非视线偏振紫外大气传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非视线紫外通信是近年来自由空间光通信的一个典型应用,其利用波长200~300nm之间的紫外光的“日盲”特性实现全天工作,利用大气粒子对光的散射实现非视线传输,是一种可非视线工作的光通信手段。论文研究非视线偏振紫外大气传输特性,目的是获得定量评估紫外通信信号强度和偏振的手段,并找出提高紫外通信性能的方法。主要研究成果如下:
     建立偏振散射模型。紫外通信的信号具有强度和偏振两个特征,而现有基于椭球坐标系的单次散射模型和基于Monte Carlo的多次散射模型不能计算偏振特征。论文把现有的非偏振散射模型扩展为偏振散射模型,可以定量计算散射信号的偏振,并可计算收发偏振设置对散射信号的影响。
     提出偏振紫外通信的概念和系统结构,并完成验证性实验。现有的紫外通信系统只能检测散射信号的强度,其通信速率大多在几K到几十Kbps之间,远低于理论预言的通信速率。通过同时检测散射信号的强度和偏振,可以使现有系统的通信速率得到成倍的提高,此即偏振紫外通信。偏振紫外通信系统的发射端为配有1个时间相关偏振器的光源,接收端为配有1个时间无关检偏器阵列的探测器阵列;光源发出光子,通过起偏器而实现偏振编码,接着被大气粒子散射,然后被检偏器阵列检偏,最后根据探测器阵列上散射信号的分布特征实现偏振解码。初步实验证明2-偏振紫外通信是可行的。
     简化基于椭球坐标系的单次散射模型的计算过程;提出共面非偏振单次散射能量的经验公式。Elshimy提出的基于椭球坐标系的单次散射模型可以计算任意的收发几何设置,但其计算过程相当繁琐;论文大大简化了相关计算过程,降低了计算难度。所提出的共面非偏振单次散射能量的经验公式中,收发几何设置、大气参数和收发距离对于单次散射能量的影响非常直观,用于指导短距离紫外通信系统的设计
Non-line-of-sight (NLOS) UV communication is an exciting application of free-space-optical (FSO) communication recently, it makes use of solar-blind UV as the communication wavelength to obtain all-day work, makes use of scattering of light by atmospheric particles to achieve NLOS propagation, and is an method of optical communication which can work at NLOS geometry. The main aims of this paper are to find a method that can measure the intensity and polarization of the signal of NLOS UV communication, and to find a way to enhance the performance of UV communication. The main conclusions are shown as follows:
     The polarized scattering models are set up. The signal of UV communication has two characteristics: intensity and polarization, but the existing scattering models, including the single-scatter models based on the spheroidal coordinate system and the multiple-scatter models based on Monte Carlo, can not calculate the polarization of the signal. By extending the existing unpolarized scattering models to polarized ones, the polarization of the scattering signal, and also the impact of the polarization setups on scattering signals, can be calculated quantitatively.
     The conception and the structure of polarized UV communication have been presented, and the elementary experiment have been done. The existing NLOS UV communication system can only measure the intensity of the signal, and the data rates are mostly among the range of several kilo bps to several tens of kilo bps, which are violently lower than the theoretically predicted data rates. By the means of measuring the intensity and polarization at the same time, the data rates of the existing systems can be greatly enhanced, this is the so-called polarized UV communication. The polarized UV communication system consists of a light source accompanied with a time-dependent polarizer and a detector array accompanied with a time-independent analyzer array; the polarizing information is coded by the polarizer, influenced by the atmospheric channel, analyzed by the analyzer array, and decoded according to the distribution characteristics of the scattering signals on the detector array. The decoding of the polarizing information for 2-polarization UV communication is validated by the experiment.
     The calculation process of the single-scatter model based on the prolate spheroidal coordinate system is simplified; the empirical formula of the single-scatter energies in the coplanar geometries is presented. The noncoplanar single-scatter model presented by Elshimy can solve arbitrary transmitter-receiver geometry, but the complicated calculation process may restrict its application; the calculation process is greatly simplified, thus the model is more tractable than before. In the empirical formula of coplanar unpolarized single-scatter energy, the impacts of the transmitter-receiver geometry, the atmospheric parameters, and the range to the single-scatter energy are very clear, this formula can be used for the design guidance of short-range UV communication system.
引文
[1] Xu Z, Sadler B M. Ultraviolet Communications: Potential and State-of-the-Art[J]. Ieee Communications Magazine, 2008(68-73).
    [2] Xu Z Y, Chen G, Abou-Galala F, et al., Experimental performance evaluationof non-line-of-sight ultraviolet communication systems - art. no. 67090Y [M]. 2007, pp.Y7090-Y7090.
