新一代无线通信系统中的MIMO信道建模与多天线设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然第三代移动通信(3G)技术尚待完善,新一代无线通信技术已扑面而来,其无所不在、高质量、高速率的移动多媒体传输目标让人耳目一新。然而,实现这一振奋人心的通信目标并非易事,常规单天线收发通信系统面临严峻挑战。即使采用常规发射分集或接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,多入多出(MIMO)无线通信技术提供了解决该问题的新途径,它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。
     本文以高技术研究发展计划中的“新型天线与分集技术”项目为契机,围绕新一代无线通信中的MIMO信道建模与多天线设计这一主题,在MIMO信道建模、信号相关性分析、多天线的特性对MIMO信道性能的影响、MIMO多天线设计以及MIMO实验数据分析等方面进行了系统而深入地研究。这些研究为准确分析与设计空时编解码和调制解调提供了有力的保障,为评估衰落信号的相关特征奠定了坚实的理论基础,为MIMO多天线设计提供了重要的理论指导与全新的设计思路。
     本文的研究内容与主要贡献可以分为四大层次:
     第一个层次系统地分析MIMO信道中信号的相关性,研究相关性对MIMO信道性能的影响,为MIMO信道建模与天线设计奠定了坚实的理论基础,对MIMO信道容量和误码性能分析具有重要的指导作用。首先,在计及天线单元的方向性、间距和互耦等天线特性以及达波角和角度扩展等信号和环境特征下,推导出天线单元间的空间相关系数的解析通式,并进一步得出在各种达波功率角谱下相关性的解析表达;其次,推导出双分集最大比合并相关瑞利衰落的误码性能的解析表达,使评估信道相关性对分集合并性能的影响更加方便;接着,以平均差错概率的解析上界的形式定量地给出了相关性引起的V-BLAST系统的性能损失,发现收发两端的相关性可以等效归并到发送端,并得出这种性能损失的实质是降低各数据流的有效信噪比,从而得到一种系统链路设计思路:如果接收端的相关性较高,可以通过降低发射端的相关性给以一定程度的补偿。
The third-generation mobile communication (3G) technologies are still expected very much to be improved, however, the new generation wireless communication technologies are emerging and booming, whose target of providing ubiquitous, high quality, and high data rate mobile multimedia transmission sounds much attractive. Of course, the implementation of this unprecedented target is not so easy, and the traditional communication systems using single-antenna transmitting and receiving are confronted with a stiff challenge to achieve this target. The demands of both high capacity and high reliability in the new generation wireless communication systems are not enough to be met even though one of the traditional improved measures, such as the traditional transmit diversity, receive diversity and smart antenna technology, is used. Fortunately, the creative technology, namely Multiple-Input Multiple-Output (MIMO), has provided a novel solution to this problem. MIMO methods make use of multiple-antenna at both the transmit and the receive side of the radio link to multiply the capacity and reliability over more traditional wireless communication systems by fully exploring the space resource within the same frequency band at no additional power expenditure. However, many more problems are emerging and urgently wanted to be solved in MIMO communication systems due to introducing the multiple-antenna comparing with the traditional single-antenna systems.This dissertation, sponsored by the project of the Novel types of antennas and diversity technology which is one part of the National High Technology Research and Development Program (863 program), focuses on the MIMO channel modeling and multiple-antenna designing for new generation wireless communication systems, and is concerned with the systematic and thorough researches on many aspects, such as MIMO channel modeling, signal correlation analysis in MIMO channel, effects of multiple-antenna on the performance of MIMO channel, the design of multiple-antenna and
    analysis of MIMO experimental data. These researches provide powerful guarantee for precise analysis and design both of space-time coding/decoding and modulation/demodulation, and establish a solid theoretical basis for the correlaton evaluations of fading signals, as well as provide both important insights into MIMO antenna design and novel design ideas.The major contributions in this dissertation include four levels.The first level is mainly concerned with the systematic analysis of the signal correlation in MIMO channels. The research on the effects of signal correlation on the performance of MIMO channels establishes the solid theoretical basis both for MIMO channel modeling and MIMO antenna designing, and provide important insights into the analyses of capacity and Bit-Error-Ratio (BER) of MIMO channels. First, the general analytical expressions are obtained for the spatial correlation (SC) between antennas including the antennas properties (such as radiation patterns, antenna spacing, antenna mutual coupling (AMC)), signal and environment properties such as angles of arrival (AOAs), the angular spread (AS) of the scattering signals; the detailed analytical expressions for the SC under various power azimuth spectrum (PAS) distributions (such as uniform, cosine, Gaussian, Laplacian) are further derived. Secondly, the analytical solutions for BER performance for two-branch diversity reception and Maximal-Ratio Combining (MRC) in correlated Rayleigh fading are obtained, with which it is convenient to examine the effects of the fading correlation on the diversity performance. Thirdly, the performance loss due to correlation in V-BLAST is quantified in forms of the analytical upper bound of the average probability of error (APE), and it is found that the correlations at both ends of the wireless link can be incorporated equivalently into only those at the transmit end, which shows the losses essentially reduce the effective signal-to-noise ratio (SNR) of the data substreams. As a result, an idea is obtained for systematic design of wireless link: the high correlation at the receive end can
    be compensated for to a certain degree by reducing the correlation at the transmit end.In the second level, the systematic researches on MIMO channel modeling and the effects of multiple-antenna on the performances of MIMO channel are achieved. First of all, the number of the effective scatterers in propagation environment is modeled as a birth and death process, and then a dynamic MIMO wireless channel model is proposed to investigate the effects of mobility both of scatterers and transceiver antennas on the SC and capacity of MIMO channels, and hence it remedies the deficiency in previous investigations. Next, based on the engineering practical applications and focused on the performances of multiple-antenna, the effects of many aspects such as antenna array orientation, AMC and the channel coupling (CC) between receiver passages, on the performance of MIMO channels are investigated, which establish the solid theoretical basis for the MIMO antenna design. In the research of the impact of antenna array arrangement (orientation) on the performance of MIMO wireless channels, it is obtained that the transmit and receive antenna array should be rotated to make their norm point to the mean direction of arrival (DOA) and departure (DOD) to attain higher capacity, respectively. It is found that the orientation of the array with smaller AS dominates the impact, and that increasing the AS diminishes and even eliminates the impact. In the research of the effects of AMC on the performance of MIMO wireless channels, the general coupling matrix is drived, and the analytical expressions for both the mean received power of each antenna and the SC between antennas in the presence of AMC are also provided. The effects both of the AMC and mean DOA on both the SC and capacity of MIMO channels are analyzed. Both the conditions under which AMC has no effect on the SC and under which there is no power difference are identified, respectively. It is found that under certain conditions AMC has a beneficial decorrelation effect to improve channel capacity. In the research of CC in in a two-branch antenna polarization diversity system by applying a network theory framework, the impacts of CC on both the correlation between diversity branches and the mean power difference therein are analyzed, and it is obtained that the
    correlation increases but the mean power difference may decrease due to CC, and hence it is found that under certain conditions the CC can improve diversity performance. Finally, an equivalent relation of CC is proposed, which explains CC from the point of view of antennas and states that the CC is equivalent to each antenna deviating a complex angle from its orginal position. This equivalent relation bridges CC and the deviation angles of antennas, and helps to analyzing and correcting CC.The third level is mainly concerned with the MIMO antenna design, which is the engineering implementation according to the design rules provided by the theoretical analyses. First of all, through reviewing the existing MIMO antenna design schemes and deeply analyzing the MIMO antenna design, the basic technical requirements for MIMO antennas are obtained and the properties of MIMO antennas are also summarized. The author, cooperating with others, proposes many kinds of MIMO antenna schemes, such as one scheme for basestation antennas, one for terminal antennas and one for handset antennas, and provides each design instance, which has novel design ideas and shows excellent performance. These novel types of antenna designs not only bring progress in antenna design techniques, but also advance development in MIMO communication technology.The last level focuses on the analyses of MIMO experimental data to validate the theoretical researches and to provide information both for improving MIMO channel modeling and optimizing antenna designing. A large numbers of measurement campaigns are performed using the MIMO measurement platform developed by the author and others in indoor and outdoor environments. Some experimental results are provided, i.e., the distribution of the MIMO channel coefficients, the distributions both of the eigenvalues of the channel correlation matrix and channel capacity, the SC of channels, and the BER performance of the MIMO channel transmission, etc. The experimental phenomena and results are analyzed in detail, and hence many important conclusions are obtained, which are helpful to thoroughly
引文
[1] A. J. Paulraj and C. B. Papadias, Space-time processing for wireless communications, IEEE Signal Processing Mag., Nov. 1997, 49-83.
    [2] R. Kohno, Spatial and temporal communication theory using adaptive array, IEEE Personal Commun., 1998, 5: 28-35.
    [3] G. G. Raleigh and J. M. Coiffi, Spatio-temporal coding for wireless comm., IEEE Trans. Commun., 1998, 46(3): 357-366.
    [4] V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rate wireless communication: performance criterion and code construction, IEEE Trans. Information Theory, 1998, 44(2): 744-765.
    [5] G. J. Foschini, G. J. Golden, R. A. Valenzuela, and P. W. Wolniansky, Simplified processing for high spectral efficiency wireless communication employing multi-element arrays, IEEE J. Selected Areas in Commun., 1999, 17: 1841-1852.
    [6] A. F. Naguib, N. Seshadri, and A. R. Calderbank, Increasing data rate over wireless channels, IEEE Signal Processing Mag., 2000, 17(3): 76-92.
    [7] D. M. Pozar, An overview of wireless systems and antennas, Proc. IEEE Antennas and Propagation Society Inte. Symp., July 2000, 2: 566-569.
    [8] W. Mohr, Development of mobile communications systems beyond third generation, Wireless Personal Commun., 2001, 17(2-3): 191-207.
