基于无线局域网的分布式测试系统实时性及时钟同步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于无线局域网(Wireless Local Area Networks,WLAN)的分布式测试系统的实时性和时钟同步是当前分布式测试系统研究的热点课题。无线分布式测试系统数据传输的实时性是系统性能的重要指标,保持数据传输的可靠性,减少数据传输的延时是很多无线分布式应用系统的基本要求。时钟同步是无线分布式测试系统的核心技术之一,时钟同步的实现将使得各个分布式测试终端能够实现自主的数据采集,减少测试总线的控制信息传输,显著的提高测试的效率和精度。论文的主要研究工作及成果如下:
     (1)基于无线局域网的分布式测试系统的实时性研究。论文提出了基于WLAN的分布式测试系统模型,分析了影响分布式系统实时通讯的性能指标。针对系统实时性的要求建立了网络仿真场景,研究了无线分布式测试系统的不同MAC层接入机制的在数据流量递增的情况下实时性通讯的具体性能变化,并且研究了不同的物理层对系统的实时性能和丢包率的影响,为基于无线局域网的分布式测试系统设计提供了参考数据。
     (2)基于IEEE802.11 DCF(Distributed Coordination Function)的无线分布式测试系统实时性研究。DCF是无线局域网最常用的媒介接入机制,论文分析了IEEE802.11的DCF基本接入机制和RTS/CTS(Require To Send /Clear To Send)机制以及分片机制的工作原理。针对不同的MAC(Media Access Control)层接入机制分析了影响分布式系统性能的指标,研究了不同MAC层接入机制的无线分布式测试系统的实时性。论文在改进的MARKOV模型基础上,引入了Z变换,分析了IEEE802.11的DCF机制MAC延时性能,研究了从非饱和到饱和信道状态的延时性能。通过MATLAB数值分析和OPNET10.0网络仿真,基于MARKOV模型的MAC延时分析能够和网络仿真的MAC延时很好的吻合,验证了分析模型的在预测媒介接入延时方面的有效性,为进一步的系统设计提供了理论依据。
     (3)基于IEEE1588的无线分布式系统时钟同步应用问题研究。论文分析了IEEE1588网络拓扑的选择及域的划分对PTP(Precision Time Protocol)时钟同步的影响,提出了在无线分布式测试系统中应用IEEE1588协议的两种典型网络拓扑,研究了不同无线分布式网络拓扑下以及不同调度机制下PTP时钟同步精度,通过引入偏移估计和斜率补偿提高了无线分布式测试系统中PTP时钟同步的精度。研究结果对IEEE1588在无线分布式测试系统中的应用有重要的参考价值。
     (4)SPTP(Simplified Precision Time Protocol)时钟同步机制的研究。针对PTP时钟同步过程在无线分布式网络中应用面临问题,提出了一种新的无线分布式测试系统SPTP时钟同步机制。SPTP吸收了PTP同步机制的优势,同时又利用了RBS和PBS算法的优点。通过仿真比较了SPTP与PTP时钟同步精度差异,指出了SPTP时钟同步机制在无线分布式测试系统中的显著应用优势。
     (5)MBBS(Management and Boundary Broadcast Synchronization)时钟同步机制研究。针对无线分布式网络时钟同步中误差及信息的数目随层数增长过快的问题,提出了基于管理和边界时钟广播的MBBS时钟同步算法,详细介绍了MBBS的思想来源以及实现步骤。MBBS算法与PBS算法相比,虽然在每轮同步中增加一条同步信息,但是同步的从时钟数目增加了一层。实验结果表明,在多层网络拓扑下,MBBS减少了全局时钟同步所需的信息数目,提高了网络时钟同步的精度。MBBS算法的提出对无线分布式测试系统的时钟同步精度的提高有着重要的应用价值。
The real-time performance and clock synchronization of Wireless local area network (WLAN)-based distributed measurement systems attract much attention from both academia and industry nowadays. The real-time performance of data transfer is one of the most important parameters in wireless distributed measurement systems. Maintaining reliable data transmission with minimum data transmission delay is a basic requirement in many wireless distributed systems. As a key technology in wireless distributed systems, clock synchronization allows all terminals to achieve data acquisition separately, which reduces the transmission of control information in data bus and significantly improves the efficiency and accuracy of the measurement. The main achievements and contributions of this dissertation are as follows:
     (1) The research on real-time performance of WLAN based distributed measurement system. The model of WLAN based distributed measurement system is proposed and the performance of the real-time communications is analyzed in this thesis. By using simulation for the real-time communication network, the performance variation of real-time communication through different MAC mechanisms with the gradually increase of the data traffic is investigated. In addition, the influence of different PHY layers on real-time performance and data packet miss probability of is studied. It provides reference data for further design of WLAN based wireless distributed system.