    [3] Chen G, Abou-Galala F, Xu Z, et al. Experimental evaluation of LED-basedsolar blind NLOS communication links [J]. Optics Express, 2008(16): 15059-15068.
    [4] Chen G, Xu Z Y, Sadler B M. Experimental demonstration of ultraviolet pulsebroadening in short-range non-line-of-sight communication channels [J]. Optics Express,2010(18): 10500-10509.
    [5] Reilly D M, Warde C. Temporal characteristics of single-scatter radiation [J].Journal of the Optical Society of America, 1979(69): 464-470.
    [6] Luettgen M R, Shapiro J H, Reilly D M. Non-line-of-sight single-scatterpropagation model [J]. Journal of the Optical Society of America, 1991(8): 1964-1972.
    [7] Shaw G A, Nischan M, Iyengar M, et al., NLOS UV communication fordistributed sensor systems [M]. 2000, pp. 83-96.
    [8] Shaw G A, Nischan M, Short-range NLOS ultraviolet communication test bedand measurements [M]. 2001, pp. 31-40.
    [9] Shaw G A, Siegel A M, Model J, et al. Field testing and evaluation of asolar-blind UV communication link for unattended ground sensors [C]. Bellingham:Year: pp. 25-261.
    [10] Reilly D M, Moriarty D T, Maynard J A. Unique properties of solar blindultraviolet communication systems for unattended ground sensor networks [C]. Year: p.245.
    [11] Shaw G A, Siegel A M, Model J, Extending the range and performance ofnon-line-of-sight ultraviolet communication links - art. no. 62310C [M]. 2006, pp.C2310-C2310.
    [12] Jia H H, Zhang H L, Yin H W, et al., The experimental research of NLOS UVpropagation channel in the. atmosphere based on LIA technology - art. no. 67833B [M].2007, pp. B7833-B7833.
    [13]贾红辉,杨俊才,沈志等.紫外光信息传输中调制技术的研究[J].仪器仪表学报, 2003(44-45).
    [14]贾红辉.非视线光传输的模拟与实验比较[J].仪器仪表学报, 2006(27):1311-1312.
    [15] Yin H W, Yang J K, Chang S L, et al., Analysis of several factors influencingrange of non-line-of-sight UV transmission - art. no. 67833E [M]. 2007, pp.E7833-E7833.
    [16]叶瑞泉.紫外光非视线大气传输的实验研究[J].仪器仪表学报, 2006(27):1307-1308.
    [17]倪国强,钟生东,刘榴绨等.自由大气紫外光学通信的研究[J].光学技术,2000(297-303).
    [18]张建勇,钟生东.紫外线技术在军事工程技术中的应用[J].光学技术,2000(308-312+315).
    [19]蓝天,倪国强.紫外通信的大气传输特性模拟研究[J].北京理工大学学报,2003(419-423).
    [20]唐义,倪国强,蓝天等.“日盲”紫外光通信系统传输距离的仿真计算[J].光学技术, 2007(27-30).
    [21]唐义,倪国强,张丽君等.非直视紫外光通信单次散射传输模型研究[J].光学技术, 2007(759-762+765).
    [22] Feng T, Xiong F, Chen G, et al. Effects of atmosphere visibility onperformances of non-line-of-sight ultraviolet communication systems [J]. Optik,2008(119): 612-617.
    [23]曹付允,徐军,朱桂芳等.区域紫外激光保密通信及其应用[J].光通信技术, 2006(59-61).
    [24]常胜利,尹红伟,贾红辉等.紫外光通信实验中信息高速调制方法的研究[J].大学物理实验, 2006(1-4).
    [25]冯涛.非视线紫外光散射通信的信道特性[J].红外与激光工程, 2006(35):226-230.
    [26]冯涛,陈刚,方祖捷. Multipath dispersion of pulse signals in anon-line-of-sight optical scattering channel [J]. Chinese Optics Letters, 2006(633-635).
    [27]高红杰,肖沙里,向平.基于AVR单片机的紫外语音通信系统解调技术[J].重庆工学院学报(自然科学版), 2008(104-107).
    [28]柯熙政,何华,陈祥.一种新的紫外光自组织通信网络MAC层避退算法[J].光电子.激光, 2010(1002-1006.
    [29]柯熙政,何华,吴长丽. A new ant colony-based routing algorithm withunidirectional link in UV mesh communication wireless network [J]. OptoelectronicsLetters, 2011(139-142).
    [30]李霁野,邱柯妮.紫外光通信在军事通信系统中的应用[J].光学与光电技术, 2005(19-21).