    [9] J. Rapeli, Future directions for mobile communications business, technology and research, Wireless Personal Commun., 2001, 17(2-3): 155-173.
    [10] A. Lozano, F. R. Farrokhi, and R. A. Valenzuela, Lifting the limits in high-speed wireless data access using antenna arrays, IEEE Commun. Mag., 2001, 39: 156-162.
    [11] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, An overview of MIMO communications: a key to gigabit wireless, Proc. IEEE, Feb. 2004, 92(2): 198-218.
    [12] W. C. Lee, Antenna spacing requirement for a mobile radio basestation diversity, Bell syst. Tech. J., 1971, 50: 1859-1876.
    [13] W. C. Lee and Y. S. Yeh, Polarization diversity system for mobile radio, IEEE Trans. Commun., 1972, COM-20(5): 912-923.
    [14] D. C. Cox, Antenna diversity performance in mitigating the effects of portable radio telephone orientation and multipath propagation, IEEE Trans. Commun., 1983, COM-31: 620-628.
    [15] S. Kozono, H. Tsuruhara, and M. Sakamoto, Base station polarization diversity reception for mobile radio, IEEE Trans. Vehi. Tech., 1984, VT-33(4): 301-306.
    [16] R. G. Vaughan and J. B. Andersen, Antenna diversity in mobile communications, IEEE Trans. Vehi. Tech., Nov. 1987, VT-36(4): 149-172.
    [17] R. G. Vaughan, Polarization diversity in mobile communications, IEEE Trans. Vehi. Tech., 1990, 39(3): 177-186.
    [18] A. M. D. Turkmani, S. Mockford, and J. D. Parsons, Antenna diversity for mobile radio reception in rural areas, Proc. Second Inte. Conf. Rural Telecommun., London, UK, Oct. 1990, 105-110.
    [19] J. H. Winters, J. Salz, and R. D. Gitlin, The impact of antenna diversity on the capacity of wireless communication systems, IEEE Trans. Commun., 1994, 42(2,3,4): 1740-1751.
    [20]A.M.D.Turkmani, A.A.Arowojolu, P.A.Jefford, and C.J.Kellett, An experimental evaluation of the performance of two-branch space and polarization diversity schemesat 1800 MHz, IEEE Trans. Vehi. Tech., 1995, 44(2):318-326.
    [21]H.K.Mecklai and R.s.Blum, Transmit antenna diversity for wireless communications, IEEE Inte. Conf. Commun.(ICC'95), June 1995, 3:1500-1504.
    [22] D.Kitchener, J.E.J.Dalley, and M.S.Smith, Antenna diversity in outdoor microcells, 9th Inte. Conf. Antennas and Propagation (ICAP'95), 1995, 2:1-4.
    [23] GWornell and M.D.Trott, Efficient signal processing techniques for exploiting transmit antenna diversity on fading channels, IEEE Trans. Signal Processing, 1997,45(1):191-205.
    [24] GF.Pedersen and S.Skjarris, Influence on antenna diversity for a handheld phone by the presence of a person, Proc. IEEE 47th Vehi. Tech. Conf.(VTC'97), Phoenix, AZ, USA, May 1997,3:1768-1772.
    [25] M.LeFevre, M.A.Jensen, and M.D.Rice, Indoor measurement of handset dual-antenna diversity performance, Proc. IEEE 47th vehi. Tech. Conf. (VTC'97), Phoenix, AZ, USA, May 1997,3:1763-1767.
    [26] GF.Pedersen, S.Widell, and T.Ostervall, Handheld antenna diversity evaluation in a DCS-1800 small cell, Proc. IEEE 8th Personal, Indoor and Mobile Radio Commun.(PIMRC'97), Sept.1997, 2:584-588.
    [27] T.-S.Chu and L.J.Greenstein, A semi-empirical representation of antenna diversity gain at cellular and PCS base stations, IEEE Trans. Commun., 1997, 45(6):644-646.
    [28] P.L.Perini and C.L.Holloway, Angle and space diversity comparisions in different mobile radio environments, IEEE Trans. Antennas and Propagation, 1998, 46(6):764-775.
    [29] S.M.Alamouti, A simple transmit diversity scheme for wireless communications, IEEE J. Selected Areas in Commun., 1998, 16(8):1451-1458.
    [30] GF.Pedersen, J.Nielsen, K.Olesen, and I.Z.Kovacs, Antenna diversity on a UMTS handheld phone, Proc. IEEE 10th Personal, Indoor and Mobile Commun. (PIMRC'99), Sept.l999,1:152-156.
    [31] B.A.Bjerke and J.GProakis, Multiple-antenna diversity techniques for transmission over fading channels, Proc. IEEE Wireless Commun. and Networking Conf. (WCNC'99), Sep.1999, (3): 1038-1042.
    [32] E.Lindskog and A.Paulraj, A transmit diversity scheme for channels with intersymbol interference, Proc. IEEE Inte. Conf. Commun., 2000, 303-311.
    [33] B.A.Bjerke and J.GProakis, Multichannel antenna diversity combining techniques for fading multipath channels, Proc. Conf. Information Science and Systems (CISS'2000), Princeton, NJ,USA, March 2000, FA4-1-FA4-6.
    [34] K.Ogawa and J.Takada, An analysis of the effective performance of a handset diversity antenna-proposal for the diversity antenna gain based on a signal bit-error rate, Proc. IEEE Antennas and Propagation Society Inte. Symp., July 2000,1:294-297.
    [35] J.B.Anderson, Antenna arrays in mobile communication: gain, diversity, and channel capacity, IEEE Antenna Propagation Mag., 2000,42:12-16.
    [36] A.Yongacoglu and M.Siala, Performance of diversity systems with 2 and 4 transmit antennas, Proc. Inte. Conf. Commun. Tech. (WCC-ICCT'00), Aug. 2000, 1:148-151.
    [37] B.A. Bjerke and J.G Proakis, Multiple transmit and receive antenna diversity techniques for wireless communications, Proc. IEEE Adaptive Systems for Signal Processing, Commun. and Control(AS-SPCC'00), Oct. 2000,70-75.
    [38]B.Lindmark and M.Nilsson, On the available diversity gain form different dual-polarized antennas, IEEE J. Selected Areas in Commun., Feb. 2001, 19(2):287-294.
    [39] M.Wennstom and T.Oberg, Transmit antenna diversity in Ricean fading MIMO channels with co-channel interference, Proc. Nordic Radio Symp.(NRS'01), Nynashamn, Sweden, April, 2001.
    [40]Carl B.Dietrich Jr., Kai Dietze, J.Randall Nealy, and Warren L.Stutzman, Spatial, polarization, and pattern diversity for wireless handheld terminals, IEEE Trans. Antennas and Propagation, 2001, 49(9):1271-1281.
    [41]H.Sampath, P.Stoica, and A.Paulraj, Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion, IEEE Trans. Commun., 2001, 49(7):2198-2206.
    [42] GGanesan and P.Stoica, Space-time diversity using orthogonal and amicable orthogonal designs, Wireless Personal Commun., 2001, 18(2): 165-178.
    [43] S.L.Zhou and GB.Giannakis, Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback, IEEE Trans. Signal Processing, 2002, 50(2):2599-2613.
    [44] A.Scaglione, P.Stoica, S.Barbarossa, GB.Giannakis, and H.Sampath, Optimal design for space-time linear precoders and decoders, IEEE Trans. Signal Processing, 2002, 50(2): 1051-1064.
    [45] J.Choi, performance analysis for transmit antenna diversity with/without channel information, IEEE Trans. Vehi. Tech, 2002, 51(1): 101-113.
    [46] B.Hochwald, T.Marzetta, and C.Papadias, A transmitter diversity scheme for wideband CDMA systems based on space-time spreading, IEEE J. Selected. Areas in Commun., 2002, 10(1):48-60.
    [47] R.U.Nabar, H.Bolcskei, V.Erceg, D.Gesbert, and A.J.Paulraj, Performance of multiantenna signaling techniques in the presence of polarization diversity, IEEE Trans.Signal Processing, 2002, 50(10):2553-2562.
    [48] L.Dong, H.Ling, and R.W.Heath.Jr, Multiple-input multiple-output wireless communication systems using antenna pattern diversity, Proc. IEEE Global Telecommun. Conf.(GLOBECOM '02), Nov.2002,1:997-1001.
    [49] S.L.Zhou and GB.Giannakis, Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations, IEEE Trans.Information Theory, 2003, 49(7):1673-1690.
    [50]P.S.H. Leather and D.Parsons, Antenna diversity for UHF handportable radio, Electronics Letters, 2003, 39(73):46-68.
    [51]J.Gong, J.F.Hayes, and M.R.Soleymani, Comparison of capacities of the transmit antenna diversity with the receive antenna diversity in the MIMO scheme, Proc. IEEE Electrical and Computer Engineering (CCECE'03), May 2003, 1:179-182.
    [52] K.Vanganuru and A.Annamalai, Combined transmit and receive antenna diversity for WCDMA in multipath fading channels, IEEE Commun. Letters, 2003, 7(8):352-354.
    [53] J.Jiang, R.M.Buehrer, and W.H.Tranter, Antenna diversity in multiuser data networks, IEEE Trans. Commun., March 2004, 52(3):490-498.
    [54] L.Dong, H.Choo, R.W.Heath Jr., and H.Ling, Simulation of MIMO channel capacity with antenna polarization diversity, IEEE Trans. Wireless Commun., TWLT03-414.
    [55] G. F. Pedersen and J. B. Andersen, Handset antennas for mobile communications: integration, diversity, and performance, http://cpk.auc.dk/antennas/mob8-2004/FP8-25/UrsiRadiosc10.pdf
    [56] B. A. Bjerke, Z. Zvonar, and J. G. Proakis, Antenna diversity combining schemes for WCDMA systems in fading multipath channels, IEEE Trans. Wireless Commun., 2004, 3(1): 97-106.