     (2) The research on real-time performance of distributed measurement system based on DCF of IEEE 802.11. DCF is a fundamental Media Access Control (MAC) mechanism in WLAN. Basic Access Mechanism, RTS/CTS mechanism and RTS/CTS-Fragment principle of DCF are all analyzed. Real-time performance of different wireless distributed MAC layer access mechanisms is studied. This thesis provides an improved MARKOV model and introduces Z transform to analyze and calculate the MAC delay of 802.11 DCF, which includes delay performance of the non-saturation and saturation transmission channel. The numerical analysis of MAC delay in MATLAB matches the network simulation in OPNET10.0, which proves accuracy of the analysis model in MAC delay predication. Furthermore, this thesis provides a theoretical basis for further system design.
     (3) The research on implementations of IEEE1588 for clock synchronization in wireless distributed system. This thesis analyzes effects of the network topology choice and domain partition of PTP,and studies the PTP clock synchronization accuracy in different network topology and different scheduling mechanisms. In addition, by using offset estimation and skew compensation to improve the accuracy of the PTP clock synchronization in wireless distributed measurement system. The research results are of most value in implementation of IEEE1588 in wireless distributed measurement system.
     (4) The research on SPTP clock synchronization mechanism. Focusing on problems of PTP clock synchronization in wireless distributed network applications, a new wireless distributed measurement system clock synchronization mechanism SPTP (Simplified Precision Time Protocol) is proposed. SPTP has the advantages of PTP, RBS and PBS methods. The clock synchronization accuracy of SPTP is compared with that of PTP by simulation. SPTP clock synchronization mechanism has obvious advantage in wireless distributed measurement system.
     (5) The research on MBBS clock synchronization mechanism. Focusing on rapid increasing of clock synchronization error and message amount in wireless distributed networks, Management and Boundary Broadcast Synchronization (MBBS) wireless distributed clock synchronization algorithm is presented. The main idea and realization steps of MBBS are described in detail. Comparing with PBS, MBBS adds a piece of message in each synchronization round, but solves another layer slave clocks’synchronization. It is demonstrated by simulation results that MBBS reduces the messages needed for global synchronization and reaches higher clock synchronization accuracy in multilayer topology. The proposition of MBBS algorithm is of most value in improving clock synchronization accuracy for wireless distributed measurement system.
引文
[1]习友宝,古军.分布式网络化测试技术综述.仪器仪表学报增刊. 2002,10(23):213-216
    [2]沈艳.分布式测试系统协作理论及其通信平台实时性研究.电子科技大学博士学位论文,成都, 2004,6:3-4
    [3]李国卿,黄金杰.测试总线技术的发展研究.第十五届全国测试与故障诊断技术研讨会论文集,西安, 2006,9:25-28
    [4] Kang B L, Richard D S, Internet-based distributed measurement and control applications. IEEE Instrument & Measurement Magazine.1999,2(2):23-27
    [5]唐斌.基于以太网的自动测试系统的组建.电子科技大学硕士学位论文,成都, 2003,5:1-2
    [6]阳昕.网络化PXI总线测试系统的设计与实现.西北工业大学硕士学位论文,西安, 2003,3:1-2
    [7]王晓欣.交换式工业以太网与时间触发CAN总线系统的实时性研究.天津大学博士论文,天津,2005, 12:1-3
    [8]张军.工业以太网实时性解决方案.自动化与仪器仪表, 2006, 3(125):1-3
    [9]李卓函,仲崇权.工业以太网EPA实时性测试方法研究.自动化仪表, 2006, 27(10):4-6
    [10]李聿渊,宋立辉,沈海阔.基于CSMA/ CD以太网的军事通信网实时性分析.计算机测量与控制, 2009, 17(7):1331-1333
    [11]朱政红,王月娥.工业以太网在控制领域中的实时性技术.低压电器, 2010, 7:31-34
    [12] ANSI/IEEE Std 802.11, 1999 Edition (R2003). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification. 12 June 2003:1-28
    [13] EN300652 V1.2.1. Broadband Radio Access Networks (BRAN)-High Performance Radio Local Area Network (HIPERLAN) Type 1-Functional specification. http://en.wikipedia.org /wiki/HiperLAN
    [14] Bluetooth 4.0. Bluetooth Special Interest Group. http://en.wikipedia.org/wiki/Bluetooth_ Special_Interest_Group
    [15] Yap C, Qi E, Sood K, Bangolae S, Bell C. Issues with real-time streaming applications roaming in QoS-based secure IEEE802.11 WLANs. IEE Mobility Conference 2005. TheSecond International Conference on Mobile Technology, Applications and Systems, Guangzhou, China, 15-17 Nov. 2005:156 -163