    [31]雷小明,肖沙里,蓝玉侦等.日盲紫外光通信系统中调制系统的研制[J].光电子技术, 2007(161-165).
    [32]李霁野,邱柯妮,王云帆.自由大气紫外光通信中几类光源的比较和研究[J].光通信技术, 2006(56-57).
    [33]李义文.自由大气紫外光通信系统研究[D].中国科学院研究生院(空间科学与应用研究中心), 2007.
    [34]刘润彬,李霁野.新型紫外光非视距通信系统信道估计的研究[J].光通信研究, 2011(31-33).
    [35]刘宇,肖沙里,徐智敏等.紫外光通讯调制解调系统[J].光电子技术,2006(264-266+271).
    [36]马冬冬,刘宗福,金虎.雾对“日盲”紫外光传输的影响分析[J].上海计量测试, 2010(23-25).
    [37]密立生,王平,田培根等.紫外光非直视通信模型[J].舰船电子工程,2008(68-69+76+165).
    [38]汪俊良,罗挺,刘洪娟等.紫外光非视距后勤应急通信系统研究[J].后勤工程学院学报, 2009(74-78).
    [39]汪科,肖沙里,罗辑等.紫外通信研究的现状分析和改进[J].光通信技术,2008(56-58).
    [40]王平,高俊,田培根.紫外光语音通信系统参数补偿技术及Matlab仿真[J].海军工程大学学报, 2008(56-59).
    [41]肖沙里,高家利.日盲紫外光语音通信系统的设计与实现[J].重庆理工大学学报(自然科学版), 2010(51-54).
    [42]徐智勇,沈连丰,汪井源等.紫外散射通信实验系统及其性能分析[J].东南大学学报(自然科学版), 2009(1087-1092).
    [43]徐智勇,沈连丰,汪井源等.无线光通信中紫外散射传播特性的研究[J].光通信技术, 2009(56-59).
    [44]赵太飞,冯艳玲,柯熙政等.“日盲”紫外光通信网络中节点覆盖范围研究[J].光学学报, 2010(2229-2235).
    [45]赵太飞,柯熙政,梁薇等.紫外光散射通信中一种二级光学接收系统设计[J].压电与声光, 2011(310-314+319).
    [46]白廷柱,娄颖,国爱燕等. ICCD紫外告警系统能量传递过程分析[J].光学技术, 2008(241-242+245).
    [47]白廷柱,娄颖,国爱燕等.基于弹道的紫外告警系统探测方位角及规避时间仿真分析[J].光学技术, 2009(373-376).
    [48]曹慧.紫外成像告警技术的研究[D].长春理工大学, 2010.
    [49]陈兆兵,郭劲,姜伟伟.基于Lowtran软件包和Gabor匹配提高紫外告警系统探测距离[J].光学精密工程, 2009(2359-2364).
    [50]付伟.紫外侦察告警技术的发展现状[J].应用光学, 1999(1-4).
    [51]付伟.反空地导弹的光电对抗技术[J].红外与激光工程, 2001(51-55).
    [52]付伟.导弹逼近紫外告警技术的发展[J].光机电信息, 2002(26-29).
    [53]韩四宁,于天河,康为民.紫外成像导弹告警系统作用距离的探讨[C].中国上海, 2007.
    [54]贺东雷,刘品雄,王增斌等.紫外侦察告警技术[J].航天电子对抗,2011(33-36).
    [55]焦志伟.多光谱告警技术及其在重要目标防空中的应用研究[D].国防科学技术大学, 2006.
    [56]李炳军,江文杰,梁永辉.基于导弹羽烟紫外辐射的日盲型探测器[J].航天电子对抗, 2006(7-10).
    [57]李炳军,梁永辉.紫外告警技术发展现状[J].激光与红外,2007(1033-1035).
    [58]李程华,张科,李言俊.紫外告警距离测算[J].火力与指挥控制,2007(123-126).
    [59]刘榴娣,倪国强,钟生东等.紫外线的应用、探测及其新发展[J].光学技术, 1998.
    [60]刘菊,贾红辉,尹红伟.军用紫外光学技术的发展[J].光学与光电技术,2006(60-64).
    [61]罗建明,杨建军.反辐射导弹告警技术研究[J].飞航导弹,2007(38-43+47).
    [62]金伟其,何玉青,王岭雪等.大气紫外传输特性的计算机模拟分析[J].光学技术, 2000(304-307).
    [63]王春阳.紫外告警系统结构分析与设计[J].现代电子技术,2007(87-88+91).