    [57] P. Mattheijssen, M. H. A. J. Herben, G. Dolmans, and L. Leyten, Antenna-pattern diversity versus space diversity for use at handhelds, IEEE Trans. Vehi. Tech., 2004, 53(4): 1035-1042.
    [58] Y. Ogawa, Y. Nagashima, and K. Itoh, An adaptive antenna system for high-speed digital mobile communication, IEICE Trans Commun, 1992, E79-B(5): 413-420.
    [59] A. R. Lopez, Performance predictions for cellular switched-beam intelligent antenna systems, IEEE Commun. Mag., 1996, (10): 152-154.
    [60] R. H. Roy, An overview of smart antenna technology and its application to wireless communication systems, Proc. IEEE Inte. Conf. Personal Wireless Commun., Dec. 1997, 234-238.
    [61] J. B. Andersen, Intelligent antennas in a scattering environment-an overview, Proc. IEEE Global Telecommun. Conf. (GLOBECOM'98), Nov. 1998, 6: 3199-3203.
    [62] J. Fuhl, A. F. Molish, E. Bonek, Unified channel model for mobile radio systems with smart antennas, IEE Proc-Radar, Sonar Navig., 1998, 145(1): 32-41.
    [63] S. S. Jeng, G. T. Okamoto, G. Xu, and W. J. Vogel, Experimental studies of spatial signature variation at 900 MHz for smart antenna systems, IEEE Trans. Antennas and Propagation, 1998, 46(7): 953-961.
    [64] J. H. winters, Smart antenna for wireless systems, IEEE Personal Commun., 1998, 5(1): 23-27.
    [65] C. B. Dietrich Jr., W. L. Stutzman, B. K. Kim, and K. Dietze, Smart antennas in wireless communications: base-station diversity and handset beamforming, IEEE Antennas and Propagation Mag., 2000, 42(5): 142-151.
    [66] A. U. Bhobe and P. L. Perini, An overview of smart antenna technology for wireless communication, Proc. IEEE Aerospace Conf., March 2001, 2: 2/875-2/883.
    [67] Mingyue Zhai and Yuanan Liu, An overview of spatial channel models used in smart antenna system analysis, Proc. Inte. Conf. Info-tech and Info-net(ICII'01), Beijing, Oct. 2001, 2: 542-548.
    [68] J. C. Liberti and T. S. Rappaport, 无线通信中的智能天线—IS-95和第3代CDMA应用,马凉等译,机械工业出版社,2002.
    [69] K. Z. Huang, J. wang, G. A. Chen, and Y. Z. Wang, Smart antenna and spatial diversity-combining, Proc. IEEE 55th Vehi. Tech. Conf. (VTC'02), May 2002, 1: 340-344.
    [70] S. Bellofiore, C. A. Balanis, J. Foutz, and A. S. Spanias, Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design, IEEE Antennas and Propagation Mag., June 2002, 44(3): 145-154.
    [71] C. Shannon, A mathematical theory of communication, Bell System Technical J., 1948, 27: 379-423, 623-656.
    [72] G. J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Tech. Journal, 1996, 1 (2): 41-59.
    [73] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Commun., 1998, 6(3): 311-335.
    [74] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, V-BLAST: an architecture for realizing very high data rates over rich-scattering wireless channels, Proc. URSI Inte. Syrup. Signal, System and Electronics (ISSSE'98), Pisa, Italy, Sept. 1998, 295-300.
    [75] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture, Electronics Letters, 1999, 35(1): 14-15.
    [76] I. E. Telatar, Capacity of multiple antenna Gaussian channels, ATT-Bell Labs, Murray Hill, Tech. Memo, 1995; European Trans. Telecommun., 1999, 10(6): 585-595.
    [77] T. L. Marzetta and B. M. Hochwald, Capacity of a mobile multiple antenna communication link in Rayleigh flat fading, IEEE Trans. Information Theory, 1999, 45(1): 139-157.
    [78] J. B. Andersen, Array gain and capacity for known random channels with multiple element arrays at both ends, IEEE J. Selected Areas in Commun., 2000, 18(11): 2172-2178.
    [79] C. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, Capacity scaling in MIMO wireless systems under correlated fading, IEEE Trans. Information Theory, 2000, 48(3): 637-650.
    [80] S. Catreux, P. F. Driessen, and L. J. Greenstein, Attainable throughput of an interference-limited multiple-input multiple-output cellular system, IEEE Trans. Commun., 2001, 49(8): 1307-1311.
    [81] N. Chiurtu, B. Rimoldi, and E. Telatar, Dense multiple antenna systems, Proc. Information Theory Workshop, 2001, 2001, 108-109.
    [82] P. J. Smith and M. Shafi, On a Gaussian approximation to the capacity of wireless MIMO systems, IEEE Inter. Conf Commun., 2002, 1: 406-410.
    [83] S. Catreux, P. F. Driessen, and L. J. Greenstein, Data throughputs using multiple-output techniques in a noise-limited cellular enviroment, IEEE Trans. wireless commun., 2002, 1(2): 226-235.
    [84] H. Ge, K. D. Wong, M. Barton, and J. C. Liberti, Statistical characterization of multiple-input multiple-output (MIMO) channel capacity, Proc. IEEE Wireless Commun. and Networking Conf. (WCNC'02), 2002, 2: 789-793.
    [85] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, From theory to practice: an overview of MIMO space-time coded wireless systems, IEEE J. Selected Areas in Commun., 2003, 21(3): 281-302
    [86] L. Zheng and D. N. C. Tse, Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels, IEEE Trans. Information Theory, May 2003, 49(5): 1073-1096.
    [87] A. Hottinen, O. Tirkkonen, and R. Wichman, Multi-antenna transceiver techniques for 3G and beyond, John Wiley Et Sons Ltd. England, 2003.
    [88] P. F. Driessen and G. J. Foschini, On the capacity formula for multiple-input multi-output wireless channels: a geometric interpretation, IEEE Trans. Commun., Feb. 1999, 47(2):173-176.
    [89] S.Loyka and J.Mosig, Channel capacity of n-antenna BLAST architecture, Electronics Letters, Mar.2000, 36(7):660-661.
    [90] E.Biglieri, GCaire, and GTaricco, Limiting performance of block-fading channels with multiple antennas, IEEE Trans. Information Theory, May 2001,47(4): 1273-1289.
    [91]H.Bolcskei, D.Gesbert, and A.J.Paulraj, On the capacity of OFDM-based spatial multiplexing systems, IEEE Trans. Commun., Feb. 2002, 50(2):225-234.
    [92] S.Loyka and A.Kouki, New compound upper bound on MIMO channel capacity, IEEE Commun. Letters, Mar.2002, 6(3):96-98.
    [93] P.Kyritsi and D.C.Cox, Effect of element polarization on the capacity of a MIMO system, Proc. IEEE Wireless Commun. and Networking Conf.(WCNC'02), Mar. 2002, 2:892-896.
    [94] E.Telatar and D.Tse, Capacity and mutual information of wideband multipath fading channels, IEEE Trans. Information Theory, July 2000, 46(4): 1384-1400.
    [95] A.F.Molisch, M.Steinbauer, M.Toeltsch, E.Bonek, and R.S.Thoma, Capacity of MIMO system based on measured wireless channels, IEEE J. Selected Areas in Commun., April 2002, 20(3):561-569.
    [96] R.S.Blum, J.H. Winters, and N.R.Sollenberger, On the capacity of cellular systems with MIMO, IEEE Commun. Letters, June 2002, 6(6):242-244.
    [97] L.Schumacher, K.I.Pedersen, and P.E.Mogensen, From antenna spacings to theoretical capacities-guidelines for simulating MIMO systems, Proc. 13th IEEE Inte. Symp. Personal, Indoor and Mobile Radio Commun.(PIMRC'02), Sept. 2002, 2:587-592.
    [98]A.Lozano and A.M.Tulino, Capacity of multiple-transmit multiple-receive antenna architecture, IEEE Trans. Information Theory, Dec.2002, 48(12):3117-3127.
    [99] S.Loyka and A.Kouki, On MIMO channel capacity, correlations, and keyholes: analysis of degenerate channels, IEEE Trans. Commun., Dec. 2002, 50(12): 1886-1888.
    [100] A.M.Tulino, S.verdu, and A.Lozano, Capacity of antenna arrays with space, polarization and pattern diversity, Proc. IEEE Information Theory Workshop(ITW'03), Paris, France, Mar.2003, 324-327.
    [101] R.S.Blum, MIMO capacity with interference, IEEE J. Selected Areas in Commun., June 2003, 21(5):793-801.
    [102] V.V.Veeravalli, A.Sayeed, and Yingbin Liang, Asymptotic capacity of correlated mimo rayleigh fading channels via virtual representation, Proc. IEEE Inte. Symp. Information Theory, June 2003, 247-247.
    [103] V.Jungnickel, V. Pohl, and C.Von Helmolt, Capacity of MIMO systems with closely spaced antennas, IEEE commun. Letters, Aug. 2003, 7(8):361-363.
    [104] M.Chiani, M.Z.Win, and A.Zanella, On the capacity of spatially correlated MIMO Rayleigh-fading channels, IEEE Trans. Information Theory, Oct. 2003, 49(10):2363-2371.
    [105] Yingbin Liang and V.V.Veeravalli, Correlated MIMO Rayleigh fading channels: capacity and optimal signaling, Proc. 37th Asilomar Conf. Signals, Systems & Computers, Nov. 2003, 1:1166-1170.
    [106] L.Musavian, M.Dohler, M.R.Nakhai, and A.H.Aghvami, Closed-form capacity expressions of orthogonalized correlated MIMO channels, IEEE Commun. Letters, June 2004, 8(6):365-367.