    [16] Robinson J, Randhawa W. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. Selected Areas in Communications, 2004,22(5):917- 928
    [17] Ferre P, Doufexi A, Nix A, Bull D. Throughput analysis of IEEE 802.11 and IEEE 802.11eMAC. Wireless Communications and Networking Conference, Atlanta Georgia USA, 21-25 Mar. 2004:783-788
    [18] Lorincz J, Begusic D. Physical layer analysis of emerging IEEE 802.11n WLAN standard. Advanced Communication Technology. ICACT 2006. The 8th International Conference, Phoenix Park, 2006:189-194
    [19] Bianchi G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications, 2000,3(18):535-547
    [20] Wu H,Pent Y, Long K, Cheng S, Ma J. Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis And Enhancement. IEEE INFOCOM 2002, Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies Proceedings. New York, USA, 23-27 June 2002:599-607
    [21]阮加勇,黄本雄,张帆. IEEE802.11 DCF延迟性能分析.华中科技大学学报(自然科学版), 2006, 34(4):27-29
    [22] Yang X. IEEE 802.11e wireless LAN for quality of service. Proc. IEEE Wireless Communications and Networking Conf. New Orleans. 2003,3:1291-1296
    [23] Robinson J W, Randhawa T S. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE Journal on Selected Areas in Communications, 2004,6(22):917–928
    [24] Engelstad P E, Osterbo O N. Analysis of the Total Delay of IEEE 802.11e EDCA and 802.11 DCF. IEEE International Conference on Communications, 2006,6(2):552–559
    [25]李本亮,王厚军,李力.基于WLAN的分布式测试系统实时性研究.电子测量与仪器学报, 2008,22(6):1-6
    [26]李本亮,王厚军,师奕兵,李力,闫斌. IEEE 802.11的DCF机制媒介接入延时分析与仿真.计算机应用研究, 2009,26(6):2202-2204
    [27] Lindsey W C, Ghazvinian F, Hagmann W C, Dessouky K. Network synchronization. IEEE Proceedings (ISSN 0018-9219), Oct. 1985,73(10): 1445-1467
    [28] Lamport L. Time, Clocks and the ordering of events in a distributed system. Journal of theACM, 1987,7(21):558-564
    [29] Lamport L, Melliar-Smith P M. Synchronization Clocks in the Presence of Faults. Journal of the ACM.1985,32(1):52-78
    [30] Lamport L. The Byzantine General Problem. ACM Transaction on Programming Languages and Systems.1982,4(3):382-401
    [31] Lundelius J, Lynch N. An Upper and Lower Bound for Clock Synchronization. Information and Control. August-September 1984,62(2-3):190-204
    [32] Lundelius J, Lynch N. A New Fault-Tolerant Algorithm for Clock Synchronization. Information and Computation,1988,77(1):1-36
    [33] Srikanth T K, Toueg S. Optimal Clock Synchronization. Journal of the ACM, 1987,34(3) :626-645
    [34] Ramanathan P, ShinK G, Butler R W. Fault-Tolerant Clock Synchronization in Distributed Systems. IEEE Computer Society, Oct. 1990,23(10):33-42
    [35] Simons B, Lundelius-Welch L, Lynch N. An Overview of Clock Synchronization. Lecture Notes In Computer Science,1990,448:84–96
    [36] Cristian F. A Probabilistic Approach to Distributed Clock Synchronization. In Proc.9th Int’l Conf.on Distributed Computing Systems. Newport Beach CA. 1989:288-295
    [37] Cristian F, Fetzer C. Fault-Tolerant External Clock Synchronization. Proceedings of the 15th International Conference on Distributed Computing Systems. Vancouver BC. Canada, 1995:70-77
    [38] Cristian F, Fetzer C. Probabilistic Internal Clock Synchronization. Proceedings of the 13th Symposium on Reliable Distributed Systems. Dana Point CA. USA. 1994:22-31
    [39] Arvind K. A New Probabilistic Algorithm for Clock Synchronization. Real-Time Systems Symposium. Santa Monica CA. 1989:330-339
    [40] Arvind K. Probabilistic Clock Synchronization in Distributed Systems. IEEE Transaction on Parallel and Distributed Systems, 1994,5(5):474-487
    [41] Mills D L. Internet Time Synchronization: The Network Time Protocol. IEEE Transactions on Communications, 1991,39(10):1482-1493
    [42] Mills D L. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE Transactions on Networks, 1995,3:245-254
    [43] Yamashita T, Ono S. A Statistical Time Synchronization Method for Frequency-Synchronized Network Clocks in Distributed Systems. IEICE Transactions on Information and Systems.2004,E87-D(7):1878-1886