    [64]许强.导弹逼近紫外告警技术发展现状及关键问题研究[J].红外与激光工程, 2007(476).
    [65]张忠廉,刘榴娣.紫外线技术在军事上的应用研究[J].光学技术,2000(289-293+296).
    [66]周明明.紫外航空CCD相机智能检测系统[D].长春理工大学, 2009.
    [67]周伟,马妮,吴晗平.近地层紫外探测作用距离及其影响因素研究[J].红外技术, 2011(357-360+371).
    [68] Beier K, Gemperlein H. Simulation of infrared detection range at fogconditions for Enhanced Vision Systems in civil aviation [J]. Aerospace Science andTechnology, 2004(8): 63-71.
    69] Durand G, Lavigne C, Roblin A, UV light propagation under low visibilityconditions and its application to aircraft landing aid [M]. 2004, pp. 57-67.
    [70] Lavigne C, Durand G, Roblin A. Ultraviolet light propagation under lowvisibility atmospheric conditions and its application to aircraft landing aid [J]. AppliedOptics, 2006(45): 9140-9150.
    [71] Norris Jr V J, Evans R S, Currie D G. Performance comparison of visual,infrared, and ultraviolet sensors for landing aircraft in fog [C]. IEEE, Year: pp. 5. D.1-5. D. 2-19 vol. 11.
    [72] Norris V J, FAA evaluation of UV technology for runway incursion preventionand low visibility landings [M]. 2003, pp. 1-10.
    [73] Chandrasekhar S, Radiative transfer [M]. Oxford: Clarendon Press, 1950.
    [74] Goody R M, Yung Y L, Atmospheric radiation : theoretical basis [M]. NewYork: Oxford University Press, 1989.
    [75] Marshak A, Davis A B, 3D radiative transfer in cloudy atmospheres [M].Berlin: Springer-Verlag, 2005.
    [76]贾红辉.大气光通讯中基于蒙特卡罗方法非视线光传输模型[J].光电子·激光, 2007(18): 690-694.
    [77]贾红辉.非视线紫外通信大气传输特性的蒙特卡罗模拟[J].光子学报,2007(36):
    [78]贾红辉.单次散射近似研究非视线光传输中的误差[J].光学精密工程,2007(15): 40-44.
    [79]冯涛.非视线光散射通信的大气传输模型[J].中国激光, 2006(33):1522-1526.
    [80]姚丽,李霁野.大气紫外光近距离通信的研究[J].大气与环境光学学报,2006(135-139).
    [81]徐志军,王平.基于蒙特卡罗方法的多散射修正模型[J].海军工程大学学报, 2010(50-55+61).
    [82]肖沙里,徐东镪,蓝玉侦等.基于AMBE-2000~(TM)的日盲紫外光语音系统的设计[J].光电子技术, 2007(55-58).
    [83]肖沙里,徐智敏,刘宇等.日盲紫外光通信硬件设计[J].光通信技术,2006(44-46).
    [84]徐智敏.自由空间紫外语音通信调制与编码的研究[D].重庆大学, 2007.
    [85]陈君洪.非视线日盲紫外通信的大气因素研究[J].激光杂志, 2008(29):38-39.
    [86]丁莹,佟首峰,董科研等.大气信道对垂直发收模式紫外光散射通信性能影响的仿真[J].光子学报, 2010(1851-1856).
    [87]何华,柯熙政,赵太飞.紫外光非视距单次散射链路模型的研究[J].光学学报, 2010(3148-3152).
    [88]侯倩,李晓毅,李子等.紫外光非视距二次散射信道模型研究[J].现代电子技术, 2011(59-62).
    [89]徐志军.基于蒙特卡罗方法的多散射修正模型[J].海军工程大学学报,2010(22): 50-56.
    [90]邵铮铮.非视线光传输模型的研究状况[J].红外与激光工程, 2006(35):
    [91]邵铮铮.非视线紫外光信号传输时间特性的数值模拟[J].光学与光电技术, 2006(4): 18-20.
    [92]朱孟真.基于离散坐标方法的紫外光大气传输特性研究[D]. 2007.
    [93]何新.天气对光散射传输影响的仿真分析[J].光学技术, 2009(35): 56-59.
    [94]何新,贾红辉,常胜利等.多次散射情况下非视线光传输的模拟[J].光学精密工程, 2009(246-250).
    [95]岳衢.非视线紫外光大气传输模型的建立及验证[J].光学技术, 2009(35):890-894.
    [96] Xu Z Y, Ding H P, Sadler B M, et al. Analytical performance study of solarblind non-line-of-sight ultraviolet short-range communication links [J]. Optics Letters,2008(33): 1860-1862.