    [107] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport, and J. H. Reed, Overview of spatial channel models for antenna array communication systems, IEEE personal commun. Mag., Feb. 1998, 5(1): 10-22.
    [108] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. Lee Swindlehurst, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel, IEEE J. Selected Areas in Commun., March 2000, 18(3): 347-360.
    [109] K. I. Pedersen, J. B. Andersen, J. P. Kermoal, and P. Mogensen, A stochastic multiple-input multiple-output radio channel model for evaluation of space-time coding algorithms, Proc. IEEE Vehi. Tcch. Conf. (VTC'00 Fall), Boston, MA USA, Sept. 2000, 893-897.
    [110] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, Performance evaluation for scattering MIMO channel models, 34th Asilomar Conf. Signals, Systems and Computers, Oct. 2000, 1: 748-752.
    [111] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, MIMO wireless channels: capacity and performance prediction, Proc. IEEE Global Telecommun. Conf. (GLOBECOM'00), San Francisco, CA, Dec. 2000, 2: 1083-1088.
    [112] A. M. Sayeed, Modeling and capacity of realistic spatial MIMO channels, Proc. IEEE Inte. Conf. Acoustics, Speech, and Signal Processing (ICASSP'01), May 2001, 4: 2489-2492.
    [113] S. L. Loyka, Channel capacity of MIMO architecture using the exponential correlation matrix, IEEE Commun. Letters, Sep. 2001, 5(9): 369-371.
    [114] T. Svantesson, A physical MIMO radio channel model for multi-element multi-polarized antenna systems, Proc. IEEE Vehi. Tech. Conf. (VTC'01 Fall), Oct. 2001, 2: 1083-1087.
    [115] J. W. Wallace and M. A. Jensen, Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models, IEEE 54th Vehi. Tech. Conf. (VTC'01 Fall), Oct. 2001, 2: 1078-1082.
    [116] H. Xu, M. Gans, N. Amitay, R. A. Valenzuela, T. Sizer, R. Storz, D. Taylor, M. McDonald, and C. Tran, MIMO channel capacity for fixed wireless: measurements and models, Proc. IEEE 54th Vehi. Tech. Conf. (VTC'01 Fall), Oct. 2001, 2: 1068-1072.
    [117] J. P. Kermoal, L. Schumacher, F. Frederiksen, and P. E. Mogensen, Polarization diversity in MIMO radio channels: experimental validation of a stochastic model and performance assessment, Proc. IEEE 54th Vehi. Tech. Conf. (VTC'01 Fall), Oct. 2001, 1: 22-26.
    [118] J. Takada, K. Sakaguchi, and K. Araki, Development of high resolution MIMO channel sounder for the advanced modeling of wireless channels, Proc. Asia-Pacific Microwave Conf. (APMC'01), Dec. 2001, 2: 563-568.
    [119] A. Lozano and C. Papadias, Layered space-time receivers for frequency-selective wireless channels, IEEE Trans. Commun., Jan. 2002, 50(1): 65-73.
    [120] S. Loyka and G. Tsoulos, Estimating MIMO system performance using the correlation matrix approach, IEEE Commun. Letters, Jan. 2002, 6(1): 19-22.
    [121] D. B. Smith, An application of a generalised jakes model for mimo channels, Proc. Workshop on the Applications of Radio Science (WARS'02), Leura, NSW Australia, Feb. 2002.
    [122] D. Chizhik, F. R. Farrokhi, J. Ling, and A. Lozano, Effect of antenna separation on the capacity of BLAST in correlated channels, IEEE Commun. Letters, April 2002, 4(11):337-339.
    [123] A.Abdi and M.Kaveh, A space-time correlation model for multielement antenna systems in mobile fading channels, IEEE J. Selected Areas in Commun., April 2002, 20(3):550-560.
    [124] D.Chizhik, G.J.Foschini, M.J.Gans, and R.A.Valenzuela, Keyholes, correlations and capacities of multielement transmit and receive antennas, IEEE Trans. Wireless Commun., April 2002, 1(2):361-368.
    [125] M.Toeltsch, J.Laurila, K.Kalliola, A.F.Molisch, P.Vainikainen, and E.Bonek, Statistical characterization of urban spatial radio channels, IEEE J. Selected Areas in Commun., April 2002, 20(3):539-549.
    [126] P.Soma, D.S.Baum, V.Erceg, R.Krishnamoorthy, and A.J.Paulraj, Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications, Proc. IEEE Inte. Conf. Commun.(ICC'02),April 2002, 1:272-276.
    [127] A.F.Molisch, A generic model for MIMO wireless propagation channels, Proc. IEEE Inte. Conf. Commun.(ICC02), April 2002, 1:277-282.
    [128] J.W.Wallace and M.A.Jensen, Modeling the indoor MIMO wireless channel, IEEE Trans. Antennas and Propagation, May 2002, 50(5):591-599.
    [129] G.J.R.Povey and D.Levey, Multiple input multiple output (MIMO) radio channel models, Third Inte. Conf. 3G Mobile Commun. Technologies, May 2002, 414-417.
    [130] K.Yu, M.Bengtsson, B.Ottersten, D.McNamara, P.Karlsson, and M.Beach, A wideband statistical model for NLOS indoor MIMO channels, Proc. IEEE 55th Vehi. Tech. Conf.(VTC'02 Spring), May 2002, 1:370-374.
    [131] A.F.Molisch, A channel model for MIMO systems in macro- and microcellular environments, Proc. IEEE 55th Vehi. Tech. Conf.(VTC'02), May 2002,2:655-659.
    [132] A.Van Zelst, J.S.Hammerschmidt, A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels, Proc. 27th Inte. Union of Radio Science(URSI) General Assembly, Maastricht, the Netherlands, Aug. 2002.
    [133] J.P.Kermoal, L.Schumacher, K.I.Pedersen, P.E.Mogensen, and F.Frederiksen, A stochastic MIMO radio channel model with experimental validation, IEEE J. Selected Areas in Commun., Aug.2002, 20(6): 1211-1226.
    [134] D.W.Bliss, K.W.Forsythe, A.O.III.Hero, and A.F.Yegulalp, Environmental issues for MIMO capacity, IEEE Trans. Signal Processing, Sep.2002, 50(9):2128-2142.
    [135] H.Xu, D.Chizhik, H.Huang, and R.Valenzuela, A wave-based wideband MIMO channel modeling technique, Proc. IEEE 13th Inte. Symp. Personal, Indoor and Mobile Radio Commun.(PIMRC'02), Sept. 2002, 4:1626-1630.
    [136] T.Svantesson, A double-bounce channel model for multi-polarized MIMO systems, Proc. IEEE 56th Vehi. Tech. Conf.(VTC'02 Fall), Sep.2002, 2:691-695.
    [137] A.M.Sayeed, Deconstructing multiantenna fading channels, IEEE Trans. Signal processing, Oct. 2002, 50(10):2563-2579.
    [138] K.Yu and B.Ottersten, Models for MIMO propagation channels:a review, Wiley J. Wireless Commun. and Mobile Computing, Special issue on adaptive antennas of MIMO systems, Nov. 2002, 2(7):653-666.
    [139] D.Gesbert, H.Bolcskei, D.A.Gore, and A.J.Paulraj, Outdoor MIMO wireless channels: models and performance prediction, IEEE Trans. Commun., Dec. 2002, 50(12):1926-1934.
    [140] M.Lienard, MIMO channels in tunnels: experimental approach and stochastic model, Proc. 10th Inte. Conf. Telecommun.(ICT'03), Feb. 2003, 2:1531-1535.
    [141] Z.Latinovic, A.Abdi, and Y.Bar-Ness, A wideband space-time model for MIMO mobile fading channels, Proc. WCNC'03, March 2003, 1:338-342.
    [142] Chengshan Xiao, Jingxian Wu, Sang-Yick Leong, Y.R.Zheng, and K.B.Letaief, A discrete-time model for spatio-temporally correlated MIMO WSSUS multipath channels, Proc. WCNC'03, March 2003, 1:354-358.
    [143] A.F.Molisch, Effect of far scatterer clusters in MIMO outdoor channel models, Proc. IEEE 57th Vehi. Tech. Conf.(VTC'03 Spring),April 2003, 1:534-538.
    [144] Z.Tang and A.S.Mohan, A correlated indoor MIMO channel model, Proc. IEEE Electrical and Computer Engineering(CCECE'03), May 2003, 3:1889-1892.
    [145] J.W.Wallace and M.A.Jensen, Validation of parameteric directional MIMO channel models from wideband FDTD simulations of a simple indoor environment, Proc. IEEE Antennas and Propagation Society Inte. Symp., June 2003, 2:535-538.
    [146] Jung Ha Kim, Ki Hong Kim, Se Woong Kwon, and Young Joong Yoon, A study on the indoor propagation channel model for MIMO system, Proc. IEEE Antennas and Propagation Society Inte. Symp., June 2003, 2:118-121.
    [147] C.Oestges, V.Erceg, and A.J.Paulraj, A physical scattering model for MIMO macrocellular broadband wireless channels, IEEE J. Selected Areas in Commun., June 2003, 21(5):721-729.
    [148] C.Pietsch, S.Sand, W.GTeich, and J.Lindner, Modeling and performance evaluation of multiuser MIMO systems using real-valued matrices, IEEE J. Selected Areas in Commun., June 2003, 21(5):744-753.
    [149] H.Ozcelik, M.Herdin, W.Weichselberger, J.Wallace, and E.Bonek, Deficiencies of 'Kronecker' MIMO radio channel model, Electronics Letters, Aug. 2003, 39(16):1209-1210.