    [44] Hagit A, Amir H, Sergio R. Optimal Clock Synchronization under Different Delay Assumptions. SIAM Journal on Computing, 1996, 25(2):109-120
    [45] P Ramanathan, Kandlur D, Shin K G. Hardware Assisted Software Clock Synchronization for Homogeneous Distributed Systems. IEEE Transactions on Computers,1990.C-39(4):514-524
    [46] Shin K G, Ramanathan P. Transmission Delays in Hardware Clock Synchronization. IEEE Transactions on Computers, 1988,C-37(11):1465-1467
    [47] Rodrigues L, Guimaraes M, Rufino J. Fault-Tolerant Clock Synchronization in CAN. Proceedings of the 19th IEEE Real-Time Systems Symposium. Madrid, Spain, 1998:420-429
    [48] Chakravarthi S, Pillai A, Neelamegam J P, Apte M, Skjellum A. A Fine-Grain Clock Synchronization Mechanism for Myrinet Clusters. Proceedings of the 27th Annual IEEE Conference on Local Computer Networks,2002:708-715
    [49] Kopetz H, Kruger A, Millinger D, Schedl A. A Synchronization Strategy for a Time-Triggered Multicluster Real-Time System. IEEE Computer Society Press, Washington, DC, USA, 1995:154-161
    [50] Schmid U, Schossmaier K. Interval-Based Clock Synchronization. Real-Time Systems, 1997, 12(2):173-228
    [51] Schmid U. Synchronized Universal Time Coordinated for Distributed Real-Time Systems. Control Engineering Practice, 1995,3(6):877-884
    [52] Jorgenson J, Lundelius R. Convergence of the Normalized Spectral Counting Function on Degenerating Hyperbolic Riemann Surfaces of Finite Volume. Journal of Functional Analysis, 1997,149(1):25-57
    [53] Gusella R, Zatti S. The Accuracy of Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.3BSD. IEEE Transactions on Software Engineering, 1989,15:847-853
    [54] Horauer M, Schmid U, Schossmaier K. NTI: A Network Time Interface M-Module for High-Accuracy Clock Synchronization. Proceedings of the 6th International Workshop on Parallel and Distributed Real-Time Systems. Orlando,Florida,USA,1998:1067-1076
    [55] IETF, RFC1305. Network Time Protocol Specification, Implementation and Analysis, Mar. 1992 (Version 3)
    [56] IETF, RFC2030. Simple Network Time Protocol(SNTP) for IPv4, IPv6 and OSI. Oct 1996 (Version 4)
    [57] IEEE1588 Standard for a Precision Clock Synchronization Protocol for NetworkedMeasurement and Control Systems, Nov. 2002 (Version 1)
    [58]徐强,汪芸.基于SNTP同步模型的时钟同步系统.计算机应用与软件, 2007,24(9):54-56
    [59] Ferrari P, Flammini A, Marioli D, Taroni A. IEEE 1588-based Synchronization System for a Displacement Sensor Network. Instrumentation and Measurement Technology Conference 2006, Hilton Sorrento Palace, Sorrento, Italy, Apr.2006:1926–1930
    [60] Depari A, Ferrari P, Flammini A, Marioli D, Taroni A. Evaluation of Timing Characteristics of Industrial Ethernet Networks Synchronized by means of IEEE 1588. Instrumentation and Measurement Technology Conference Proceedings, Warsaw, Poland, 1-3 May 2007:1–5
    [61] Ferrari P, Flammini A, Marioli D, Rinaldi S, Sisinni E,Taroni A, Venturini F. Clock synchronization of PTP-based devices through PROFINET IO networks. Emerging Technologies and Factory Automation, 15-18 Sept. 2008: 496-499
    [62] Ferrari P, Flammini A, Rinaldi S, Gaderer G.. Evaluation of clock synchronization accuracy of coexistent Real-Time Ethernet protocols. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 22-26 Sept. 2008:87-91
    [63] Depari A, Ferrari P, Flammini A, Lancellotti M, Marioli D, Rinaldi S, Sisinni E. Design and performance evaluation of a distributed Wireless HART sniffer based on IEEE1588. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, University of Brescia, Brescia, Italy, 12-16 Oct. 2009:1-6
    [64] Rodrigues S. IEEE-1588 and Synchronous Ethernet in Telecom; IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 1-3 Oct. 2007:138–142
    [65] Kohler D. A Practical Implementation of an IEEE1588 supporting Ethernet Switch. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 1-3 Oct. 2007:134–137
    [66] Blixt S. A Microcontroller with IEEE1588 Support. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 1-3 Oct. 2007:116–122
