of Beijing University of Posts and Telecommunications. 2005,28(5):52-54, 73
    113 Minn H, Zeng M, Bharagva V K. On timing offset estimation for OFDM systems. IEEE Communications Letters. 2000,4(7):242-244
    114 Byungjoon park, Hyunsoo cheon, Changeon kang, Daesik Hong. A simple preamble for OFDM timing offset estimation. 56th IEEE Vehicular Technology Conference. New York. 2002,2:729-732
    115 Magnus Sandell, Darren Mcnamara, Steve Parker. Frequency offset tracking for MIMO-OFMD systems using pilots. IEEE Communications Letters. 2005,1(3): 7-11
    116 Stuber G L. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE. 2004,92(2):271-292
    117 Mody A N, Stuber G L. Synchronization for MIMO-OFDM systems IEEE Global Communications Conference. San Antonio. 2001:1431-1436
    118郑娟,韩静,吕旌阳,吴伟陵,王衍文. MIMO-OFDM系统中高性能同步算法.北京邮电大学学报. 2008,31(1):34-38
    119 Prasetyo, B Y Said, F Aghvami, A H. Fast burst synchronization technique for OFDM-WLAN systems. IEEE Proceedings Communications. 2000,147(5): 292-298
    120 IEEE Std 802.11a-1999, Part 2: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5GHz Band. New York. 1999:67-71
    121 European Telecommunications Standards Insitute(ETSI), Broadband Radio Access Networks(BRAN): High Performance Radio Locaal Area Networks(HIPERLAN Type 2), Physical(PHY) Layer, ETSI TS 101475, v1.3.1, 2001:213-217
    122 IEEE Std 802.11g-2003, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.1GHz Band. New York. 2003:147-151
    123 IEEE Std 802.11g-2003, Part 11: Air Interface for Fixed Broadband Wireless Access Systems: Medium Access Control Modifications and Additional Physical Layer specifications for 2.1GHz. New York. 2003:24-29
    124 Alex S P, Jalloul L M A. Performance Evaluation of MIMO in IEEE802.11e/WiMAX. IEEE Journal of Selected Topics in Signal Processing. 2008,2(2):181-190
    125 S B Bulumulla, S A Kassam. A Systematic Approach to Detecting OFDM Signals in a Fading Channel. IEEE Transactions on Communications. 2000,48(5):725-728
    126陈适,张京梅.基于IEEE802.11a改进的OFDM符号定时算法.武汉理工大学学报. 2009,31(3):61-64
    127 Zhi-xing Yang, Chang-Yong Pan, Meng Han, Lin Yang, Jun Wang. A combined code acquisition and symbol timing recovery method for TDS-OFDM. IEEE Transactions on Broadcasting. 2003,49(3):304-308
    128 Muquet B, Zhengdao Wang, Giannakis G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmission. IEEE Transactions on Communications. 2002,50(12):2136-2148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700