    [150] A.S.Mohan and Zhongwei Tang, A hybrid indoor MIMO channel model using signal clusters for wireless communication, Proc. IEEE 14th Personal, Indoor and Mobile Radio Commun.(PIMRC'03), Sep.2003, 2:1815-1818.
    [151] M;Cabrera, J.Vidal, and M.Payaro, 2GHz MIMO channel model from experimental outdoor data analysis in UMTS, Proc. IEEE 58th Vehi. Tech. Conf.(VTC'03 Fall), Oct.2003, 2: 1172-1176.
    [152] C.Oestges, D.Vanhoenacker-Janvier, and A.J.Paulraj, Dual-polarized MIMO macro-cellular wireless transmissions: modeling, validation and analysis, Proc. IEEE 58th Vehi. Tech. Conf.(VTC'03 Fall), Oct.2003, 1: 378-382.
    [153] C.Waldschmidt, C.Kuhnert, S.Schulteis, and W.Wiesbeck, Analysis of compact arrays for MIMO based on a complete RF system model, Proc. IEEE Topic Conf. Wireless Commun. Tech., Oct. 2003, 286-287.
    [154] Jeng-Shiann Jiang and M.A.Ingram, Distributed source model for short-range MIMO, Proc. IEEE 58th Vehi. Tech. Conf.(VTC'03 Fall), Oct.2003, 1:357-362.
    [155] J.Wallace, H.Ozcelik, M.Herdin, E.Bonek, and M.Jensen, Power and complex envelope correlation for modeling measured indoor MIMO channels: a beamforming evaluation, Proc. IEEE 58th Vehi. Tech. Conf.(VTC'03 Fall), Oct.2003, 1:363-367.
    [156] A.F.Molisch, A generic model for MIMO wireless propagation channels in macro- and microcells, IEEE Trans. Signal Processing, Jan.2004, 52(1):61-71.
    [157] Sang-Yick Leong, Y.R.Zheng, and Chengshan Xiao, Space-time fading correlation functions of a 3-D MIMO channel model, Proc. IEEE Wireless Commun. and Networking Conf.(WCNC'04), March 2004, 2:1127-1132.
    [158] Shuangquan Wang, K.Raghukumar, A.Abdi, J.Wallace, and M.Jensen, Indoor MIMO channels: a parametric correlation model and experimental results, Proc. IEEE/Sarnoff Symp. Advances in Wired and Wireless Commun., April 2004,1-5.
    [159] G.J.Byers and F.Takawira, Spatially and temporally correlated MIMO channels: modeling and capacity analysis, IEEE Trans. Vehi. Tech., May 2004, 53(3):634-643.
    [160] C.Oestges, V.Erceg, and A.J.Paulraj, Propagation modeling of MIMO multipolarized fixed wireless channels, IEEE Trans. Vehi. Tech., May 2004, 53(3):644-654.
    [161] K.Yu, M.Bengtsson, B.Ottersten, D. McNamara, P.Karlsson, and M.Beach, Modeling of wide-band MIMO radio channels based on NLoS indoor measurements, IEEE Trans. Vehi. Tech., May 2004, 53(3):655-665.
    [162] C.Waldschmidt, S.Schulteis, and W.Wiesbeck, Complete RF system model for analysis of compact MIMO arrays, IEEE Trans. Vehi. Tech., May 2004, 53(3):579-586.
    [163] Xu Hao, D.Chizhik, H.Huang, and R.Valenzuela, A generalized space-time multiple-input multiple-output (MIMO) channel model, IEEE Trans. Wireless Commun., May 2004, 3(3):966-975.
    [164] M.K.Ozdemir, H.Arslan, and E.Arvas, A narrowband MIMO channel model with 3-D scattering, Proc. IEEE Inte. Conf. Commu., June 2004, 5:2929-2933.
    [165] P.J.Smith and M.Shafi, The impact of complexity in MIMO channel models, Proc. IEEE Inte. Conf. Commun., June 2004, 5:2924-2928.
    [166] P.Vainikainen, K.Sulonen, J.Kivinen, P.Suvikunnas, L.Vuokko, J.Salo, V.-M.Kolmonen, X.Zhao, and H.El-Sallabi, Experimental MIMO propagation modeling and antenna system evaluation, Proc. IEEE Antennas and Propagation Society Symp., June 2004, 2:1271-1274.
    [167] C.Xiao, J.Wu, S.-Y.Leong, Y.R.Zheng, and K.B.Letaief, A discrete-time model for triply selective MIMO Rayleigh fading channels, IEEE Trans. Wireless Commun., Sept. 2004, 3(5): 1678-1688.
    [168] S.-H.Oh and N.-H. Myung, MIMO channel estimation method using ray-tracing propagation model, Electronics Letters, Oct.2004, 40(21): 1350-1351.
    [169] Xin Li and Zai-ping Nie, Dynamic MIMO scattering wireless channel model and performance, Proc. IEEE Inte. Conf. Commun., Circuits and Systems (ICCCAS'04), June 2004, 1:269-272.
    [170] 李忻,聂在平,移动性对MIMO无线信道性能的影响,电子科大学报,2004年10月第33卷第5期.(Oct.2004,33(5):503-506.)
    [171] 李忻,聂在平,动态MIMO散射无线信道模型及性能分析,投电子学报.
    [172] Xin Li and Zai-ping Nie, Comment on "Outdoor MIMO wireless channels: models and performance prediction", Submitted to IEEE transaction on Comm.
    [173] Xin Li and Zai-ping Nie, A dynamic MIMO scattering channel model, Submitted to Microwave and Optical Technology Letters.
    [174] W.C.-Y.Lee, Effects on correlation between two mobile radio base-station antennas, IEEE Trans. Commun., 1973, 21(11): 1214-1224.
    [175] F.Adachi, M.Feeney, A.Williamson, and J.Parsons, Cross correlation between the envelopes of 900 MHz signals received at a mobile radio base station site, Proc. IEE, Oct. 1986, 133(6):506-512.
    [176] M.Loughrey, Spatial correlation effects in direction finding algorithms, IEE Colloq. Passive Direction Finding, Jan. 1989, 4/1-4/5.
    [177] T.Tage, K.Tsunoda, and H.Imahori, Correlation properties of antenna diversity in indoor mobile communication environments, Proc. IEEE 39th Vehi. Tech. Conf., San Francisco, USA, 1989, pp.446-451.
    [178] M.T.Feeney and J.D.Parsons, Cross-correlation between 900 MHz signals received on vertically separated antennas in small-cell mobile radio systems, IEE Proc. Commun., Speech and Vision, April 1991, 138(2):81-86.
    [179] E.Perahia and GJ.Pottie, On diversity combining for correlated slowly flat-fading Rayleigh channels, Proc. IEEE Inte. Conf. Commun.(ICC'94), New Orleans, LA USA, May 1994, 1:342-346.
    [180] J.Salz and J.Winters, Effect of fading correlation on adaptive arrays in digital mobile radio, IEEE Trans. Vehi. Tech., Nov. 1994, 43(4): 1049-1057.
    [181] J.R.Abeysinghe and J.A.Robert, Bit error rate performance of antenna diversity systems with channel correlation, Proc.IEEE Global Telecommun. Conf. (GLOBECOM'95), Nov.1995, 3:2022-2026.
    [182] P.Nobles and F.Halsall, Spatial correlation analysis of indoor radiowave propagation measurements for wireless LANs, IEE Colloq. Radio Commun. at Microwave and Millimetre Wave Freq., Dec. 1996, 10/1-10/5.
    [183] K.Pedersen, P.Mogensen, and B.Fleury, Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance, Proc. 48th IEEE Inte. Conf. Vehi. Tech., May 1998, 2:719-723.
    [184] W.K.M.Ahmed and P.J.Mclane, Achievable performance over fading channels with antenna diversity, Proc. Wireless Commun. and Networking Conf.(WCNC99), New Orleans, LA, USA, Sept. 1999,1:25-29.
    [185] D.S.Shiu, GJ.Foschini, M.J.Gans, and J.M.Kahn, Fading correlation and its effect on the capacity of multielement antenna systems, IEEE Trans.Commun., Mar.2000, 48(3):502-513.
    [186] Liquan Fang, Guoan Bi, and A.C.Kot, Performance of antenna diversity reception with correlated Rayleigh fading signals, Proc. IEEE Inte. Conf. Commun.(ICC'99), Vancouver, BC Canada, June 1999, 3:1593-1597.
    [187] Y.Karasawa and H.Iwai, Formulation of spatial correlation statistics in Nakagami-Rice fading environments, IEEE Trans. Antennas and Propagation, Jan. 2000, 48(1): 12-18.
    [188] Jianxia Luo and J.R.Zeidler, A statistical simulation model for correlated Nakagami fading channels, Proc. Inte. Conf. Commun. Tech.(ICCT'00), Aug. 2000, 2:1680-1684.
    [189] J.P.Kermoal, L.Schumacher, P.E.Mogensen, and K.I.Pedersen, Experimental investigation of correlation properties of MIMO radio channels for indoor picocell scenarios, Proc. 52nd IEEE Vehi. Tech. Conf.(VTC'00 Fall), Sept. 2000, 1:14-21.
    [190] M.Ivrlac, T.Kurpjuhn, C.Brunner, and W.Utschick, Efficient use of fading correlations in MIMO systems, in Proc. IEEE VTC'01., Oct.2001, 1763-67.
    [191] R.S.Roberts, P.Sweeney, and S.R.Saunders, Impact of spatial correlation in the fading channel on the performance of a multi-antenna system, IEE Seminar on MIMO: Commun. Systems from Concept to Implementations (Ref. No. 2001/175), Dec.2001, 12/1-12/5
    [192] K.Dietze, C.B.Dietrich Jr., and W.L.Stutzman, Analysis of a tow-branch maxiaml ratio and selection diversity system with unequal SNRs and correlated inputs for a Rayleigh fadng channel, IEEE Trans. Wireless Commun., 2002,1(2):274-289.