    [67] Pinchas M, Cohen R A. Combined PTP and Circuit-Emulation System. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 1-3 Oct. 2007:143–147
    [68] Tournier J C, Xiao Y. Improving reliability of IEEE1588 in electric substation automation. IEEE International Symposium on Precision Clock Synchronization for Measurement, Controland Communication, 22-26 Sept. 2008: 65-70
    [69] Paces P, Sipos M, Vesely M, Verification of IEEE1588 time synchronization in NASA agate data bus standard. ICEMI09 9th International Conference on Electronic Measurement & Instruments, 16-19 Aug. 2009 (1) :5-10
    [70] Burch J, Green K, Nakulski J, Vook D. Verifying the performance of transparent clocks in PTP systems. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, University of Brescia, Brescia, Italy, 12-16 Oct. 2009:1-6
    [71] Romer K. Time Synchronization in Ad Hoc Networks. Proc.Second ACM Int’l Symp. Mobile Ad Hoc Networking and Computing 2001. Long Beach, California, USA, 4-5Oct. 2001: 173-182
    [72] Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts. Fifth Symposium on Operating System Design and Implementation. Boston, Massachusetts, USA, 9-11 Dec.2002:147-163
    [73] Ganeriwal S, Kumar R, Srivastava M B. Timing sync protocol for sensor networks. First International Conference on Embedded Network Sensor Systems 2003, ACM. Los Angeles, CA, USA, Nov.2003:138–149
    [74] Maroti M, Kusy B, Simon G, Ledeczi A. The flooding time synchronization protocol. Second International Conference on Embedded Networked Sensor Systems 2004, ACM Press, Nov. 2004:39–49
    [75] Sichitiu M L, Veerarittipahan C. Simple, Accurate Time Synchronization for Wireless Sensor Networks. Proceedings of the IEEE Wireless Communications and Networking Conference , New Orleans LA, Mar. 2003:1266-1273
    [76] Van G J, Rabaey J. Lightweight Time Synchronization for Sensor Networks. Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications. San Diego, CA, USA.19 Sept. 2003:11-19
    [77] Ping S. Delay measurement time synchronization for wireless sensor networks. Intel Research,IRB-TR-03-013.June 2003:1-10
    [78] Dai H, Han R. Tsync: A lightweight bidirectional time synchronization service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review, 2004,8(1):125?139
    [79] Hong Y S, No J H. Clock Synchronization in Wireless Distributed Embedded Applications.Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems (WSTFES 03), Hakodate, Hokkaido, Japan, 15-16 May,2003:101-104
    [80] An-swol H, Sergio D S. Asymptotically Optimal Time Synchronization in Dense Sensor Networks. Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, San Diego, CA, USA, 19 Sept.2003:1-10
    [81] Mock M, Frings R, Nett E, Trikaliotis S. Clock Synchronization for Wireless Local Area Networks. Proc. 12th Euromicro Conf. Real-Time Systems (Euromicro-RTS 2000), Stockholm, Sweden, 19-21 June 2000:183-187
    [82] PalChaudhuri S, Saha A K, Johnson D B. Adaptive Clock Synchronization in Sensor Networks. Proceedings of the 3rd international symposium on Information processing in sensor networks, Berkeley, California, USA. Apr. 2004:340-348
    [83] Romer K, Blum P, Meier L, Time Synchronization and Calibration in Wireless Sensor Networks. Wireless Sensor Networks,23 Sep. 2005. http://www.vs.inf.ethz.ch/publ/papers/ wsn-time-book.pdf
    [84] Kun S, Peng N, Cliff W. Fault-tolerant cluster-wise clock synchronization for wireless sensor networks. IEEE transactions on dependable and secure computing, 2005, 2(3):177-189
    [85] Kun S, Peng N, Cliff W. Secure and resilient clock synchronization in wireless sensor networks. IEEE Journal on Selected Areas in Communications, 2006, 24(2):395-408
    [86] Qun L, Rus D. Global clock synchronization in sensor networks. IEEE Transactions on Computers, 2006, 55(2):214--226
    [87] Dong Z, Lai T H. Analysis and Implementation of Scalable Clock Synchronization Protocols in IEEE 802.11 Ad Hoc Networks. Proc. IEEE Int’l Conf. Mobile Ad-Hoc and Sensor Systems (MASS’04). 2004:255-263
    [88] Dong Z, Lai T H. A Compatible and Scalable Clock Synchronization Protocol in IEEE 802.11 Ad Hoc Networks. Proc. Int’l Conf. Parallel Processing (ICPP’05), 2005:295-302.