    [97] Yin H W, Chang S L, Wang X F, et al. Analytical model of non-line-of-sightsingle-scatter propagation [J]. Journal of the Optical Society of America a-Optics ImageScience and Vision, 2010(27): 1505-1509.
    [98] Chen G, Xu Z Y, Ding H P, et al. Path loss modeling and performancetrade-off study for short-range non-line-of-sight ultraviolet communications [J]. OpticsExpress, 2009(17): 3929-3940.
    [99] Yin H W, Chang S L, Jia H H, et al. Non-line-of-sight multiscatter propagationmodel [J]. Journal of the Optical Society of America a-Optics Image Science and Vision,2009(26): 2466-2469.
    [100]Ding H P, Chen G, Majumdar A K, et al. Modeling of Non-Line-of-SightUltraviolet Scattering Channels for Communication [J]. Ieee Journal on Selected Areasin Communications, 2009(27): 1535-1544.
    [101]Ding H, Xu Z, Sadler B M. A path loss model for non-line-of-sight ultravioletmultiple scattering channels [J]. Eurasip Journal on Wireless Communications andNetworking, 2010(2010): 63.
    [102]Wang L J, Xu Z Y, Sadler B M. Non-line-of-sight ultraviolet link loss innoncoplanar geometry [J]. Optics Letters, 2010(35): 1263-1265.
    [103]Wang L, Xu Z, Sadler B M. An approximate closed-form link loss model fornon-line-of-sight ultraviolet communication in noncoplanar geometry [J]. Optics Letters,2011(36): 1224-1226.
    [104]Elshimy M A, Hranilovic S. Non-line-of-sight single-scatter propagationmodel for noncoplanar geometries [J]. Journal of the Optical Society of Americaa-Optics Image Science and Vision, 2011(28): 420-428.
    [105]Yin H W, Jia H H, Zhang H L, et al. Vectorized polarization-sensitive modelof non-line-of-sight multiple-scatter propagation [J]. Journal of the Optical Society ofAmerica a-Optics Image Science and Vision, 28, 2082-2085 (2011).
    [106]Yin H W, Zhang H L, Jia H H, et al. Non-line-of-sight polarized single-scatterpropagation model for noncoplanar geometries [J] (submitted to Journal of the OpticalSociety of America a-Optics Image Science and Vision).
    [107]Bohren C F, Huffman D R, Absorption and scattering of light by smallparticles [M]. New York: Wiley, 1983.
    [108]Hulst H C v d, Light scattering by small particles [M]. New York: DoverPublications, 1981.
    [109]石广玉,大气辐射学[M].北京:科学出版社, 2007.
    [110]Mishchenko M I, Travis L D, Lacis A A, Scattering, absorption, and emissionof light by small particles [M]. Cambridge: Cambridge University Press, 2002.
    [111]Bass M, Mahajan V N, America. O S o, Handbook of optics [M]. New York:McGraw-Hill, 2010.
    [112]Liu J S, Monte Carlo strategies in scientific computing [M]. New York:Springer, 2001.
    [113]Kalos M H, Whitlock P A, Monte Carlo methods [M]. New York:WILEY-VCH, 2008.
    [114]Lemieux C, Monte Carlo and Quasi-Monte Carlo Sampling [M]. New York:Springer, 2009.
    [115]Desonie D, Atmosphere: air pollution and its effects [M]. New York: ChelseaHouse Publishers, 2007.
    [116]Jacobson M Z, Fundamentals of atmospheric modeling [M]. Cambridge, UK ;New York: Cambridge University Press, 2005, pp. xiv, 813 p.
    [117]Hess M, Koepke P, Schult I. Optical Properties of Aerosols and clouds: Thesoftware package OPAC [J]. Bull. Am. Met. Soc., 1998(79): 831-844.
    [118]Hewitt C N, Jackson A V, Handbook of Atmospheric Science: Principles andpplications [M]. Malden: Blackwell Publishing, 2003.
    [119]Kneizys F X, Abreu L W, Anderson G P, et al. The MODTRAN 2/3 Reportand LOWTRAN 7 MODEL [Z]. Ontar Corporation, 1996.
    [120]吴北婴,大气辐射传输实用算法[M].北京:气象出版社, 1989.
    [121]Storn R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997(11): 341–359.
    [122]Shaw G A, Siegel A M, Nischan M L. Demonstration system and applications for compact wireless ultraviolet communications [C], 2003: 241-252.
    [123]Yin H W, Jia H H, Zhang H L, et al. Experimental demonstration of non-line-of-sight polarized UV communication [J] (submitted to Optics Letters).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700