    [193] X.Dong and N.C.BeauIieu, Optimal maximal ratio combining with correlated diversity branches. IEEE Commun. Letters, 2002, 6(1):22-24.
    [194] M.C.Leifer, Signal correlations in coupled cell and MIMO antennas, Proc. IEEE Antennas and Propagation Society Inte. Symp., San Antonio, June 2002, 3:194-197.
    [195] Jiann-An Tsai, R.M.Buehrer, and B.D.Woerner, The impact of AOA energy distribution on the spatial fading correlation of linear antenna array, Proc. 55th IEEE Vehi. Tech. Conf.(VTC'02 Spring), May 2002, 2:933-937.
    [196] Jiann-An Tsai, R.M.Buehrer, and B.D.Woerner, Spatial fading correlation function of circular antenna arrays with laplacian energy distribution, IEEE Commun. Letters, May 2002, 6(5): 178-180.
    [197] R.M.Buehrer, The impact of angular energy distribution on spatial correlation, Proc. IEEE 56th Vehi. Tech. Conf. (VTC'02-Fall), Sept.2002. 2:1173-1177.
    [198] P.J.Sartori, K.L.Baum, and F.W.Vook, Impact of spatial correlation on the spectral efficiency of wireless OFDM systems using multiple antenna techniques, Proc. IEEE 55th Vehi. Tech. Conf.(VTC spring'02), May 2002, 3:1150-1154.
    [199] D.P.McNamara, M.A.Beach, and P.N.Fletcher, Spatial correlation in indoor MIMO channels, Proc. IEEE 13th Personal, Indoor and Mobile Radio Commun.(PIMRC'02), Sept. 2002, 1:290-294.
    [200] P.D.Teal, T.D.Abhayapala, and R.A.Kennedy, Spatial correlation for general distributions of scatterers, IEEE Signal Processing Letters, Oct. 2002, 9(10):305-308.
    [201] T.Abe, H.Fujii, and S.Tomisato, A hybrid MIMO system using spatial correlation, Proc. 5th Wireless Personal Multimedia Commun., Oct. 2002, 3:1346-1350.
    [202] M.Kang and M.-S.Alouini, Impact of correlation on the capacity of MIMO channels, Proc. IEEE Inte. Conf. Commun. (ICC'2003), Anchorage, AK, May 2003, 2623-2627.
    [203] D.P.Palomar and M.A.Lagunas, Joint Transmit-receive space-time equalization in spatially correlated MIMO channels: a beamforming approach, IEEE J. Selected Areas in Commun., June 2003, 21:730-743.
    [204] H.M.Jones, A.Saha, and T.D.Abhayapala, The effect of finite antenna separation on the performance of spatial diversity receivers, Proc. 7th Signal Processing and Its Applications, July 2003, 2:515-518.
    [205] J.Zhou, S.Sasaki, S.Muramatsu, H.Kikuchi, and Y.Onozato, Spatial correlation for a circular antenna array and its applications in wireless communications, Proc. IEEE Global Telecommun. Conf.(GLOBECOM'03), Dec. 2003,2:1108-1113.
    [206] J.Hamalainen and R.Wichman, On correlations between dual-polarized base station antennas, Proc. IEEE Global Telecommun. Conf.(GLOBECOM'03), Dec. 2003, 22(1):1664-1668.
    [207] E.A.Jorswiec and A.Sezgin, Impact of spatial correlation on the performance of orthogonal space-time block codes, IEEE Commun. Letters, Jan. 2004, 8(1):21-23.
    [208] M.Denis, V.Vasudevan, K.Chandra, and C.Thompson, Characterizing spatial correlation in indoor channels, Proc. IEEE Wireless Commun. and Networking Conf.(WCNC'04), March 2004, 3:1850-1855.
    [209] M.K.Ozdemir, E.Arvas, and H.Arslan, Dynamics of spatial correlation and implications on MIMO systems, IEEE Commun. Mag., June 2004, 42(6):S14-S19.
    [210] V.I.Piterbarg and K.T.Wong, Analytically-derived explicit closed-form spatial-correlation function for the landmobile uplink with scatterers located stochastically as non-homogeneous poisson, Proc. IEEE Inte. Conf. Commun., June 2004, 6:3379-3383.
    [211] Xin Li and Zai-ping Nie, Comment on "Spatial fading correlation function of circular antenna arrays with laplacian energy distribution", IEEE Commun. Letters, April 2004, 8(5): 295-295.
    [212] Xin Li and Zai-ping Nie, Spatial fading correlation of circular antenna arrays with Laplacian PAS in MIMO channels, Proc. IEEE Antennas and Propagation Society Symp., June 2004, 4:3697-3700.
    [213] Xin Li and Zai-ping Nie, Spatial correlation of circular antenna arrays in Nakagami fading channels, Proc. IEEE Inte. Conf. Commun., Circuits and Systems(ICCCAS'04), June 2004, 1: 181-184.
    [214] 李忻,聂在平,MIMO信道中衰落信号的空域相关性评估,第九届全国青年通信学术会议论文集,重庆,2004年5月,电子工业出版社,46-52.
    [215] 李忻,聂在平,MIMO信道中衰落信号的空域相关性评估,电子学报,2004年12月第32卷第12期,82-86.(Dec.2004,32(12):82-86.)
    [216] Xin Li and Zaiping Nie, Error probability analysis for V-BLAST in correlated rayleigh channels, Proc. IEEE Inte. Conf. Commun., Circuits and Systems (ICCCAS'04), Chengdu, China, June 27-29,2004, 1 : 154-157.
    [217] Xin Li and Zai-ping Nie, Performance losses in V-BLAST due to correlation, to appear IEEE Antennas and Wireless Propagation Letters.
    [218] 李忻,聂在平,基于天线阵列的一种SCDMA系统干扰消除技术研究,通信学报,2003年4月第24卷第4期,57-62.(April 2003,24(4):57-62.)
    [219] 李忻,聂在平,最大比合并双分集接收相关瑞利衰落信号的误比特性能,电波科学学报,录用待出.
    [220] Xin Li and Zaiping Nie, Effect of array orientation on performance of MIMO wireless channels, Proc. Progress in Electromagnetics Research Symp. (PIERS)'04, Nanjing, China, Aug. 28-31,2004, 375.
    [221] Xin Li and Zaiping Nie, Impact of array orientation on performance of MIMO wireless channels, Proc. IEEE Int. Conf. Commun., Circuits and Systems (ICCCAS)'04, Chengdu, China, June 27-29,2004, 1:254-257.
    [222] Xin Li and Zai-ping Nie, Effect of array orientation on performance of MIMO wireless channels, to appear IEEE Antennas and Wireless Propagation Letters.
    [223] 李忻,聂在平,天线阵列方位对MIMO无线信道性能的影响,电子与信息学报,录用待出.
    [224] H.E.King, Mutual impedance of unequal length antennas in echelon, Proc. IRE Trans., Antennas and Propagation, July 1957, 45:306-313.
    [225] I.J.Gupta and A.K.Ksienski, Effect of mutual coupling on the performance of adaptive arrays, IEEE Trans. Antennas and Propagation, Sep.1983, AP-31(5):785-791.
    [226] C.A.Balanis, Antenna Theory: Analysis and Design, John Wiley and Sons, 2nd edition, 1997.
    [227] A.M.Wyglinski and S.D.Blostein, Antenna array mutual coupling effects on cellular CDMA communication systems, Proc. the Queen's 20th Biennial Symp. Commun., Kingston, ON, Canada, May 2000, 181-185.
    [228] T.Svantesson and A.Ranheim, Mutual coupling effects on the capacity of multielement antenna systems, Proc. IEEE Inte. Conf., Acoustics, Speech, and signal processing(ICASSP'01), May 2001, 4:2485-2488.
    [229] R.Janaswamy, Effect of element mutual coupling on the capacity of fixed length linear arrays, IEEE Antennas and Wireless prop. Lett., 2002, 1:157-160.
    [230] C.Waldschmidt, J.V.Hagen, and W.Wiesbeck, Influence and modelling of mutual coupling in MIMO and diversity systems, Proc.IEEE Antennas and Prop. Soci. Inte. Symp., Jun.2002, 3:190-193.
    [231] M.L.Morris, M.A.Jensen, The impact of array configuration on MIMO wireless channel capacity, Proc. Antennas and Propagation Society Inte. Symp., June 2002, 3:214-217.
    [232] P.N.Fletcher, M.Dean, and A.R.Nix, Mutual coupling in multi-element array antennas and its influence on MIMO channel capacity, Eletronics Letters, Feb. 2003, 39(4):342-344.
    [233] P.Almers, F.Tufvesson, P.Karlsson, A.F. Molisch, The effect of horizontal a rrayorientation on MIMO channel capacity, Proc. 57th IEEE Vehi. Tech. Conf. (VTC'03-Spring), April 2003,1:34-38.
    [234] B.Clerckx, D.Vanhoenacker-Janvier, C.Oestges, and L.Vandendorpe, Mutual coupling effects on the channel capacity and the space-time processing of MIMO communication systems, Proc. IEEE Inte. Conf., Commun (ICC.'03), May 2003, 4:2638-2642.
    [235] M.J.Fakhereddin and K.R.Dandekar, Combined effect of polarization diversity and mutual coupling on MIMO capacity, Proc. IEEE Antennas and Propagation Society Inte. Symp.(APS'03), June 2003, 2:495-498.
    [236] M.K.Ozdemir, H.Arslan, and E.Arvas, A mutual coupling model for MIMO systems, Proc. IEEE Topic Conf. Wireless Commun. Technology, Oct. 2003, 306-307.