    [89] Dong Z, Lai T H. An Accurate and Scalable Clock Synchronization Protocol for IEEE 802.11-Based Multihop Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2007,18(12):1797-1808
    [90] Rauschert P, Honarbacht A, Kummert A. The Efficient Network Synchronization of MANETS. Proc. IASTED Int’l Conf. Signal and Image Processing, 2005:262-267
    [91] Rauschert P, Honarbacht A, Kummert A. Synchronization of Multihop Ad Hoc Networks Using Connected Dominating Sets. Proc. IEEE Int’l Symp. Circuits and Systems.2006:1824-1827
    [92] Sheu J P, Chao C M, Sun C W. A Clock Synchronization Algorithm for Multihop Wireless Ad Hoc Networks. Proc. IEEE Int’l Conf. Distributed Computing Systems (ICDCS’04), 2004: 574-581
    [93] Jungmin S, Nitin V. MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop Wireless Networks. Technical report, University of Illinois at Urbana-Champaign, 2004. http://www.crhc.illinois.edu/wireless/papers/mtsf_jungmin.pdf
    [94] Lenzen C, Locher T, Wattenhofer R. Clock Synchronization with Bounded Global and Local Skew. Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 24 Feb. 2008:509-518
    [95] Lenzen C, Locher T, Wattenhofer R. Optimal Clock Synchronization with Bounded Rates. Technical Report 301, ETH Zurich, 2009. http://www.dcg.ethz.ch/publications /podc09_LLW _techreports.pdf
    [96] Lenzen C, Locher T, Wattenhofer R. Tight Lower Bounds for Clock Synchronization. Journal of the ACM (JACM). 2010, 57(2): 1-42
    [97] Kyoung L N, Erchin S, Khalid Q. A New Approach for Time Synchronization in Wireless Sensor Networks: Pairwise Broadcast Synchronization. IEEE Transactions on Wireless Communications, Sep. 2008, 7(9):3318-3322
    [98] Ill-Keun R, Jaehan L, Jangsub K, Erchin S, Yik-Chung W. Clock Synchronization in Wireless Sensor Networks: An Overview. SENSORS, 2009,9:56-85
    [99]桂本烜,冯冬芹,褚健,金建祥.基于单神经元的网络同步补偿算法研究.仪器仪表学报, 2006, 27(12):1573-1577
    [100]章涵,冯冬芹,褚健,方瑜.基于冗余时钟源的工业无线网络时钟同步方法.控制与决策, 2008, 23(11): 1249-1252
    [101]章涵,冯冬芹,褚健.网络冗余系统中精确时钟同步方法.仪器仪表学报,2008,8(8): 1643-1649
    [102]桂本烜,冯冬芹,褚健,金建祥. IEEE1588的高精度时间同步算法的分析与实现.工业仪表与自动化装置, 2006, 4:20-23
    [103]于鹏飞,喻强,邓辉,鲍兴川,马媛媛,郭经红. IEEE1588精确时间同步协议的应用方案.电力系统自动化, 2009,33(13):99-103
    [104]赵上林,胡敏强,窦晓波,杜炎森.基于IEEE1588的数字化变电站时钟同步技术研究.电网技术, 2008,32(21):97-102