    [237] M.K.Ozdemir, H.Arslan, and E.Arvas, Mutual coupling effect in multi-antenna wireless communication systems, Proc. IEEE Global Telecommun. Conf.(GLOBECOM'03), Dec.2003, 2:829-833.
    [238] N.Chiurtu, V.Pauli, B.RimoIdi, and E. Telatar, Impact of correlation and coupling on the capacity of MIMO systems, Proc. 3rd IEEE Inte. Symp. Signal Processing and Information Technology (ISSPIT'03), Dec. 2003, 154-157.
    [239] M.L.Morris and M.A.Jensen, Rigorous modeling of antenna and circuit coupling in MIMO systems: application to handheld devices, Proc.IEEE Antennas and Propagation Society Symp., June 2004, 2:1255-1258.
    [240] J.W.Wallace and M.A.Jensen, Mutual coupling in MIMO wireless systems: a rigorous network theory analysis, IEEE Trans. Wireless Commun., July 2004, 3(4):1317-1325.
    [241] Xin Li and Zai-ping Nie, Effect of mutual coupling on performance of MIMO wireless channels, Proc. 4th IEEE Inte. Conf. Microwave and Millimeter Wave Technology (ICMMT'04), Beijing, China, Aug. 18-21,2004, 150-153.
    [242] Xin Li and Zai-ping Nie, Mutual Coupling Effects on the Performance of MIMO Wireless Channels, to appear in IEEE Antennas and Wireless Propagation Letters.
    [243] Xin Li and Zai-ping Nie, Effect of Mutual Coupling on Performance of MIMO Wireless Channels, Submitted to IEEE Trans. Vehi. Tech..
    [244] 李忻,聂在平,天线互耦对MIMO无线信道性能的影响,2004年全国博士生学术论坛,四川成都,2004年9月,电子科学与技术分论坛,17-20.
    [245] 李忻,聂在平,双极化天线分集系统中的通道互耦分析,2004’中国西部青年通信学术会议,2004年12月,四川,成都,电子科技大学.
    [246] 李忻,聂在平,正交极化天线分集系统中通道互耦的一种等效关系,2004’中国西部青年通信学术会议,2004年12月,四川,成都,电子科技大学.
    [247] Xin Li and Zai-ping Nie, Channel coupling in orthogonal polarization diversity systems and its influence on diversity gain, Submitted to Electronics Letters.
    [248] Xin Li and Zai-ping Nie, Equivalent relation of channel coupling in orthogonal polarization diversity systems, Submitted to IEE Proc. Microwave, Antennas and Propagation (MAP).
    [249] 李忻,聂在平,天线极化分集系统中通道互耦分析,投电子学报.
    [250] P.C.F.Eggers, J.Toftgard, and A.M.Oprea, Antenna systems for base station diversity in urban small and micro cells, IEEE J. Selected Areas in Commun., 1993,11(7):1046-1057.
    [251] P.Petrus, J.Reed, and T.Rappaport, Effect of directional antennas at the base station on the Doppler spectrum, IEEE Commu. Letters, Mar.1997, 1(2):40-42.
    [252] N.Kuga, H.Arai, and N.Goto, A notch-wire composite antenna for polarization diversity reception, IEEE Trans. Antennas and Propagation, 1998, 46(6):902-906.
    [253] F.Demmerle and W.Wiesbeck, A biconical multibeam antenna for space-division multiple access, IEEE Trans. Antennas and Propagation, June 1998, 46(6):782-787.
    [254] R.Vaughan, Switched parasitic elements for antenna diversity, IEEE Trans. Antennas and Propagation, 1999,47(2):399-405.
    [255] R.W.Heath Jr and A.Paulraj, Multiple antenna arrays for transmitter diversity and space-time coding, Proc. IEEE Conf. Commun.(ICC'99), June 1999, 1:36-40.
    [256] J.Juntunen, K.Nikoskinen, and K.Heiska, Antenna diversity array design for mobile communication systems, Proc. IEEE Inte. Conf. Phased Array Systems and Technology, May 2000, 65-67.
    [257] T.Svantesson, On the potential of multimode antenna diversity, Proc. IEEE 52nd Vehi. Tech. Conf.(VTC'00), Sept.2000, 5:2368-2372.
    [258] T.Svantesson, An antenna solution for MIMO channels: the multimode antenna, Proc. 34th Asilomar Signals, Systems and Computers, Oct. 2000, 2: 1617-1621.
    [259] N.Kuga and H.Arai, A patch-slot composite antenna for VH-polarization diversity base stations, Proc. Asia-Pacific Microwave Conf.(APMC'00), Sydney, Australia, Dec. 2000, 1407-1410.
    [260] M.Karaboikis, C.Soras, G.Ysachtsiris, and V.Makios, Three-branch antenna diversity systems on wireless devices using various printed monopoles, Proc. 11th Inte. Council on Systems Engineering (INCOSE'01), Sydney, Australia, July 2001.
    [261] M.Stoytchev, H.Safar, A.L.Moustakas, and S.Simon, Compact antenna arrays for MIMO applications, Proc. Antennas and Propagation Society Inte. Symp.(APS'01), July 2001, 3: 708-711.
    [262] M.Wennstrom and T.Svantesson, An antenna solution for MIMO channels: the switched parasitic antenna, Proc. IEEE 12th Personal Indoor and Mobile Radio Commun.(PIMRC'01), Sept. 2001, San Diego, USA, 1: A-159-A-163.
    [263] V.Jungnickel, V.Pohl, H.Nguyen, U.Kruger, T.Haustein, and C.von Helmolt, High capacity antennas for MIMO radio systems, Proc. 5th Inte. Symp. Wireless Personal Multimedia Commun., Oct. 2002, 2:407-411.
    [264] J.B.Andersen and B.N.Getu, The MIMO cube - a compact MIMO antenna, Proc. 5th Inte. Symp. Wireless Personal Multimedia Commun., Oct. 2002, 1:112-114.
    [265] H.T.Hui and E.K.N.Yung, Signal correlation of two spatially closed normal-mode helical antennas in a multipath environment for diversity reception, Proc. IEEE Antennas and Propagation Society Inte. Symp., June 2003,3:650-653.
    [266] C.Borja, A.Algans, M.royo, J.Anguera, and C.Puente, Impact of the antenna technology and the antenna parameters on the performance of MIMO systems, Proc. IEEE Antennas and Propagation Society Inte. Symp., June 2003,3:507-510.
    [267] M.Karaboikis, C.Soras, G.Tsachtsiris, and V.Makios, Four-element printed monopole antenna systems for diversity and MIMO terminal devices, Proc. 17th Inte. Conf. Applied Electromagnetics and Commun.(ICECom'03), Oct.2003, 193-196.
    [268] S.Balling, M.Hein, M.Hennhofer, G.Sommerkorn, R.Stephan, and R.Thoma, Broadband dual polarized antenna arrays for mobile communication applications, Proc. 33rd European Microwave Conf., Oct. 2003, 3:927-930.
    [269] M.Karaboikis, C.Soras, G.Tsachtsiris, V.Papamichael, and V.Makios, Multi-element antenna systems for diversity and MIMO terminal devices, Proc. Progress in Electromagnetics Research Symp., Pisa, Italy, 28-31 March 2004.
    [270] M.Karaboikis, C.Soras, G.Tsachtsiris, and V.Makios, Compact dual-printed inverted-F antenna diversity systems for portable wireless devices, IEEE Antennas and Wireless Propagation Letters, 2004, 3:9-14.
    [271] S.Dossche, S.Blanch, and J.Romeu, Optimum antenna matching to minimize signal correlation on a two-port antenna diversity system, Elec. Lett., 16th, 2004, 40(19).
    [272] P.R.Rogers and G.S.Hilton, 3D Radiation Pattern Correlation of PDA-Sized MIMO Antenna Arrays (Or, An experimental evaluation of three candidate mimo array designs), COST 273/284 Workshop, Gothenburg, Sweden, June 2004.
    [273] 聂在平,李忻,一种多入多出无线通信基站分集天线装置,中国专利,No.200410040301.3.
    [274] 聂在平,李忻,一种无线通信终端分集天线装置,中国专利,No.200410040302.8.
    [275] 聂在平,李忻,一种无线通信终端可穿戴式分集天线装置,中国专利,No.200410040393.5.
    [276] 聂在平,李忻,一种多入多出无线通信基站分集天线装置,中国专利,No.200420060430.4.
    [277] 聂在平,李忻,一种无线通信终端分集天线装置,中国专利,No.200420060429.1.
    [278] 聂在平,李忻,一种无线通信终端可穿戴式分集天线装置,中国专利,No.200420060656.4.
    [279] C.C.Martin, J.H.Winters, and N.R.Sollenberger, Multiple-input multiple-output (MIMO) radio channel measurements, Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, March 2000,45-46.
    [280] R.Stridh and B.Ottersten, Spatial characterization of indoor radio channel measurements at 5 GHz, Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, March 2000, 58-62.
    [281] A.Lee Swindlehurst, GGerman, J.Wallace, and M.Jensen, Experimental measurements of capacity for MIMO indoor wireless channels, Proc. 3rd IEEE Signal Processing Workshop on signal Processing advances in Wireless Commun., Taoyuan, Taiwan, March 2001, 30-33.
    [282] C.C.Martin, J.H.Winters, and N.R.Sollenberger, Multiple-input multiple-output (MIMO) radio channel measurements, Proc. 52nd IEEE Vehi. Tech. Conf.(VTC'00), Sept. 2000, 2:774-779.
    [283] C.C.Martin, J.H.Winters, H.H.Zeng, N.R.Sollenberger, and A.Dixit, Multiple-input multiple-output (MIMO) radio channel measurements and experimental implementation for EDGE, Proc. 34th Asilomar Conf. Signals, Systems and Computers, Oct. 2000, 1:738-742.
    [284] D.S.Baum, D.Gore, R.Nabar, S.Panchanathan, K.V.S.Hari, V.Erceg, and A.J.Paulraj, Measurement and characterization of broadband MIMO fixed wireless channels at 2.5 GHz, Proc. IEEE Inte. Conf. Personal Wireless Commun., Dec. 2000, 203-206.
    [285] C.C.Martin, J.H.Winters, and N.R.Sollenberger, Multiple-input multiple-output (MIMO) radio channel measurements, Proc. Antennas and Propagation Society Inte. Symp., July 2001, 1:418-421.
    [286] C.C.Martin, J.H.Winters, and N.R.Sollenberger, MIMO radio channel measurements: performance comparison of antenna configurations, Proc. 54th IEEE Vehi. Tech. Conf.(VTC'01 Fall), Oct. 2001, 2:1225-1229.
    [287] K.Yu, M.Bengtsson, B.Ottersten, D.McNamara, P.Karlsson, and M.Beach, Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements, Proc. IEEE Global Telecommun. Conf.(GLOBECOM '01), Nov. 2001, 1:156-160.
    [288] J-S.Jiang and M.A.Ingram, Enhancing measured MIMO capacity by adapting the locations of the antenna elements., Proc. IEEE 13th Inte. Symp. Personal, Indoor and Mobile Radio Commun.(PIMRC'02), Sept. 2002, 3:1027-1031.
    [289] S.Howard, H.Inanoglu, J.Ketchum, M.Wallace, and R.Walton, Results from MIMO channel measurements, Proc. 13th IEEE Inte. Symp. Personal, Indoor and Mobile Radio Commun.(PIMRC), Sept. 2002, 4:1932-1936.
    [290] M.Herdin, H.Ozcelik, H.Hofstetter, and E.Boneck, Variation of measured indoor MIMO capacity with receive direction and position at 5.2 GHz, Electronics Letters, 10th Oct. 2002, 38(21):1283-1285.
    [291] M.Hunukumbure and M.Beach, Outdoor MIMO Measurements for UTRA applications, 2002. (http://citeseer.ist.psu.edu/555311.html)
    [292] J.S.Aron, Measurement system and campaign for characterizing of theoretical capacity and cross-correlation of multiple-input multiple output indoor wireless channels, Faculty of Virginia Polytechnic Institute and State University, 2002.
    [293] J.P.Kermoal, Measurement, modelling and performance evaluation of the MIMO radio channel, institute of electronic systems, Aalborg University, Aug. 2002.
    [294] H.Ozcelik, M.Herdin, H.Hofstetter, and E.Bonek, A comparison of measured 8×8 MIMO systems with a popular stochastic channel model at 5.2GHz, Proc. 10th Inte. Conf. Telecommun. (ICT)'03, Feb. 2003, 2:1542-1546.
    [295] P.H.Lehne, H.Hofstetter, and M.Debbah, Eigenvalue distributions and capacity evaluations from outdoor MIMO measurements at 2.1 GHz, IST Mobile Summit, Aveiro, Portugal, 2003. (http://www.eurecom.fr/%7Edebbah/papier/eigenvalues.pdf)
    [296] P.Kyritsi, D.C.Cox, R.A.Valenzuela, and P.W.Wolniansky, Correlation Analysis Based on MIMO Channel Measurements in an Indoor Environment, IEEE J. Selected Areas in Commun. June 2003, 21 (5):713-720.
    [297] P.Almers, F.Tufvesson, and A.F.Molisch, Measurement of keyhole effect in a wireless multiple-input multiple-output (MIMO) channel, IEEE Commun. Letters, Aug. 2003, 7(8): 373-375.
    [298] C.Waldschmidt, C.Kuhnert, T.Fugen, and W.Wiesbeck, Measurements and simulations of compact MIMO-systems based on polarization diversity, Proc. IEEE Topical Conf. Wireless Commun. Tech., Oct. 2003, 284-285.
    [299] J-S.Jiang, M.F.Demirkol, and M.A.Ingram, Measured capacities at 5.8 GHz of indoor MIMO systems with MIMO interference, Proc. IEEE 58th Vehi. Tech. Conf.(VTC'03 Fall), Oct. 2003, 1: 388-393.
    [300] N.Skentos, A.G.Kanatas, G.Pantos, and P.Constantinou, Capacity results from short range fixed MIMO measurements at 5.2GHz in urban propagation environment, Proc. IEEE Inte. Conf. Commun.(ICC'04), Paris, France, June 2004, 3020-3024.
    [301] A.Van Zelst, Space division multiplexing algorithms, Proc. 10th IEEE Mediterranean Electrotechnical Conf. (MeleCon'00), May 2000, 3:1218-1221.
    [302] R.A.Horn and C.R.Johnson, Matrix Analysis, Cambridge University Press, New York, NY, USA,1988.
    [303] R.J.Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons, Inc. 1982.
    [304] A.Papoulis, Probability, Random Variables and Stochastic Processes, McGram-Hill, New York, NY, USA,2nd edition,1984.
    [305] D.Gore, R.W. Heath Jr., and A.Paulraj, On performance of the zero forcing receiver in presence of transmit correlation, Proc. IEEE Inte. Symp. Info. Theo., Pacific Grove, California, June 2002, 159-163.
    [306] M.Chiani, M.Z.Win, and A.Zanella, On the capacity of spatially correlated MIMO Rayleigh fading channels, IEEE Trans. Information Theory, Oct. 2003, 49(10): 2363-2371.
    [307] John G.Proakis, Digital Communications, fourth ed. McGraw-Hill Companies, Inc., 2001.
    [308] B.A.Bjerke and J.G.Proakis, Multiple-antenna diversity techniques for transmission over fading channels, Proc. IEEE Wireless Communications and Networking Conf. (WCNC)'99, Sept. 1999, 3:1038-1042.
    [309] 3GPP TSGR1#23, R1-01-1179, A standardized set of MIMO radio propagation channels, Jeju, Korea, Nov. 19-23, 2001.
    [310] D.Aszetty, On antenna arrays in mobile communication systems: fast fading and GSM base station receiver algorithm, Stockhohn: Royal Institute Technology Press, 1996.
    [311] Jianxia Luo, J.R.Zeidler, and S.McLaughlin, Bit-error probability analysis of compact antenna arrays with maximal-ratio combining in correlated Nakagami fading, Proc. IEEE Sensor Array and Multichannel Signal Processing, Mar. 2000, 52-57.
    [312] Liquan Fang, Guoan Bi, and A.C.Kot, New method of performance analysis for diversity reception with correlated Rayleigh-fading signals, IEEE Trans. Vehi. Tech., Sept. 2000, 49(5):1807-1812.
    [313] S.Loyka, C.Tellambura, A.Kouki, A.Annamalai, and F.Gagnon, Comment on "New method of performance analysis for diversity reception with correlated rayleigh-fading signals", IEEE Trans. Vehio Tech., May 2003, 52(3):725-726.
    [314] 李光球,采用两条支路分集接收的相关瑞利衰落信道容量,电子学报,2003,7,31(7):1018-1021.
    [315] W.C.Y.Lee, Mobile Communications Engineering, New York: McGram-Hill, 1982.
    [316] M.K.Simon and D.Divsalar, Some new twists to problems involving the Gaussian probability integral, IEEE Trans. Commun., Feb.1995, 46(2):200-210.
    [317] E.Perahia and G.J.Pottie, On diversity combining for correlated slowly flat-fading rayleigh channels, Proc. IEEE Inte. Conf. Commun.(ICC'94),May 1994, 1:342-346.
    [318] H.Xu, M.J.Gans, N.Amitay, and R.A.Valenzuela, Experimental verification of MTMR system capacity in a controlled propagation environment, Electronics Letters, 2001, 37(15):936-937.
    [319] H.Xu, M.J.Gans, D.Chizhik, J.Ling, P.Wolniansky, and R.A.Valenzuela, Spatial and temporal variations of MIMO channels and impacts on capacity, Proc. IEEE Inte. Conf. Comm.(ICC'02), New York, USA, April 2002, 1:262-266.
    [320] K.Pedersen, P.Mogensen, and B.Fleury, A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments, IEEE Trans. Vehi. Tech., 2000, 49(2):437-447.
    [321] T.K.Sarkar, Z.Ji, K.Kim, A.Medouri, and M.Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Mag., June 2003, 45(3):51-82.
    [322] T.S.Rappaport, Wireless communications principles and practice, Prentice Hall Inc.,1996.
    [323] H.J.Thomas, T.Ohgane, and M.Mizuno, A novel dual antenna measurement of the angular distribution of received waves in the mobile radio environment as a funtion of position and delay time, Proc. IEEE Vehi. Tech. Conf., 1992, 1:546-549.
    [324] 3GPP and 3GPP2, TSG, SCM-134 Text V6.0, Spatial Channel Model Text Description, Lucent Nokia, Siemens, and Ericsson, April 2003.
    [325] D.S.Shiu, Wireless communication using dual antenna arrays, Kluwer academic publishers, 2000.
    [326] J.W.Wallace, M.A.Jensen, A.L.Swindlehurst, and B.D.Jeffs, Experimental characterization of the MIMO wireless channel: data acquisition and analisis, IEEE Trans. Wireless Commun., Mar. 2003, 2:335-343.
    [327] D.H.Werner and S.Ganguly, An overview of factal antenna engineering research, IEEE Antennas and propagation Mag., Feb. 2003, 45(1):38-57.
    [328] M.T.LEE, K.M.Luk, K.W.Leung, and M.K.Leung, A small dielectric resonator antenna, IEEE Trans. Antennas and Propagation, Oct. 2002, 50(10): 1485-1487.
    [329] Fan.Yang, Chul-Sik.Kee, and Y.Rahmat-Samii, Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700