    [105]殷志良,刘万顺,杨奇逊,秦应力.基于IEEE1588实现变电站过程总线采样值同步新技术.电力系统自动化, 2005,29(13):60-63
    [106]杨乘胜,唐立军. IEEE1588在分布式发电系统保护采样值同步中的应用.华电技术, 2009,31(7):31-34
    [107]杨亮,马党梅. IEEE1588 PTP协议在数字化变电站中的应用.机电信息, 2009,30: 102-104
    [108] Peng Y, Qinghua L, Zhaoqing L. An automatic evaluation system for IEEE1588 synchronization Clock Unit. The 9th International Conference on Electronic Measurement & Instruments, 16-19 Aug. 2009 (3): 408-413
    [109]吴敏凉,石旭刚,张胜,沈一波.基于IEEE1588的同步以太网实现方式.单片机与嵌入式系统应用, 2010,1:38-40
    [110]张妍,孙鹤旭,林涛,宁立革. IEEE1588在实时工业以太网中的应用.微计算机信息, 2005,15:19-21
    [111]刘明哲,徐皑东,赵伟.基于IEEE1588的时钟同步算法软件实现.仪器仪表学报, 2006, 27(z3):2009-2011
    [112]庾智兰,李智. IEEE1588精密时钟同步协议的分析与实现.电子测量技术, 2009,4: 56-58
    [113]黄云水,冯玉光. IEEE1588精密时钟同步分析.国外电子测量技术, 2005,24(9):9-12
    [114]袁振华,董秀军,刘朝英.基于IEEE1588的时钟同步技术及其应用.计算机测量与控制, 2006,14(12):1726-1728
    [115]王兰,杨志家. IEEE1588精准时钟协议的IP设计.微计算机信息(嵌入式与SOC), 2007,23(9-2):51-53
    [116]魏丰,孙文杰. IEEE_1588协议时钟同步报文的精确时间标记方法研究.仪器仪表学报, 2009,30(1):162-169
    [117]龚晓春.分布式微型航天器的时钟同步.哈尔滨工业大学博士学位论文, 2007,10:13-14
    [118]刘利.相对论时间比对理论和高精度时钟同步技术.解放军信息工程大学博士论文, 2004.4:11-12
    [119]任丰原,董思颖,何滔,林闯.基于锁相环的时间同步机制与算法.软件学报2007,18(2):372-380
    [120] Fengyuan R, Chuang L, Feng L. Self-correcting time synchronization using reference broadcat in wireless sensor network. IEEE Wireless Communications. Aug. 2008:79-84
    [121]肖琳,程利娟,王福豹.一种低功耗无线传感器网络时间同步算法.计算机研究与发展, 2008,(45):126-130
    [122]谷春江,徐朝农,张浩,徐勇军,李晓维.无线传感器网络的广播时间同步算法.计算机辅助设计与图形学学报, 2006(9):1432-1437
    [123]徐朝农,徐勇器.网络时间同步新技术.计算机研究与发展, 2008, 45(1):138-145
    [124] Li Li, Yongpan Liu, Huazhong Yang, Hui Wang. A Precision Adaptive Average Time Synchronization Protocol in Wireless Sensor Networks. Proceedings of the 2008 IEEE International Conference on Information and Automation, Zhangjiajie, China, 20-23 June, 2008:65-70
    [125]周贤伟,韦炜,覃伯平.无线传感器网络的时间同步算法研究.传感技术学报, 2006,19(1):20-29
    [126]彭刚,曹元大,孙利民.无线传感器网络时间同步协议.计算机应用, 2005,25(6):1230-1232
    [127]李凤保,蒋义援,潘泽友.无线传感器网络时钟同步技术综述.仪器仪表学报, 2006,(S1):355-356
    [128]熊焰,郭亮,吕天行,苗付友.无线传感器网络时钟同步的研究.小型微型计算机系统, 2006,27(12): 2251-2254
    [129]朱琨,焦毅,余强,吴百锋.无线传感器网络时钟同步技术研究.信息与控制, 2006,35(2): 201-205
    [130]杨宗凯,赵大胜,王玉明,程文青,何建华.无线传感器网络时钟同步算法综述.计算机应用, 2005,25(5):1170-1172
    [131]康冠林,王福豹,段渭军.无线传感器网络时间同步综述.计算机测量与控制,2005,13(10).
    [132]岳宇君,刘解放,刘从新,曾维鲁.基于分簇的无线传感器网络时间同步算法.计算机测量与控制, 2008,16 (2):435-438
    [133]袁凌云,朱云龙,甘健侯,刘珺.基于能量有效的多层动态分簇WSN时间同步算法.数据采集与处理, 2008, 23(s):152-157
    [134]金虎,李金宝,姜昕.基于洪泛的无线传感器网络时间同步算法.计算机工程与应用2008, 44(10):116-118
    [135]赵建军,姜建国,裴庆祺.低开销的无线传感器网络时间同步方法.计算机工程, 2007,33(21):113-115
    [136]程利娟,王福豹,段渭军.无线传感器网络时间同步算法的安全性研究.计算机应用研究, 2007 24(11):6-8
    [137]尹香兰,齐望东. LiteST:一种无线传感器网络轻量级安全时间同步协议.通信学报, 2009,30(4):74-85
    [138]封红霞,周莹.无线传感器网络的时间同步算法误差分析.工业控制网络, 2006,6:30-33
    [139]钟海东,邬春学,孔若英.无线传感器网络时间同步算法误差分析.传感器与仪器仪表, 2008,24(2-1):151-152
    [140]王喆,王福豹,陈振华.嵌入路由报头的无限传感器网络时间同步算法.计算机工程, 2009,35(1):132-134
    [141]李连,孙利民,樊孝忠.无线传感器网络基于概率分发的时间同步协议.北京邮电大学学报, 2008,31(5):57-60
    [142]李文锋,王汝传,孙力娟.基于RBS的无线传感器网络时间同步算法.通信学报. 2008,29(6):82-86
    [143]张树东,曹元大,孙利民.高密度节点部署条件下WSN时间同步优化方法.北京理工大学学报,2009,29(4):328-331
    [144]皇甫伟,周新运,陈灿峰.基于多层抽样反馈的传感器网络时间同步算法.通信学报, 2008,30(3):59-65
    [145]孙德云,沈杰,刘海涛.基于扩散机制的无线传感器网络时间同步协议.通信学报, 2008,29(11):40-49
    [146]郭强,潘理,李建华.基于平滑估计算法的网络隐蔽时间信道同步.计算机工程, 2009,35(1):105-107
    [147]易河. WLAN标准及技术最新进展.现代电信科技, 2004,9(9):7-9
    [148]夏威. WLAN:甩掉电缆走向自由.计算机科学与技术, 2005,1:50-54
    [149] Burch J, Eidson J, Hamilton B. The Design of Distributed Measurement Systems Based on IEEE1451 Standards and Distributed Time Services. Proceedings of the 17th IEEE on Instrumentation and Measurement Technology Conference, 2000, Vol2:529-534.
    [150]李馨,叶明.编著OPNET Modeler网络建模与仿真[M].西安电子科技大学出版社2006.1
    [151]王珂,杨士中,徐昌彪.基于IEEE802.11 DCF的QoS机制综述.计算机工程与应用, 2007,43(18):126-131
    [152]李云,隆克平,吴诗其,陈前斌. IEEE 802.11 DCF性能分析及改进.电子学报, 2003,31(10):1446-1451
    [153]宁维芳. IEEE 802.11 DCF协议性能及避退算法改进研究.吉林大学硕士论文,长春, 2006.4:10-16
    [154]叶尔骅,张德平编著.概率论与随机教程北京[M].科学出版社,2005
    [155] Martin O, Dan H, Anton C,TRUETIME 1.5-Reference Manual[R],Department of AutomaticControl Lund University, January 2007:1~107
    [156] Houjun W, Jianguo H, Yibing S, Li L, Benliang L. Research on Clock Synchronization of Wireless Distributed Measurement System, Testing and Diagnosis, 2009. ICTD 2009. IEEE Circuits and Systems International Conference on 28-29 April 2009: 1-4
    [157]李力,李本亮,闫斌,王厚军.基于Truetime的无线分布式测试系统时钟同步研究,测控技术, 2009.8,28(8):72-75
    [158]李本亮,王厚军,师奕兵,李力,闫斌.基于PTP的无线分布式测试系统时钟同步研究,电子科技大学学报,2010, 39(4):556-559
    [159] Schossmaier U S, Martin H, Loy D. Specification and Implementation of the Universal Time Coordinated Synchronization Unit (UTCSU). Real-Time Systems.1997,12(3):295-327
    [160]李仪.以太网与GPIB测量系统的对比和进展国外电子测量技术2005,24(11):1-4
    [161]李本亮,王厚军,李力,闫斌.无线分布式网络MBBS时钟同步.控制与决策, 2010, 25(7):1069-1073

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700